The Annals of Probability
1980, Vol. 8, No. 3, 539-575

CLASSIFICATION OF COHARMONIC AND
COINVARIANT FUNCTIONS FOR A
LEVY PROCESS!

By MARTIN L. SILVERSTEIN
Washington University

Excursion theory is applied to get identities for continuous time ladder
variables. The identities are used to classify coharmonic and coinvariant func-
tions for one dimensional Lévy processes.

1. Introduction. Let X = {X,, ¢ > 0} be a real valued Lévy-Khinchin process.
This means that X has stationary independent increments and right continuous
paths with left-hand limits. Let {%,, x € R} be the associated sample space
probabilities. A positive function h(y) is coinvariant on (0, o) if, for all y > 0,

(1.1) h(y) = &_,I(t < o*)h(X}).
Here X* = { X, t > 0} is the dual process
Xr=-X

and o, o* are the exit times
(1.2) o=inf{+>0:X, <0}; o*=inf{r>0:X*<0).

A positive function A is coharmonic on (0, o) if, for all y > 0,
(13) h(y) = 6_,I(Tf < oA X*(T3)].

Here T,,, T}, are the hitting times
(1.4) Ty,=inf{t>0:X,e M}; Ty =inf{t >0: X e M}.

In (1.4) the set M can be any subset of the half line (0, «0) whose complement
(0, 0) \ M is open and has compact closure contained in the open half line (0, o).
It follows from general principles that every positive coinvariant function is also
coharmonic. In this paper we classify positive functions which are coharmonic on
(0, + ) and we identify those which are also coinvariant. Our results are valid
only if we postulate.

Absolute continuity condition (ACC). For each a > 0 there is an integrable
function u, such that, for Borel f > 0,

b f5dt e™f(X,) = [dy u,(y)f(x + ).
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We take ACC for granted throughout the paper. If ACC were not true then we
would have to formulate everything in terms of measures rather than functions.

To avoid consideration of uninteresting cases we assume throughout the paper
that X is not a subordinator and also that it is not compound Poisson (with or
without drift).

We often use without comment the standard terminology for Markov processes
as set out in Blumenthal and Getoor (1968). When making explicit references to
that book we will use the abbreviation B/G.

Unless explicitly stated otherwise the terms excessive and coexcessive will be
understood to be relative to the absorbed process X° defined by

(1.5) X? =X, if t<o
= 4+ o0 if ¢t>oao.
The phrases “0 is regular for (0, +00)” etc., unless explicitly qualified, will be
understood to be relative to the original process X.
Before giving the classification we need to introduce some machinery. The

supremum functionals M,, the dual supremum functionals M/, the ladder variables
L,, and the dual ladder variables L* are defined by

(1.6) M, =sup{X,: 0 <s <t}; * =sup{X*:0<s <t}
L, = sup{s <t : max(X,, X,_) = M,};
L¥ = sup{s < ¢:max(X} X} )= M}
By convention X,_ = X, and X3_ = X§. The reflected process Y = {Y,, ¢ > 0}
and dual reflected process Y* = {Y}, ¢t > 0} are defined by
1.7) Y,=M!+X,: Yr=M, + X"

These processes are Markovian with stationary transition probabilities. Indeed the
transition probabilities for Y are given explicitly by

(1.7) Eo(f(Y Y, =)= G f[ X, +y + (M} — y)*]
= &, f X, + max(y, M})].

Thus Y is Feller and agrees with X up to time o. Notice that the processes defined
by (1.7) start at 0, independent of the starting position of X. Let A = {4,, ¢ > 0} be
local time at O for the reflected process Y and let B = {B,, 7 > 0} be the inverse
process defined by
B, =inf{t >0:4,>7}

with the understanding that B, = + oo for 7 > 4, . If 0 is regular for (— o0, 0)
then 0 is regular for {0} for Y and A is defined up to a multiplicative constant as in
Section 1 of Blumenthal and Getoor (1964). (We will fix this constant in Section 2.)
If 0 is not regular for (— oo, 0) then the zeroes of Y form a discrete set and we let A
correspond to counting measure for that set. Then By, B,, - - - are the successive
members of that set. The processes A*, B* are defined by analogy with Y* playing
the role of Y.
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We will see in Section 3 that if 0 is regular for (0, + o0) then ACC guarantees the
existence of a unique coexcessive function () for X° such that

(1.8) [l Y(A(y) = &ofgdr (M ° BY) = &o[5dA} IM,)

for Borel f > 0 on (0, + o0). Our convention will be that M = + oo and f(+ o)
= 0 so that (1.8) is still true if 4, < + oo. If 0 is not regular for (0, + c0) then we
can still define y(y) by

(19)  f0) + [&dy Y(P)(¥) = Eof5dr f(M © B}) = &[5> dA}f(M))

where now f is defined on [0, + o0). The function y* is defined by analogy.
Our first result is

THEOREM 1. (i) If O is regular for (0, +o0) then {(y) defined by (1.8) is
coharmonic on (0, + o).

(ii) If 0 is not regular for (0, + o) then Y(y) defined by (1.9) is not coharmonic on
(0, + o). Indeed it does not dominate any nontrivial positive coharamonic function on
(0, + o0).

At the end of Section 10 we will use Theorem 7, below, to supplement Theorem
1(ii) by showing that if 0 is not regular for (0, + c0) then y(y) can be represented

(1.10) Y(») = [gm(dx)G(x, )

where G(x, y) is the Green’s function defined by (1.16) and (1.17) below and = is
the Lévy measure defined by (1.24) below.

Once we have proved Theorem 1 it will be clear that y(y) is bounded and
coharmonic if and only if “continuous passage to the right” is possible for X. Thus
we can view Theorem 1 as supplementing the results in Section 2 of Millar (1973)
~ where it is shown that this is the case only if 0 is regular for (0, + o).

The function () is naturally associated with “entrance from 0” and it is never
coinvariant. However, there may be a coharmonic function associated with “en-
trance at + 0™ and this one is coinvariant. In stating results for this function we
distinguish two cases, depending on whether or not X always returns to the left half
line (— o0, 0); that is, depending on whether or not

(1.11) P(o<w)=1 for x>0

THEOREM 2. Assume that (1.11) is true and define
(12) g(x) = fody ¥(»).
(1) If 0 is regular for (0, + o), then g(x) is coinvariant on (0, + o0) and, therefore,

coharmonic on (0, + c0).
(ii) If 0 is not regular for (0, + o) then conclusion (i) is true with g(x) replaced by

1 +7g(x).

Theorem 2 is an analogue for P5 on page 212 in Spitzer (1964) and our proof
amounts to a translation into continuous time of the argument given by Spitzer.
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Theorem 2 is certainly applicable when X is recurrent and then one would
suspect that g(x) or 1 + g(x) corresponds somehow to the function Lg(x) as
defined in Port and Stone (1971) with B = (— o0, 0]. However, we do not see how
to make the connection precise since Port and Stone assume that B is relatively
compact in their Theorems 23.2 and 23.3.

If (1.11) fails then there is a nontrivial positive coinvariant function on (0, + o)
if and only if there exists ¢ > 0 such that

(1.13) Goe ¥ =1 for t>0.

The precise positive result is

THEOREM 3. Assume that (1.11) fails and that (1.13) is true for some g > 0.
(i) If 0 is regular for (0, + o), then

(1.14) g,(x) = [5dy e?*7)Y(y)

is coinvariant on (0, + o) and, therefore, coharmonic on (0, + ).
(ii) If O is not regular for (0, + o) then conclusion (i) is valid with g,(x) replaced
by e + g, (x).

It is easy to see that (1.13) can be true only if (1.11) fails. There do exist
examples for which both (1.11) and (1.13) fail and then there is no positive
coinvariant function on (0, + o).

We finish the classification in

THEOREM 4. Every positive coharmonic function on (0, + o) is a linear combina-
tion of the ones identified in Theorems 1, 2 and 3.

The special case A, = 0 in Theorem 9.1 in Fristedt (1974) gives the formula
- o dt _ -
(L1S)  [edy y()e™ = exp [& S 6I(X, > 0){e ™ — ™).

(In Section 2 we will normalize the local time A to eliminate a multiplicative
constant.) For the strictly stable case Fristedt shows that one can explicitly invert
(1.15) and identify y(y) as an appropriate power function. For example, if X is
symmetric stable with index a, then Y(y) = (const.)y 32=1 In order to show that
Y(y) is coharmonic we supplement Fristedt’s formula with a second formula,
apparently new, which identifies ¥(y) as the sojourn density for “typical excursions
from a minimum.” In Section 2 we will derive both formulae using excursion
theory, and then in Section 3 we will prove Theorem 1. (An independent proof of
Fristedt’s formula can also be found in Greenwood and Pitman (1978).)

Our proof of Theorem 2 depends on establishing an analogue to the result of T.
Harris (1956) concerning the existence of an invariant measure for any recurrent
discrete (time and space) chain. The analogue is established in Section 4 and
Theorem 2 itself is proved in Section 5.
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Our proof of Theorem 3 depends on a different technique and it is given in
Section 7. At the same time we will prove the following result which is perhaps
more fundamental.

THEOREM 5.  If (1.11) fails then the following are equivalent for fixed g > 0.
(i) e? is coharmonic for X.

(ii) e? is coinvariant for X.

(iii) e? is coharmonic for —M* o B.

(iv) e? is coinvariant for —M* - B.

If 0 is regular for (— oo, 0) then the process M* e B= {M* o B, > 0} is a
subordinator (see Fristedt (1974)). If 0 is not regular for (— oo, 0) then we use an
integral time scale for M* o B so that actually M* o B = {M*(B))};Zo a random
walk. In either case conditions (iii) and (iv) in Theorem 5 make sense. However in
the random walk case (iii) and (iv) are equivalent from general principles.

The Green’s operator G is defined by

(1.16) Gf(x) = &, fqdt f(X,)

for x > 0 and Borel f > 0 on (0, + o). Condition ACC immediately implies, for
the absorbed process X’ conditions (a) and (b) in Theorem 1.4 on page 254 in
B/G, and from this theorem we easily deduce the existence of a unique Green’s
JSunction G(x, y) which is excessive in x and coexcessive in y and such that

(1.17) Gf(x) = [5dy G(x, »)A(»).
In Section 3 we will establish the following formulae for G(x, y).

THEOREM 6. (i) If O is regular for both (0, + o) and (— o, 0), then

(1.18) G(x,y) = [5"auy*(x — u)Y(y — u).
(ii) If O is regular for (0, + o) but not for (— o0, 0), then

(1.19) G(x,») = [o™duy*(x — u) Y(y — u) + Y(y — x).
(iii) If O is regular for (— oo, 0) but not for (0, + o), then

(1.20) G(x,») = [5™Mauy*(x — wy(y — u) + ¢*(x — ).

Of course Y*(x) and () are understood in Theorem 6 to be represented by the

versions specified in Theorem 1 (and its dual).
Theorem 6 is an analogue to the formula on page 209 in Spitzer (1964) and again

our proof amounts to a translation of his argument.
If X is symmetric stable with index a then (1.18) becomes

(1.21) G(x,y) = (const.)f5"Vdu(x — u)';“"(y - u)%“—l

which could also be obtained from Corollary 4 in Blumenthal, Getoor and Ray
(1961) after scaling and a passage to the limit. If X is completely asymmetric stable
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with index a > 1 and no jumps downward, then
(1.22) G(x, y) = (const.)y*~! if 0<y<x
= (const)(y* ' = (y —x)*7")  if 0<x<y.

This could also be obtained from the formula on page 43 in Port (1970) after
passage to the limit b7c0.

Theorem 4 will be proved in Section 8 by combining Theorem 6 with the general
theory of the Martin boundary.

Some of our results can be formulated directly in terms of integrodifferential
equations. It is well known that the characteristic function for X can be written

(1.23) boe™ = ¢~ 1¥®
where the exponent ¥(£) has a representation
(1.24) Y(¢) = at? — bt + [n(dy){1 — ™ + it siny}

where a > 0, where b is real, and where = is a measure on R which does not charge

{0}, which has a finite second moment near 0, and which is bounded in the

complement of any neighborhood of 0. The local generator @ is defined on
€ Coon(0, +00) (the collection of C* functions with compact support in

(0, + o)) by

(125) @o(y) = ag”(y) + be'(y) + [n(dz){9(y + z) — @(¥) — ¢'(») sin z}.

If A > 0 is coexcessive and locally integrable on (0, + c0) then Theorem 2.11 on
page 272 in B/G guarantees that 4 has a unique representation

(1.26) h(y) = ho(y) + [¥(dx)G(x, y)

where A, is coharmonic and » is a Radon measure on (0, + o). In Section 10 we
will prove

THEOREM 7. Let h(x) be coexcessive and locally integrable on (0, + o) with
representation (1.26). Then for any ¢ € Con(0, +0) the product h(x)&@¢(x) is
integrable on (0, + o0) and

(1.27) J&d h(»)@o(y) = — [v(dy)e(y).

Conversely let h > 0 on (0, + o0) be locally integrable on (0, + o) and suppose that
Jor all p € CZ (0, + 0) the product h(y)&@¢(y) is integrable on (0, + ) and (1.27)
is valid with v a Radon measure on (0, + ). Then h has a version which is
coexcessive and this version has the representation (1.26).

Of course (1.27) is just the statement that @*h = — » on (0, + c0) in the
distribution sense. .
" In Section 9 we use results for the half line (0, + o) to classify coharmonic
functions for a bounded interval.

Some preliminaries for approximate Markov processes are collected in Section 6.
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2. Some identities. In this section we establish some formulae which are
continuous time versions for well-known identities involving discrete time random
walks. Some of the formulae were first discovered by Fristedt (1974), but others
seem to be new. A special case of the formulae will be used in Section 3 to prove
Theorems 1 and 6. It turns out that a different special case plays an important role
in Monrad and Silverstein (1979).

Condition ACC could easily be suppressed in this section.

We begin by introducing machinery to treat excursions from 0 for the reflected
process Y defined by (1.7). Let D be the random open set

) ={t>0:Y,#0 and Y, ,+ 0}

and let £ be the set of left-hand endpoints of the components of ). For i € £ let
r’ denote the corresponding right-hand endpoint and let W' = {w/, ¢ > 0} be the
excursion from O starting at i for Y. That is,

2.1) wi=Y,, for 0<t<ri—i

= o0 for t>r'—i.
Consider first the case when 0 is regular for (0, + o0) but not (— o0, 0). Then £ can
be represented

2.2) £ ={B}"

j=0
and it follows easily from the strong Markov property for X or Y that
(23) o3 cee™MeTHIE(W) = 6,3501(B, < +00)ePBe KB E(X0)

for B, p > 0 and £ > 0 any measurable function of a typical excursion w'. Here
X =(x%:t> 0} is the absorbed process on (0, + o) defined by (1.5). Alterna-
tively

24 &02;cce ~Ple —M‘g(wi) = boJ32dAe ~Ple _"M"gog(xo)-

To make further progress we need an analogue for this formula which is valid when
0 is regular for (— o0, 0). Of course (2.4) itself cannot be correct since the second
factor on the right collapses. A quick way to get a correct formula is to apply a
slight extension of Theorem 4.1 in Maisonneuve (1975).

Assume that 0 is regular for (— oo, 0) for the original process X which means that
0 is regular for {0} for the reflected process Y and so A, local time at O for Y, is
well defined by the results of Blumenthal and Getoor (1964). In Maisonneuve’s
theorem the role of X, is played by the reflected process Y. The role of the closed
random set M is played by {z > 0: Y, = 0 or Y,_, = 0}. The role of ¥, there is
played by the complete sigma-algebra generated by the coordinates {X,, s < ¢}.
(Not the smaller sigma-algebra generated by {Y,, s < t}. Thus we are actually
using a slight extension of Maisonneuve’s theorem. But this extension is obvious
and we take it for granted.) By the uniqueness result on page 217 in B/G we can
normalize so that the continuous additive functional K in Maisonneuve’s Theorem
4.1 is identical with A. We conclude then that there exists a uniquely determined
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measure P with associated functional &°*, well defined on the sigma-algebra
generated by the reflected process Y (and in particular on the sigma-algebra
generated by the absorbed process X°) such that

25) EoZicce e THMIE(W) = By [FdA e Pie M 5R¢(X0).

This is the desired analogue to (2.4).
If B, u > 0, and if we rule out the case 8 = p = 0, then also

(26)  6,SFdd,e™Pe M ERLXO) = &, [Pdr e Pl M" + BETEXO),

(Recall our convention in Section 1 that M% = + c0.) We will assume always that
B, 1 > 0 and we rule out the case 8 = u = 0. A similar convention will hold for

the pair a, A introduced below.

Next we collect some elementary identities which can be established by reversing
the path from 0 to ¢ exactly as in Chapter III of Feller (1950). To keep the notation
as simple as possible we assume the underlying sample space Q is the set of all right
continuous trajectories from [0, o0) to R. Then it is clear that for # > 0 there is a
uniquely defined reversal operator p, on 2 determined by the relations
@7 X(pw) = X;_o(w) = X,_;_o(w) for 0<s<t

X(p0) = X(«).
Certainly p, preserves the probability ¥, on the sigma-algebra generated by
X, s < t. Also it is easy to check that at least if X, = 0 and X, = X,_, then
(2'8) M,(p,w) = Mt*(w) + Xt(w)
(29) (M, — X,)(p,0) = M}w)
(2.10)  L(pw) = ¢ — inf{s < ¢: max(— X, (@), —X,_o(w)) = M}*(w)}.

It follows that for fixed ¢ > 0 these identities are valid for almost every w relative
to P,

We continue to assume that 0 is regular for (— oo, 0). Following Fristedt (1974)
we introuuce the Laplace exponent ¢*( 8, u) by
(2.11) Boe BB TEMT 2B, = o= (B M),

If 0 is not regular for (0, + o), then with probability one the set of zeroes for Y has
positive Lebesgue measure. This is because (2.8) guarantees

(2.12) Po(Y, = 0) = Fo(M, = 0).
Therefore we can normalize the local time A by

(2.13) A, = [(I(Y, = 0)ds.
Taking

E(W) = [1~idt e~ e~
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we get
(2.14) &yf5dr e~ BL o= KMo —a(t—L}) o —NX,+ M?)

= Eo5dA,e™PTI 4 §03, 0Pl THME(W)

which combines with (2.5), (2.6) and (2.11) to give
(2.15) &ofPdt e PLie—1Mig=alt=L7) g ~AXi+ M?)

= ¢*(B )T {1 + E7[3dr e e ™)

valid if O is regular for (— oo, 0) but not for (0, +o0). If O is regular also for
(0, + o0) then (2.12) implies that the set of zeroes for Y has Lebesgue measure 0
and the first term on the right in (2.14) should be omitted so that (2.15) is replaced
by

(2.16) &ofdt e PLe=mMig=alt=LD) g " NXAMD) = o*( B 1)~ & [3dt e~ e

valid if 0 is regular both for (— o0, 0) and (0, + o0).

Justifying (2.15) and (2.16) was the main step in our argument. The rest of this
section depends on techniques which are standard for establishing identities of the
kind considered here. (See, for example, Chapter IV in Spitzer (1964).)

First we return to the case when 0 is not regular for (— o0, 0) (and, therefore, is
regular for (0, + o) by the restrictions set forth in the introduction). In place of the

Laplace exponent ¢* we introduce
(2.17) O*( B, ) = Epe P

and observe that the appropriate analogue for (2.15) or (2.16) is the elementary
formula
(2.18) &, fXdt e PLie=rMig=a(t=L7) g =NMI+X,)

= {1 - (B, p)} ~'6of3dt e~

valid if 0 is regular for (0, + oo0) but not for (— oo, 0).

The identities (2.15), (2.16) and (2.18) have obvious duals with ¢*, &=, ®* etc.,
replaced by ¢, & **, ® etc., and we take these for granted below.

It is true that with probability one there do not exist times 0 < r < s < ¢ such
that M, = max(X,, X,_,) = max(X,, X,_). A weak version of this is proved in
Pecherskii and Rogozin (1969) and this would suffice for present application. The
version as stated can be deduced from results of Millar (1973) by considering cases
as follows. By the formula (1.6) of Millar, the process X cannot jump into .an old
maximum. By Theorem 2.1 of Millar X can move continuously up to an old
maximum only if 0 is regular for (0, + o) and then X must immediately go above
this maximum. Therefore, we can conclude from (2.10) that for almost every w

(2.19) L(pw) =t — L}(«)
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except for at most countably many ¢. This combines with (2.8) and (2.9) to give
(220) &ofPdt e=FLie=rMig=alt=L7) o —MM?+X)
= &, /dt e~ e~ Mig—BU—L)g=n(M,~X)

Suppose now that 0 is regular both for (0, +c0) and (—o0, 0). Then (2.20)
combines with (2.16) and its dual version to yield

(2.21) @(a, N)E=[3dt e~ e~ = o*( B, p)& **[3*dt e ~Pe 1"

which means that both sides must be constant. We choose our normalizations for
the local times A and A* so that both sides of (2.21) are 1 and so that also

(222) o(1,0) =1,
and there follows
(2.23) &= [3dt e %e ™’ = g(a, \) ™.

If 0 is regular for (0, + o0) but not for (— o0, 0) then

{1 - @*(B, )} "6 5dt e ¥e™™ = p(a, N)™'{1 + &E*x[3*dt e~Fle=1X")
and, therefore,
(224) (a, )b fodt e~ ™ = {1 — ®*(B, w)}{1 + &**[5*dt e Ple %"}

and both sides equal a constant which has already been determined by the
convention which is dual to (2.13). Indeed we can calculate

(2.25) (e, \) ! = BofPdt e=I(M, — X, = 0)e ™
= [&dt e Gy I(M* = 0)e M
= &, f3dt e~ %e M
which identifies this constant as 1 and then by the dual of (2.24)
(2.26) 1+ &™f3dt e=%e ™M = {1 — ®(a, \)} !

valid if O is regular for (— oo, 0) but not for (0, + o).
To deduce the formula in Chapter 9 of Fristedt (1974), we need only combine
the above with

Q27) Bofdt e~ e~ Ne=BU=L)g = KM~ X)
= exp f3°—t-1t£f§0{1(Xt > O)e—at—AX, + I(X, < O)e—ﬁt+p.x, - e_’}

which is proved in Pecherskii and Rogozin (1969) by passage to the limit from
discrete time skeletons. If O is regular for both (— o0, 0) and (0, + o), then (2.16),
(2.23), (2.20) and (2.27) combine to. give

228) (o, Ne*(B, 1)
= €xp ngﬁitfgo{e—t —I(X, > 0)e ™M — (X, < O)e—ﬁt+,,.x,}.
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In particular ¢(1, 0)p*(1, 0) = 1 since P,(X, = 0) = 0 and so our normalization of
A and A* gives, together with (2.22), its dual
(2.22%) ¢*(1,0) =1
valid if O is regular for both (— o0, 0) and (0, + ). Now plugging in 8 = 1 and
p = 0in (2.28) we deduce Fristedt’s formula
(2.29) P(a\) = exp fg°i’t£501(x, > 0) (e~ —e %)
valid if 0 is regular for both (— o0, 0) and (0, + o0). If 0 is regular for (— oo, 0) but
not for (0, +00), then (2.15) combines with (2.26), (2.20) and (2.27) to give
(2.30) {1 — ®(a, A)}p*(B, 1)

= exp fg-‘ilgo{e-f — I(X, > 0)e~ =M — (X, < 0)e~A+H%)

We deduce immediately
(2:31) 9*(1,0) = {1 — e~}
(232) 1-0(a,A) = {1 - Bee™*")} exp f;°—“t'-’501(x, > 0) (e~ — e~ M)

valid if 0 is regular for (— oo, 0) but not for (0, + 00). Similarly

(2.33) P(1,0) = {1 — §pe™°} !

234) o(a,A) = {1 — Be=*) ~exp f3°%£801(X, > 0){e~" — =M
valid if O is regular for (0, + o0) but not for (— oo, 0).

REMARK. We have used the fact that with the restriction on X set out in the
introduction, Po(X, = 0) = 0. Indeed it is well known that with our restrictions on
X

(2.35) Po(X, = x) =0

for all # > 0 and all real x (see Esseen (1968) or Rogozin (1961)), but we thought it
worth including here a simple proof shown to the author by D. Monrad. It suffices
to consider the special case when X is symmetric and x = 0 and the point is that
for all € > 0 we have Fo(M, > e) < 2Py(X, > ¢) and so Py (X, > 0) > 1Py(M, >

1
0=310
For convenient future reference we summarize the results of this section in

THEOREM 8. (i) Assume that 0 is regular for both (— o, 0) and (0, + ). Let the
excursion measure P corresponding to excursions from a minimum be normalized by
(2.5). Let @*(p, B) be the Laplace exponent defined by (2.11). Let P *** and ¢(a, N)
be the dual objects. Then the local times A and A* can be normalized so that (2.23),
(2.29) and their duals are valid.
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(ii) Assume that 0 is regular for (0, +o0) but not for (— o, 0). Let ®*(pu, B) be
defined by (2.17) and let the local time A* be defined by the dual to (2.13). Then
(2.25), (2.34) and the dual to (2.26) and (2.32) are valid.

Of course if 0 is regular for (— oo, 0) but not for (0, + o), then the dual to
conclusion (ii) is valid.

3. Proof of Theorems 1 and 6. Suppose first that 0 is regular for both (— oo, 0)
and (0, + o). Taking f(y) = e~ and integrating with respect to 7 the dual to
(2.11) with a = 0, we get

3.1) e(0,N) ' = &ofPdreM-B  for A >0
and, after comparing with (2.23) for a = 0, we get
(32 6 f3dt f(X0) = &ofedr f(M © BY)

for Borel f > 0 and (0, + 0], with the convention f(co) = 0 as specified in the
introduction. It follows then from Theorem 5.1 in Maisonneuve (1975), or more
directly from Theorem 5 in Meyer (1971), that the measure on (0, co) defined by
the left side of (3.2) is excessive for the absorbed process X°. Then so is the measure
defined by the right side and so Condition ACC together with Proposition 1.11 on
page 258 in B/G guarantees that this measure has a unique coexcessive density
Y(x) and (1.8) makes sense. Moreover (3.2) can be rewritten

(33) &™ fodt f(X,) = [Ty Y(»)f(»)

and it is easy to check that in fact this is valid if O is regular for (— oo, 0), whether
or not 0 is regular also for (0, + o0). Similarly

(34) &ofodt f(X,) = (5 Y(¥)A¥)

is valid if O is regular for (0, + oo0) but not (— o0, 0).

The formulae (3.3) and (3.4) are continuous time analogues for the elementary
“duality lemma” on page 378 in Feller (1966). They will be the main tools in this
section. Actually (3.4) could be deduced directly from the elementary relation (2.9),
but (3.3) seems to depend on the results in Section 2. We begin by proving
Theorem 6.

If 0 is regular for both (— o0, 0) and (0, + c0) then the set of zeroes for the
reflected process Y has measure zero and it follows that for x > 0

3.5) Gf(x) = 8%l (M} < x)[5~'dt fx — MF + w/).
We are using the notation of Section 2 for excursions from 0 for Y. We apply (4.9)

in Maisonneuve (1975) to transform (3.5) into
(3.6)

Gf(x) = [ Po(de)[FdA(w)I(M}(w) < x)[F(de') [6ds fx — MHw) + X(o)]
and now (3.3) combines with the dual of (1.8) to give
(3.7) Gf(x) = [odr ¥*(r)/5ds Y()f(x — r + 3)
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and (1.18) follows after the change of variablesu = x —randy = x — r + 5. If 0
is regular for (— o0, 0) but not for (0, + o0) then the set of zeroes for Y has positive
Lebesgue measure and (3.7) must be replaced by

(38)  Gf(x) = Jods Y*(s)f(x — ) + [odr ¥*(r)[Tds Y(s)f(x — r + )
and (1.20) follows after a change of variables. Finally, if 0 is regular for (0, + c0)
but not for (— oo, 0), the (3.6) is replaced by

(39) Gf(x) = 6Z52ol(M*(B) < x)[g+dt f(x + X))
and, after applying the strong Markov property and the dual of (1.9), we get
(3.10)  Gf(x) = Bofedt f(x + X,) + [idr $*(r)Bof3dt f(x — r + X))
= [g°ds Y(s)f(x + 5) + [odr y*(r)[5ds Y(s)f(x — r + 3)
and (1.19) follows after a change of variables. This completes the proof of Theorem

6.
Our proof of Theorem 1 depends on Theorem 3.1 in Millar (1976). If 0 is regular

for (— o0, 0) then Millar’s theorem implies
(3.11) Px(Xg» >0) =0 if 0is regular for (0, +o0)
(3.12) P*(Xg» = 0) =0  if 0is not regular for (0, + o).

Forn > 2let D, = (1/n, n), let T(D,) be the hitting time defined as in (1.4) and
let /,(dx) be the measure on the closure [1/n, n] determined by

(3.13) Jh(dx)f(x) = &I(T(D,) < o)f[ X(T,)]
fc. 3orel f > 0 on [1/n, n]. Consider first the case when O is regular for both
(— o0, 0) and (0, + o0) so that
P*1T(D,) =0) =0.
Now it is easy to apply Theorem 5.1 in Maisonneuve (1975) and deduce for Borel
f > 0on (0, +x)
[1"(dz)[dy G(z, )/(¥) = & *[1yp )t A(X?).
Combining this with (3.3) we deduce
(3.14) J1"(dz)G(z, y)M(y)  as nfoo
[1"(dz)G(z,y) =¥(y)  for y €D,
With M as in (1.3) we then have
Jdy f(9)6_, I(T3; < o*)Y(X*(T)) :
= Lim, . fd f(y)[1%(d2)6_, (Tl < 0*)G(z, X*(T3)
which, by Hunt’s duality relation, as stated on page 261 in B/G,
= Lim,,, [1"(dz)&6,1(T), < 0)Gf[ X(T,,) ]
= &™I(Ty, < 0)[%,dt f(X)
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which, by (3.11) and (3.3),
= [5dy v(»)(¥)

and we have verified (1.3) with & replaced by ¢ for almost every y and therefore for
every y. This proves Theorem 1(i) in the case when 0 is regular also for (— o, 0).
The proof of Theorem 1(i) in the case when 0 is not regular for (— oo, 0) is simpler
since then we can work with &, in place of & and we leave it to the reader.

If ¢ dominated a positive coharmonic function h, then, except possibly for
redefining the time scale, P would dominate the approximate Markov process
®_, constructed in Section 6 below for 4. But then Proposition 6.2 would imply
Px(XQ. = 0) > 0 and from (3.12) we could conclude that 0 is regular for (0, + ).
This proves Theorem 1(ii).

4. Invariant measure for processes which must hit a point. In this section we
prove an analogue to a well-known result of Harris (1956) for discrete time Markov
chains. .

Throughout this section we use &, and &, to denote the sample space probabili-
ties and expectation functionals associated with a general Markov process Z =
{Z,, t > 0} instead of the Lévy process X studied in the rest of the paper. Also we
use the symbol P, to denote the transition operator

(4.1) Pf(x) = &,f(Z).
We assume that Z is strong Markov with right continuous paths and takes values

in a locally compact metric space E. Our basic assumption is that there exists a
point 0 € E such that for every x € E

42) P(Ty < +0) =1
where T is the hitting time
(4.3) T, =inf{t > 0:Z, = 0}.
We use the symbol P? for the absorbed transition operator
(4.4) PY(x) = &, 1(t < THf(Z).
We distinguish three cases.
Case I.  Ois not regular for {0}. In this case we define the sojourn measure u by
(4.5) Sm(dx)f(x) = &o[g%dt A(Z,)
for Borel f > 0 on E.

CaseII. 0 is regular for {0} but P(Z, = 0) = 0 for almost every ¢ > 0. (It then
follows from Kesten (1969) that %(Z, = 0) = 0 for every ¢ > 0.) We fix a local
time A at 0 and we define the excursion measure P°* exactly as at the beginning of
Section 2, using Maisonneuve (1975). The sojourn measure p is now defined by

(4.6) Su(dx)f(x) = & gt {(Z,).
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Case III. Py (Z, = 0) > 0 for a set of ¢ > 0 having positive Lebesgue measure.
In this case we explicitly define the local time A by

4.7) A, = [dsI(Z, = 0).
The excursion measure P** and the sojourn measure p are defined exactly as for

Case II.
The analogue to Harris’ result is

THEOREM 9. Assume that (4.2) is true. In Cas; I and 11 the sojourn measure p is
invariant for P,. In Case 111 the measure €, + p is invariant for P,.

Of course ¢, denotes the unit measure concentrated at 0. In Section 5 we will
apply Theorem 9 in the special case when Z = Y, the reflected process, in order to
prove Theorem 2.

Before proving Theorem 9 we emphasize that condition (4.2) is fundamental.
This is easy to understand if one looks at Harris’ original proof in the discrete time
context.

Our goal is to prove that

(4.8) Ju(dx) P f(x) = [p(dx)f(x)
in Cases I and II and that
(4.9) Ju(dx) P f(x) + Pf(0) = [p(dx)f(x) + f(0)

in Case III. Of course f can be any nonnegative Borel function on E.
We first treat Cases II and III, beginning with

(4.10) Pf(x) = PY(x) + &,[odd,&6%I(t — s < TYA(Z,_,) + F(Z, = 0)f(0)
which can be deduced directly from Theorems 4.1 and 5.1 in Maisonneuve (1975).
Then

(4.11) [u(dx)Pf(x) = & [5ds PA(Z,)
+[P(dw) [¢°Vds &5, [0dA,E7I(t — p < TOAZ,_,)
+ [P*(dw) [T ds P 2.w(Z; = 0)/(0).

Certainly

(412) &= [5ds PH(Z,) = &I(t < Tp)f{ds f(Z,).

After application of the Markov property and then the substitution v = p + s, the
second term on the right in (4.11) becomes

JPH(dw) (3% ds [;*'dA, (@) E&I(t — v + s K TYAZ,_,+,)-

There is no contribution for s < Ty(w) — ¢ and so after the substitution r = Ty(w)
— s we see that this equals

f@ex(dw)foﬂ)(w)/\ tdr f%}gg—ri- tdAv(w)f@ex(dw/)
I(t — v + To(w) = 1 < T NAZ o4 - (&)
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which, after the substitution u = v — To(w) and an application of the strong
Markov property for ¥, equals
JFN(dw) [g o ON dr&o [oT dAENI(t — u — r < TYAZ,_,_,)
= fodr P(r < Tp)&o [6dAI(u + r < )&™I(t — r — u < TYA(Z,_,_,).

(Before continuing we remark that if (4.2) were not true, then we would have to
replace P(r < T) by P*(r < T, < + o) at this point and the argument given
below would fail.) Next we replace r by s = u + r to get

Jods &0fodA,E7I(t — s < TYAZ,_)F™(s — u < Tp)
= fods &U(t = s < TIAZ,_ ) {&0/edA,T(s — u < Tp)}.
Again it follows from Maisonneuve (1975) that
(4.13) &0 odA, PN(Ty > s — u) = P(Z, # 0),
and so we have
(4.14) [F(dw)[§*“ds &, JodA,&%I(t — p < THAZ,_,)
= Jods &7I(t — s <TYAZ,_,)P«(Z, # 0)
= &% [ \ds (Z,)9(Z,_, # 0).
Substituting (4.12) and (4.14) into (4.11) we get
(4.15) Jidx) Pf(x) = &I(t < To)f{ds f(Z,)
+& [ Tds A(Z,)9(Z,_, # 0)
+19(dw) 54O ds D, 0 (Z, = 0)f(0).
The desired relation (4.8) follows directly in Case II since the third term on the
right in (4.15) vanishes and since P(Z,_, # 0) = 1 for all s > 0. To prove (4.9) in

Case III we apply the strong Markov property and transform the third term on the
right in (4.15) into

JP(dw) (52 ds I(s + t > To(@) P Z; 41— ) = 0)A(0)

which, after the substitution r = Ty(w) — s,
= JFN(dw) [go "'drPo(Z, _, = 0)f(0)
= [odr®(r < Ty(w))Po(Z,-, = O)f(O)
= [0drPy(Z, = 0)F*(t — r < To(w))f(0)
= &ofodr 1(Z, = 0)F7(t — r < To(w))f(0)
which, by (4.13) and our normalization for local time in Case III,
| = 94(Z, # 0)f(0).
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Thus, in Case III (but not in Case II) we can replace (4.15) by
(4.15) Jm(dx) P f(x) = &=I(t < To)[ s (Z,)
+ 6% 4 s f(Z,)9y(Z, ., # 0)
+P(Z, # 0)£(0).
Finally, in Case III,
(4.16) Pf(0) = Fo(Z, = 0)/(0)
+&ofods (Z, = 0)6™I(t — s < T)AZ,_,)
= P(Z, = 0)f(0)
+&* 5" Tds A(Z,)9(Z,_, = 0)

and (4.9) follows upon combining (4.15’) with (4.16).

In treating Case I we argue exactly as for Case II except that P°* is replaced by
%, and the local time A is counting measure for the set of zeroes of Z. Also we
must keep track of the discontinuities of A and we will agree that the right hand
limit is meant unless a minus sign is inserted. Then

(4.10) Pf(x) = PY(x) + &,[6dA,601(t — s <TYAZ,_,)
and so
(411)  [u(dx)Pf(x) = &oI(t < T,)[{ds A(Z,)
+ &4 fuds &y [6dA,601(t — p < To)f(Z,_p).
Arguing exactly as in obtaining (4.14) we see that the second term on the right
= [P (dw)[3"Vds [i+'dA(@)EI(t — v + 5 <TYAZ,_o4.)-
=/ @o(d"-’)foT"(w)Md’ / 77";'1(%)—_ "'dA4 (0)[P(d)I(t — v + To(w) — 7
< T(@DAZ, - o+ Ty(w) - Aw))
= [Po(dw) o 'dr&, [5_"dA, B I(t — u — r <TIA(Z,_,_,)
= [bdr Po(r < T)&ofo-dAI(u +r < )ooI(t — r — u <THAZ,_,_,)
= fods &ofo_dA,&01(t — s < TYAZ,_,)Po(s — u < Tp)
= Jods &I(t — 5 < TYAZ,_,){60/5-d4,Fo(s — u < Tp)}.
Now (4.13) can be replaced by
(4.13) &of_dA,Po(s — u <Tp) = P(Z, #0) =1
and we have established
(4.14) &ofo%ds &5, [0dA,E01(t = p < TYAZ,_,) = &[5" Tds A(Z,)

and (4.8) for Case II follows upon substituting (4.14') into (4.11).
This competes the proof of Theorem 9. []
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REMARK. When we apply Theorem 9 in Section 5 it will be obvious that p is
Radon. It is important for the general theory that in fact u is always o-finite. This
was observed in Getoor (1979), and we refer the reader to that place for a proof.

5. Proof of Theorem 2. We begin with

LemMMmA 5.1. For x > 0andt >0
(5.1) Po(M,=x)=0.

Proor. If O is not regular for (0, +c0) we combine (2.35) with the strong
Markov property to get
(52) Do(M, = x) = 5,2, I(B¥(w) < t; M(B}(w)) = x)Po(0* >t — B}(w)).
If 0 is regular for (0, + ), we combine (2.35) with (4.2) in Maisonneuve (1975) to
get
(5:3) Po(M, = x) = &[odAI(M, = x)F*(a >t — 5).
In either case the lemma follows from the observation made at the beginning of
Section 3 that the measure » defined by

Jr(dx)f(x) = ‘502;.;1f[M(1§*)]I(1¥ < +)
or by
fV(dX)f(X) = 6Oft";od"‘!s"‘f(Als)

is excessive relative to the absorbed process X° and therefore does not charge the
singleton {x}. (This follows from (2.35) and does not depend on the smoothness
condition ACC.) []

REMARK. Lemma 5.1 is proved on page 411 in Pecherskii and Rogozin (1969)
under the assumption that O is regular for (0, + c0). Apparently their argument

does not extend to the general case.
The basic tool for deducing Theorem 2 from Theorem 9 is

ProrosITION 5.2. For x,y > 0 and for s,t > 0
(54) P_(y <X} < +o0) = Fy(Y,,, <x|Y, =)
We have already remarked in the introduction that the right side of (5.4) is well
defined and independent of s > 0.
Proor. If x > 0, then the left side of (5.4)
= P(x — X, >y; M, <x)
which, by Lemma 5.1, ‘
= Fo(x — X, >y; M, <x)
which, by (2.8) and (1.7'),
= Py(X, +y <x; X, + M} <Xx)
= 9(X, + max(y, M}) < x)
= @0(),1+s < xIYs =y)'
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For the case x = 0 we know that
Po(X2° < +0) = Po(M, = 0)

(see the discussion concerning (2.19)) and so the left side of (5.4)
= Py(—X, >y; M, =0)
=P(X,+y<0;X,+ M}=0)
= Po(X, + max(y, M}) = 0)
= P(Y,y, =0[Y, =p). [

Now it is easy to prove Thelorem 2. If 0 is regular for both (—o0, 0) and
(0, + ), then Case II in Section 4 is applicable with Y playing the role of Z there,
and so, by Theorem 9 and the relation noted at the beginning of Section 3,

(55 JEdy W) P Y45 < x|Y, =) = [5dy Y(y) = g(x).

Therefore,

6_I(t <o*)g(X¥) = &_ J(X}° < +00)[§"dy ¥(»)
= [5d ¥()F_.(y < X}° < +00)
which, by Proposition 5.2, '
= [8d Y(¥)Po(Y,4s < X|Y, =),

and we need only appeal to (5.5).

If 0 is regular for (0, + co) but not for (— oo, 0), then the argument goes the same
way except that we use Case I rather than Case II in Section 4.

If 0 is regular for (— o0, 0) but not for (0, + o0), then Case III in Section 4 is
applicable, and in place of (5.5) we have
(5:6) Po(Y, < x) + [Pdy Y(¥)Fo(Yyy, < X|Y, =y) = 1+ g(x),
and so

P_ (X< +00) + &_, I(t <o*)g(X})

=P_ (X< +0) + [Fdy Y(»)P_ (¥ <X} < +0)
= Po(Y, < x) + [y Y(»)P(Y,us < X|Y; =)
=1+ g(x).

EXAMPLE. Suppose that X is a diffusion with local generator ¢ =1¢” + bg’. If
b =0, then clearly y(x) = const. and Theorem 2 states that the function x is
coinvariant on (0, + o). This is easy to check directly. The point is that X is a
martingale and so '

&_ I(t <o*)X* = &, I(t <o)X,
= 8x‘th\cr = x.
If b > 0, then still Y(x) = const., but Theorem 2 is not applicable, and it is false

that x is coinvariant on (0, + c0). Indeed, x is not even coharmonic. However,
Theorem 3, which will be proved in Section 8, is applicable, and since (1.13) is true
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with ¢ = 2b, this states that e*** — 1 is coinvariant on (0, + o). This can also be
checked directly. Since — X, + bt is standard Brownian motion relative to &, the
process exp{2b(— X, + br) — 3(2b)*t} = exp{—2bX, + 2bx) is a martingale rela-
tive to &P, (see page 13 in McKean (1969)). Thus
E_I(t <o*){e®X — 1} = &_ e % — |
= e2* — 1.

(It was our desire to understand “where this coinvariant function comes from” that
led us to formulate and prove Theorem 3.) If b < 0, then y(x) = (const.)e®* and
Theorem 2 is applicable and tells us that 1 — e?** is coinvariant on (0, + o). This
can be checked by the same calculation as above. If 5 > 0 and if Z = Y in Section
4, then the sojourn measure p is Lebesgue measure. However, we can be sure that
Lebesgue measure is not an invariant measure for Y. If it were, then the results in

this section would guarantee that x is coinvariant on (0, + o) for X and we have
already noted that this is false.

6. Approximate Markov processes. Approximate Markov processes were used
to prove Theorem 1(ii) and will play an important role in the remainder of the
paper. They were first introduced by G. A. Hunt (1960) in his work on Martin
boundaries for discrete time Markov chains. In this section we will outline the
construction of the continuous time version. For more detail we refer to M. Weil
(1970) or to Section 5 in Silverstein (1974) where symmetry is assumed.

Just as in Section 4 we let ¢, and &, correspond to a general strong Markov
process Z which has right continuous paths in a locally compact metric space E
with dead point d adjoined. In addition, we postulate Hypothesis (2.2) and its dual
at the top of page 266 in B/G. The transition operators and dual transition
operators will be denoted by P, and P,. Also we will use certain other notations
which are consistent with B/G. The reference measure will be denoted by dx. The
Green’s function or O-potential density will be denoted by u(x, y). The sample
space probabilities and expectation functional for the dual process will be denoted
by ?: and &. Potential and dual potential operators will be denoted by U and
U". Hitting and dual hitting operators will be denoted by P, and P, hitting times
by 7,. The set of points regular (coregular) for 4 will be denoted by A47("4).

Let E,, n > 1, be an increasing sequence of open subsets of E with UE, = E
and such that for each n the closure E, C E,, . Let h(x) be any locally integrable
coexcessive function. There may or may not exist a sequence of Radon measures
I, n > 1, satisfying

E.1. [, is supported by E,;

E2. [l (dx)u(x,y)= h(y)fory € E,;

E3. [l(dx)Pg f(x) = [l (dx)f(x) form <nandf >0onkE, .

Any such sequence will be referred to as an equilibrium system for h. If such a
sequence exists, it is unique. Indeed, each /, is determined by the relation

(6.1) - Pg h(y) = [L(dx)u(x, y).
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The reason is that if n < p, then by E.2 we have h(z) = [[,(dx)u(x, z) for z € E’,,,
and so the left side of (6.1) = [P (», dz)[[,(dx)u(x, z) which, by Hunt’s duality
relation as formulated on page 261 in B/G, = [[(dx)[Pg(x, dz)u(z, y), and by
E.3 this equals the right side of (6.1).

It is important for the general theory that an equilibrium system always exists
when the E, are relatively compact. (See Theorem 2.8 on page 271 in B/G.) More
important for us is the following proposition which will enable us below to identify
a given sequence of measures as an equilibrium system.

PROPOSITION 6.1. Let h > 0 be locally integrable and let I,, n > 1, be a sequence
of Radon measures satisfying the following conditions.

(i) h(x) = (1(dz)u(z, x) whenever x € E, U'E,.

(ii) /, is concentrated on E,.
Then h is coexcessive and the I, form an equilibrium system for h.

ProOF. We begin by establishing (6.1). Since the measure P"(y, d- ) is con-

centrated on E, U "E, we have by (i)
Ph(y) = [L(dx)[ Pg(y, dz)u(x, 2)
which, by Hunt’s duality relation,
= fln(dx)fPEn(x’ dz)u(z, y)'
Butif x € E;, then Pg (x, d-) is the point mass at x and so (6.1) follows now from
(ii). Now that (6.1) is established, the proposition follows directly. If m < n, then
since E,; C E, we have h(x) = [l(dz)u(z, x) for x € E, and, therefore,
S (d@x)u(x, y) = [Pg (v, dz)h(z)
= IPEA‘m(y’ dz)fl,,(dx)u(x, z),
which is enough to guarantee that the functions [/,(dx)u(x,y) increase with n and
so h(y) is coexcessive. Properties E.1 and E.2 for the /, are already contained in (i)
and (ii). For E.3 observe that if m < n, then by Hunt’s duality relation
[1,(dx)[ Py (x, dz)u(z, y) = [1,(dx)[ Pg, (v, dz)u(x, z)

= P; Pph(y) = Pg h(y)

= flm(dx)u(x9 y)’
and so E.3 follows from the uniqueness result Proposition 1.15 on page 260 in
B/G.

Now we are ready to outline the actual construction. Let 4 be locally integrable
and coexcessive, and let /,, n > 1, be an equilibrium system for 4. Let £ be the
canonical sample space for the process Z (see paragraph 4.3 in Silverstein (1974)).
For n > 1 let &, be a copy of € and adjoint to {2, the dead trajectory §,, all of
whose coordinates are the dead point 9. Define a mapping =, from £, ., to £, by

setting .
7,8 =6, if Tp(w)=+o

7,0(1) = (Tg (w) + 1) if Tg(w) < +o0.
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The inverse limit is the collection 22, of sequences {w,}%_; with each w, € £, and
such that 7,w,,; = w, for n > 1. We will work with the reduced inverse limit
Q, = Q% — (8) where 8 is the dead sequence whose components are the dead
trajectories §,. Let 7, , be the natural projection of 2, onto £,. The point is that
there exists a unique countably additive measure ?, on the sigma-algebra on Q
generated by all pull backs of coordinate variables such that
(62) G I(w, #8,)€ © T, = [1,(dx)6,§
forn > 1 and £ > 0 any random variable on £. (We are identifying @, \ {§,} with
.) The necessary consistency condition follows from E.3 and the strong Markov
property. A verification of countable additivity depends on some nontrivial
measure theory concerning which we refer the reader to the references cited above.
A time scale, trajectory variables Z,, the birth time {", the death time {, and hitting
times 7, are introduced exactly as in Silverstein (1974) (although with slightly
different symbols). The main point is that the O of the time scale is sup{ Ty : Ty <
+ 0}.

Next we state two propositions which relate properties of A4(y) to initial behavior
for (R, P o)

PROPOSITION 6.2. A is coharmonic if and only if
whenever D is open with compact closure and M = E \ D. This is the case if and only
if
(6.4) Lim,,/,(K) = 0
Jor every compact subset K of E.

PROPOSITION 6.3. h is coinvariant if and only if
P ("> —0)=0.
By the argument at the end of Section 3,
(6.5) fdy Pip(D)f(y) = 6,I(Ty < )[4, ds f(Z,)

for Borel f > 0 on E and Proposition 6.2 follows easily. For Proposition 6.3 it
suffices to observe that

Jdy PTR(Y)(¥)
= lim,, . f1,(dx)[dy f(y)[P;(y, dz)u(x, z)
= Lim,, . [1,(dx)/dy Pf(y)u(x, )
= Lim, .. /1,(dx) UPf(x)
= Lim,,8,,1(Ty, < ©)f5, 1.d5 f(Z,).
We finish this section by establishing a convenient generalization of (6.4).
Suppose that 4 is the copotential of a Radon measure ». That is, hA(x) =
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[v(dz)u(z, x). Then
Pph(y) = [Pg(y, dx)fv(dz)u(z, x)
= [v(dz)[ Pg (2, dx)u(x, y),

and so there always exists an equilibrium system /,, » > 1, and indeed,

(6.6) L,(dx) = [v(dz)Pg (2, dx).

Now if f is continuous with compact support in E, we have

(6.7) Lim,;, [ [,(dx)f(x) = Lim,,,[v(dx)Pg, f(x)
= Lim,,,./»(dx)& f] X(Ty)]
= [v(dx)f(x).

The passage to the limit is legitimate since [#(dx)?, (Tx < + ) is finite for any
compact set K (see Theorem 2.8 on page 271 in B/G.) Combining (6.7) with (6.4),
we have

PROPOSITION 6.4. Let h(x) be coexcessive and locally integrable with a repre-
sentation

(6.8) h(x) = hy(x) + [v(dz)u(z, x)

where hy, is coharmonic and v is a Radon measure on E. If I, n > 1, is an equilibrium
system for h, then I, — v vaguely as n?oo.

7. Proof of Theorems 3 and 5. Throughout this section we assume that (1.11)
fails. We begin by using Laplace transforms to establish some results for the
minimum subordinator M* o B, assuming that 0 is regular for (— oo, 0). Since
M* o B is a nonconservative subordinator, its Laplace exponent ¢*(0, ) (see
(2.11)) can be represented

(7.1) o*(0, p) = c* + b*p + [FI*(dz){1 — e™*}

with ¢* > 0, b* > O constants and with /* a Radon measure on (0, + c0) which is
bounded near + co and has a finite first moment near 0. We prove

ProrosiTION 7.1, If (1.11) fails and if O is regular for (— o, 0), then there are two

possibilities.
(i) There exists unique q > O satisfying
(7.2) b*q + [JI*(dz){e¥ — 1} = c*.
In this case
(73) Boe™ B =1

for all = > 0. In particular, e® is coharmonic for —M* > B on R and every positive

‘coharmonic function is a multiple of e%*.
(ii) There is no q > 0 satisfying (12). In this case very positive coharmonic

Junction for —M* o B on R is trivial.
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Moreover, if e® is coharmonic for —M* o B, then there exists a system of
equilibrium measures corresponding to the intervals I, = (— o0, n).

For the proof, suppose first that g > 0 satisfies (7.2). Then initially for p > g and
then for all p > 0

— log &, @™ WM* B = 19*(0, u — q)
= b*p + [I*(dz)e¥ {1 — e ™}
and (7.3) follows directly. By the results of Doob, Snell and Williams (1960) every
positive harmonic function for M* B on R is a multiple of ¢?* for some q>0.
Thus the dichotomy (i) versus (ii) will be established once we show that if e?* is

harmonic, then (7.2) is satisfied. But this follows easily from the following known
identity for ladder variables

(74) [§dx e ™ Eoe @O ~rHM[(1(x) < + )
= (1= N7 {e*O0, 1) — *(0, )} {a + ¢*(0, )}~
valid for a, A, p > 0. We are using the notation
(7.5) H(x) = inf{7 > 0: M* o B, > x}
H(x) = M* > B,,, — x.
We will first deduce (7.2) with the help of (7.4) and then we will outline a
derivation of (7.4). The point is that (7.4) gives for u > g, after a passage to the
limit A} 0,
(7.6) gqf5dx &y MHE®(¢(x) < + o0)
=q(p— ) {e*O 1 — q) — c*}(1/c*)
= q{(p— @c*} 7 {b*(n — @) + [SH(dz)(1 — e~ *~ 7)),
If e? is harmonic for M* o B, then certainly
(7.7
q/3dxEe P I(1(x) < +00) = qfPdx e " Eue T HOD [(1(x) < +00) = 1
and (7.2) follows after comparing (7.6) with (7.7), extending (7.6) to all g >0, and

then passing to the limit u]0.
Before completing the proof of Proposition 7.1, we outline a derivation of (7.4).

Indeed, (7.4) follows from
(7.8) [ydx e M Eoe M~ HHM[(¢(x) < + )
=(p-— )\)_'exp[f0°°dt t7le & I(0 < Z, < +o0){e % — e"‘z'}] —(p =M1

valid for any Levy process Z, possibly not conservative. (We agree here that
Z, = + oo after it “disappears”.) This follows in turn after a routine passage to the
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limit from
(79) [&dx e ™ Eye DM@ [(¢(x) < +o0)
=(p-N"" exp[Zy_n e Ey(0 < S, < +00){e M — e Hy ]
—(p=N""
valid for any random walk S = {§,, n > 0}. The latter is stated as formula (3.1) in
Pecherskii and Rogozin where the reader is referred to Borovkov (1962) and

Presman (1967) for a proof. We insert here a quick derivation which depends only
on the familiar identity of Baxter (1958) and Spitzer (1956)

(7.10) 1 — &I(T, < + o0)e~*Tig ~S(T))
= exp[ —Z7.n e 610 < S, < + 0)e ]
where T, T,, - - - are the strict ladder variables
Ty, =min{n>0:S,>0}; T,=min{n>T,:S,>S(T)}etc.
Putting 7;, = 0 we see that the left side of (7.9)
=3% ,65I(T, < +°°)e_aT’f§(T’)(T,_,)dx e Mg —HS(T,)—x]

= (p = NS ,6I(T, < +o0)e T {e AT

r=1

—exp(—AS(T,_,) — u[S(T,) — S(T,_)])},

and, after plugging in (7.10), we get the right side of (7.9).
To complete the proof of Proposition 7.1 we assume that e?* is coharmonic for
— M* o B and verify that

(7.11) l,(dx) = b*e"%e,(dx) + e™*(n — x)I(x < n)dx

is the equilibrium measure for I,. Here

(7.12) I¥(x) = e” ¥ [RI*(dz)e?,

and ¢, is the unit point mass at n. For this it suffices to verify
(T13) By (n = x) + "Ly 3(n = YAy = x) = &%

for x <n. (This follows from Proposition 6.1. The point # is regular but not
coregular for I, relative to —M* o B.) By the dual to (3.1)

(7.14) ¢*(0, 1) ™" = fdx yr(x)er,

Starting from (7.2) we get for p > 0

(715) (g + )7 '9*(0 p) = b* + (g + )7 [PIN(d){e® — ™)
= b* + [FI(dr)e% f5dy e~ @+HY
= b% + [3dy e PI().

Comparing (7.14), with (7.15), we conclude that

(7.16) b*y*(x) + [ody F(y)W*(x —y) = ™%
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for almost every x > 0. Replacing x by n — x with x < n, we get (7.13) for almost
every x < n and since both sides of (7.13) are coexcessive relative to —M* o B we
conclude that (7.13) is valid for all x < n (but not x = n). This completes the proof
of Proposition 7.1.

Next we consider the case when 0 is not regular for (— o0, 0). Then there exists
L*(z) > 0 on (0, o) satisfying [dzL*(z) < 1 such that
(7.17) SdzL*(z)e ™" = @*(0, p)
(7.18) ¥*(z) = Z7(L*)*(2).
In (7.18) we are using the superscript *r to denote r-fold convolution. (The dual to
(2.26) together with ACC guarantees that in (7.17) we have a density L+ (z) rather

than a general measure L*(dz). See the first paragraph in Section 3.) The analogue
of Proposition 7.1 is

ProrosiTiON 7.2.  If (1.11) fails and if O is not regular for (— o0, 0), then there are

two possibilities.
(i) There exists unique q > 0 satisfying

(7.19) [ldzL*(z)e? = 1.
In this case
(7.20) &oI(B; < +00)e®™ (B = ]

Jor all j > 0 which means that e is coharmonic for the random walk
{— M*(B))};> Also every positive coharmonic function is a multiple of e?".

(ii) There is no q > 0 satisfying (7.19). In this case every positive coharmonic
Junction for {— M*(B))};2, is trivial.

Moreover, if e** is coharmonic for {— M*(B))};,, then there exists a system of
equilibrium measures corresponding to the intervals I, = (— o, n).

The concepts coharmonic function and equilibrium measure for random walks
are exactly the same as for continuous time processes. However, it is worth noting
that the distinction between coharmonic functions and coinvariant functions disap-
pears for random walks.

Verification of the dichotomy (i) versus (ii) in Proposition 7.2 is completely
routine and we take it for granted. To prove the last paragraph we assume that e?*
is coharmonic for { — M*(B))};Z, and we verify that the equilibrium measure for I,
is

(7.21) L(dx) = e™L}¥(n — x)I(x < n)dx
where now
(7.22) L}(x) = ™[ 2dy ePLA().

Instead of (7.13) we must prove
(7.23) e™{Ly(n — x) + [rdzL}(n — 2)Y*(z — x)} = e™
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for x < n. (In fact, (7.23) is true also for x = n.) The formulae (7.17) and (7.18)
together give

(724) {1 -@%0,p)} " =1+ [Fdz y*(z)e™™.
By (7.19) we get for p > 0
(7.25)

(@ + w7 {1 - %0, p)} = (g + p)~[FdzL*(2){e® — e™*} = [Fdy eTPL}(¥)
and, after combining with (7.24), we conclude that

LX(x) + [y Ly(yW*(x —y) = e
for almost every x > 0 and therefore every x > 0 since both sides are continuous.
The rest of the argument goes exactly as for Proposition 7.1, This takes care of
Proposition 7.2.

Now we are ready to prove Theorem 5. Suppose first that (i) in Theorem 5 is
true. Then it is easy to check that Z, = e~%* is a local martingale in the sense of
Meyer (1967). Let #(—x) = T(_,, _, for x > 0. By Fatou’s lemma &yZ, ., <
+ oo and from this it follows that the process { Z, » ,— x} 50 is uniformly integrable
and therefore &oI(¢(—x) < + 0)Z,_,, = 1 which is enough to guarantee (iii)
which by Proposition 7.1 or 7.2 is equivalent to (iv). Thus (i) implies (iii) and (iv). It
follows easily from the Riesz decomposition of page 272 in B /G that (ii) implies (i),
Thus Theorem 5 will be proved if we can show that (iii) and (iv) imply (ii).

We will work with the potential kernel u(x) defined as in ACC in Section 1 but
with & = 0. For x # 0 this has a representation

(7.26) u(x) = [Fau Y*(WY(x + )
(7.27) u(x) = [Fdu y*(Y(x + u) + $(x)
(7.28) u(x) = [Fau Y*(W(x + u) + y*(=x)

according to whether 0 is regular for (— oo, 0) and (0, + ), 0 is regular for
(0, +o0) but not (— o, 0), or 0 is regular for (— oo, 0) but not (0, +00), (It is
understood that $(u) = 0 and ¢*(u) = 0 for u < 0.) The argument given in Section
3 when we proved Theorem 6 suffices to establish these identities for almost every
x. Identity for all x > 0 follows since the right side is coexcessive for the absorbed
process X° and since also

u(x) = Lim,, a8, [¢*dt e~ *u(X?).

A similar argument works for x < 0. In general, for x = 0 we can only apply
Fatou’s lemma and conclude that

(7.29) u(0) > du YH(up(w).

The argument for x # 0 can be used to establish equality if O is not regular for
both half lines.
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Consider first the case when 0 is regular for both (— o0, 0) and (0, + c0). Then
(7.13) is true for x < n, and we can combine this with (7.26) to deduce

(7.30) b*e™u(x — n) + e™[  dzl¥(n — z2)u(x — z) = e®{[Fdu Y(u)e ™}

for x <n. If b* = 0 then the same argument gives (7.30) for x = n. However, if
b* > 0 then, since we only have the inequality (7.29), the same argument only gives

(7.31)  b*e™u(0) + e™ ™ dzl¥(n — z)u(n — z) > e {[Pdu Y(u)e~™}.

But then equality in (7.31) follows since the right side in (7.30) is continuous in x
and the left side is lower semicontinuous in x. Thus (7.30) is always valid for x < n
and we have established property (i) in Proposition 6.1. Property (ii) is automatic
since n € I and therefore we can apply Proposition 6.1 and deduce that e? is
coexcessive for X and that the /, form an equilibrium system. The criterion of
Proposition 6.2 then guarantees that e? is actually coharmonic for X. To deduce
that e?” is actually coinvariant we must work with the approximate Markov process
@, @) associated with e?* and the /, and with X playing the role of Z in Section
6. It is easy to see that P (X; < + o) = 0 and therefore the minimum process
M* and the reflected process Y are well defined. The local times A, at O for Y need
not be well defined but the increments 4,, — A4, are and so we can still make
sense out of the time changed process M* o B. The function e? is also coharmonic
for —M* o B and it is clear that (2, &) is the associated approximate Markov
process if we view the —M* o B_ as coordinate variables. Since e? is coinvariant
for —M* o B we can deduce from Proposition 6.3 that for every n

(7.32) P(A[TIIAE] — A[E"] < +0) =0
Since B is a subordinator if we start counting from any of the times 7(Z,) for
m > n, it follows that
(7.33) PATUI)AS — < +00)=0
and now Proposition 6.3 guarantees that also e? is coinvariant for X. This
completely proves Theorem 5 in the case when 0 is regular for both (— oo, 0) and
(0, + o0).

Theorem 5 is proved in essentially the same way when 0 is regular for (— oo, 0)
but not for (0, + o0). In place of (7.30) we establish

(7.34) b*e™u(x — n) + e™ "  dzl¥(n — z)u(x — z)
= e™ {1 + [Qdu Y(u)e ™).
This time we only need (7.34) for x < n. In fact, (7.34) is true also for x = n and
indeed is easier to prove than in the previous case for x = n.
Finally we consider the case when 0 is regular for (0, + o) but not for (— oo, 0).
Now (7.23) is true and we combine this with (7.27) to deduce
e[ dzLX(n — 2)u(x — z) = e¥ {[Fdu Y(u)e™ ™)

for x > n. Proposition 6.1 allows us to conclude that e?* is coexcessive for X and
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that the measure /, defined by (7.21) form an equilibrium system. We conclude
exactly as before that e? is coharmonic. To establish coinvariance we again
introduce the approximate Markov process but in place of the subordinator
M* o B we work with the discrete time process { M*(B;)} where the B, with some
convenient labeling, are the times at which X assumes a new minimum. The crucial
argument for establishing coinvariance is exactly analogous to the one given above

and we leave the details to the reader.
We turn now to Theorem 3. If O is regular for (— oo, 0) then the measure /,

defined by (7.11) satisfies
(7.35) M (d*(y —u)=e®™ for 0<u<y.

If 0 is regular also for (0, + oo) then we plug in (1.18) to get
/5" in(ady) G(», x)
= [o () 3" "du Y*(y — w)p(x — u)
= fodu Y(x — W) [5 L ()W*(y — u)
= [sdu Y(x — u)e™

and, with the help of Proposition 6.1, we conclude that the function g (x) defined
by (1.14) is coharmonic on (0, + o). If 0 is not regular for (0, + c0) then instead
we plug in (1.20) and conclude that e? + g (x) is coharmonic on (0, + o). If 0 is
not regular for (— oo, 0) then (7.35) is replaced by

(7.35) e™{Ly(n — u) + [udyL}(n — yW*(y —u)} = e™

and we plug in (1.19) to get
e" oy L (n — y)G(y, x)
= e"[odyLi(n — y)¥(x — y)
+e" Gy Ly(n — y)[oVdu y*(y — u)(x — u)

= fodu y(x — u){e™L}(n — u) + [LdyL}(n — y)¥*(y — u)}

= fidu $(x — u)e™
and again we conclude that g (x) is coharmonic on (0, + o). To prove that the
functions identified in Theorem 3 are actually coinvariant on (0, +c0) we can
argue exactly as above when we deduced (ii) in Theorem 5 from (iii) and (iv). The

main point is that Theorem 5 allows us to replace (1.13) by (7.3) or (7.20). We leave
the details for this to the reader.

8. Proof of Theorem 4. Fix a function g(y) positive and continuous on the full
line such that Gg(x) = [¢°dy G(x,y)g(y) is bounded and continuous. It is clear
from the general theory of the Martin boundary, as presented, for example, in
Kunita and Watanabe (1965), that Theorem 4 will be proved if we can establish the
following result.
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Suppose that for all f continuous with compact support in (0, + c0)

(8.1 I1(f) = Lim Gf(x,)/ Gg(x,)
exists for some fixed sequence x, — 0 or x, — + oo. Then I can be represented
(8.2 I(f) = f&y h(P)f(¥) + [»(dz)Gf(2)

where & is one of the coharmonic functions identified in Theorems 1, 2 or 3 and
where v is a Radon measure on (0, + o).

We will check this explicitly only when 0 is regular for both half lines so that
(1.18) is valid, and when (1.11) is true. The case x,/0 follows immediately from the
fact that

Gf(x)/ fodu y*(x — u) - [5dy ¥(»)A(¥)

as x|0. The case x, — oo is slightly more complicated. We can certainly restrict our
attention to the case when also

J(f) = Lim{fay f(yW*(y + x,)/fdy g)*(y + x,)}

exists and then, since 1 is the only positive harmonic function for a conservative
subordinator, it is clear that

J(f) = afdy f(y) + [v(dt)[dy 4*(y + DA(¥)
for some a > 0 and some Radon measure ». But for sufficiently large n
Gf(x,) = [5°dy f(y)[§dv ¥*(x, + v = y)¥(v)
= [do U(o)dy YW (%, + © = ¥)
= Ji2do Y(O)2 o S0 = WY + 3,)
and, therefore, since we need only take the v-integral over a bounded interval
where y(v) is integrable and since the ratios {f° _ dy flv — Y)¥*(x, + »)
/fdy g(YW*(y + x,)} are uniformly bounded, we conclude from the dominated
convergence theorem that
Lim{Gf(x,)/ & g(»)¥*(» + x,)}
= [&do Y(0){af2 oy flo — ¥) + [p(@)[° W* (¥ + Df(v — y)} .
= afFdy f(y)[3do $(v) + [9(dt)[Fdy f(y) 1~"du Y*(t — u)y(y — u)

and this is good enough. (The function f(v — y)I(y < 0) may be discontinuous at
y =0, but this causes no problem since the relevant limiting measures have no

atoms.)

REMARK. It is clear from the example of Dyson, as presented, for example, on
page 59 in Chung (1967), that we cannot expect the limit in (8.1) to exist
independent of the choice of x, — oo, nor can we expect » =0 in (8.2). (I am
grateful to H. Kesten for pointing this out to me.) Fortunately, this is irrelevant for
us since we do not care about controlling the full Martin boundary.
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9. The interval (0, 1). In this section we use our results for the half line to
classify coharmonic functions on the bounded open interval I = (0, 1). First we
introduce some convenient terminology.

Let X% be the absorbed process on I = (0, 1). That is,

xX¥®=x, if 1<t
= 4+ if t>r

where 7 =inf{t > 0: X, > 1 or X, <0}. Let A% be positive and coharmonic

for X® and let (2, ¥,,) be an approximate Markov process associated with A%

as in Section 6. We will say A% is associated with the boundary point 0 if

P (Lim,-X® = 1) = 0 and it is associated with 1 if @, (Lim, ;- X, = 0) = 0.
The classification is given in

THEOREM 10. (i) If O is regular for (0, + o0), then up to multiples there is exactly
one positive coharmonic function for X® which is associated with the boundary point 0.

(ii) If O is regular for (— oo, 0), then up to constant multiples there is exactly one
positive coharmonic function for X® which is associated with 1.

(iii) Every positive coharmonic function is a linear combination of the ones identi-
fied in (i) and (ii).

It will be clear from our proof that there is never a nontrivial positive
coharmonic function for X% which is also coinvariant.

If 0 is regular for (0, + o0), then the argument at the end of Section 3 shows that
h®(x) defined modulo null sets by
©.1) Jdx R®(x)f(x) = &[5 %t f(X?)
where 7 = inf{z > 0 : X,° > 1}, has a version which is coharmonic for X% and is
associated with the boundary point 0. The existence part of Theorem 10 follows
from this and a similar argument for the boundary point 1.

With the help of the associated approximate Markov process (2, ¥, it is easy
to see that every positive coharmonic function on (0, 1) is a linear combination of
ones associated with 0 and 1. Therefore, to complete the proof of Theorem 10 we
need only to consider nontrivial #®(x) positive and coharmonic for X® and
associated with 0, and show that 0 is regular for (0, + o) and that up to a constant
multiple 4 is the function determined by (9.1).

Consider first the case when the Levy measure 7 does not charge (0, 1). Then for
n=23,--- andfor 1/n < x < 1, clearly

h®(x) = P_ (inf{t >0: X* =1/n} <inf{t > 0: X* > 1/n})h®(1/n)
and the desired uniqueness follows easily. Therefore, we can restrict our attention
to the case when ]
9.2) Jo~m(dz) > 0.
Forn=2,3,--- letI, = (1/n, +0o0) and let /[%®(dx), n > 1, be the equilibrium
system for A% associated with the sequence I, NI = (1/n, 1). (Since A% is
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associated with 0 we can be sure that /% is defined even though I, N I does not
have compact closure in I.) For a given m the measures

I(dy) = [1%(dz) P, (z, dy)
increase with n and agree with [% on I, N L (Here P2(x, dy) is the hitting measure
of I, relative to X°, the absorbed process on the full half line (0, + c0).) Thus

In(dy) = Lim,, 157 (dy)
is a well-defined measure on (0, +c0) and [ = /% on I,, 0 L Also forn > m

(93) [1(dz) P(z, dy) = Ia(dy).

We show next that each /2 is bounded.
Fix m < n and let G, (x,y) be the Green’s function for the interval (0, 1/m).
Clearly,

(94) (L) > [1(d2) 1§/ G2, Y)Y [(7m)—y(dt)
> [1(dz)[§/ "Gz, )y 7((1/m, 1 — 1/m)),

9.5) IP(1,) < %1 (Znsr)
+[17%(dz) [§/ " VG2, y)dy w((1/m — 1/ (m + 1), + 0)).

By (9.2) we have #((1/m, 1 — 1/m)) > 0 for m sufficiently large and so (9.4) and
(9.5) give an estimate for /(,,(Z,) which is independent of » and this implies that /2
is bounded. Now (9.3) guarantees that [2, m > 1, is an equilibrium system for some
function A° which is coexcessive for X°, the absorbed process on the full half line
(0, + ). If we knew that h° was coharmonic for X’ then by Theorems 1 and 4 we
could be sure that 0 is regular for (0, + o) and also that #° = const.  which would
be enough to establish uniqueness for A%. (This is because I = /% on I, N L)
Thus by Proposition 6.2 we will be done if we can show that

(9.6) Lim, ;. /o(K) = 0
for every compact subset K of (0, + o0).

Since [° = [% on I and since /® — 0 vaguely on I by Proposition 6.2 applied to
h%®, we know that (9.6) is true whenever K C (0, 1) and therefore

Lim,,,, Lim, . [[?(dz)§/"G, (2, y)dy m(K Nn[1/m, 1 = y) =0
for any such K. From (9.2) it then follows that actually
Lim,,,,, Lim,, . [1%(dz)[{/"G,,(z, y)t;jz =0.
But this is enough to imply that ~
Lim, /([ 1, 0)) = 0

and we are done.
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10. Proof of Theorem 7. Before proving Theorem 7 we establish a preliminary
result which gives ‘a priori’ control over coexcessive functions 4 and the measures »
which can occur in (1.26).

PrROPOSITION 10.1. Let h > 0 be coexcessive and locally integrable on (0, + o).
Then h is integrable near 0 and the measure v in (1.26) satisfies

(10.1) 3 v(dx) fEdu y*(u) + [Sv(dx) fddu y*(x — u) < + 0.

Moreover, if 0 is regular for (0, + o0) but not for (— o0, 0), then (10.1) can be
replaced by

(102) [V(dx) + [Sp(dx)fidu y*(x — u) < + oo.

Proor. We know from Theorems 1 through 4 that every coharmonic function
is integrable near 0. Therefore, we can assume that s, = 0 in the representation
(1.26). Fix y > 0 for which A(y) < + co. Then surely

é"v(dx)f{,‘du Y*(x —wP(y —u) < + 0

and since Y(y — u) is bounded away from 0 for 0 < u < 3y, we conclude that the
first term in (10.1) converges. Also

32v(dx)fidy fodu Y*(x — wP(y — u) < +oo,

and from this we conclude that the second term in (10.1) converges. If O is regular
for (0, + o0) but not for (—co, 0), then also

[ M)y — x) < + 0
for some y > 1 and (10.2) follows from this. Finally, the estimates (10.1) and (10.2)
immediately imply
J&ev(dx)fody G(x,p) < + o0
(that is, integrability near 0) and we are done. []

Now we are ready to prove Theorem 7. Observe first that if ¢ € C2 (0, + o0)
then @(X,) — [ids @p(X,) is a martingale relative to any %, and from this it
follows that ¢ has the representation

(10.3) o(x) = = /G(x, y)Cp(y)dy.
Now let coexcessive and locally integrable 4 have the representation (1.26), let
E,=(/n,n) for n > 2 and let [, n > 2, be the assdciated equilibrium system.

(This exists by Theorem 2.8 on page 271 in B/G.) Then, by (10.3) and Proposition
6.4, we have, for any such ¢,

(10.4) Lim,, . 1,(dx)[ & G(x,7)@p(y) = — [v(dx)e(x)

where, for now, the integral on the left is understood in the iterated sense. For any
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¢ € Con(0, + o0) the function
(10.5) @ o(y) = ap”(y) + be'(y)
+[m(dz)1(|z] < D{e(y + 2) — ¢(y) + ¢'(y)sin z}
—o()f(dz)I(|z| > 1) + ¢'(y)[n(dz)I(|z| > 1)sin z
is bounded and has compact support in R. By Proposition 10.1 the function 4 is
integrable near 0 and so we can apply the dominated convergence theorem to get

(10.6) Lim, ;. [1,(dx)[dy G(x,y)@ p(y) = [dy h(y)@ p(y).
Now (10.4) and (10.6) together guarantee that also
Lim,o.f1,(dx)[dy G(x, y)[n(d2)I(|z| > Do(y + 2)

exists and is finite. Putting all this together, we conclude that for ¢ > 0 in
C2.(0, +00) the product h(x)@ep(x) is integrable and (1.27) is valid. The restric-
tion on g is easy to remove, and we have proved the direct part of Theorem 7.

Now let 2 > 0 be locally integrable on (0, + o) and suppose that A(y)@¢(y) is
integrable and (1.27) is valid for all ¢ € C3,(0, + ). Fix ¢, R > 0 with R > 5S¢
and define @, @(y) as in (10.5) except that 1 is replaced by e. Clearly, &, @(y) is
bounded and has compact support in (0, + c0) when g is supported in (2¢, R + &).
Thus local integrability of 4(y) on (0, + co) guarantees integrability of A(y)&, ¢(y).

Since also h(y)@q(y) is integrable we conclude that A(y)fw(dz)I(|z| > e)p(y + z)
is integrable for all such ¢ and this guarantees

(10.7) I&dy h(y)fn(dz)I(|z| > €)I(3e <y + z < R) < + 0.
If @ is supported in (4¢, R — ¢) then (1.27) implies
(10.8) [&dy h(y + x)@9(y) = — [¥(d)e(y — x)

whenever |x| < e. Let n > 0 be C* with support contained in (—e¢, +¢). With the
help of (10.7) we can multiply both sides of (10.8) by n(x) and integrate with
respect to x to get

(10.9) Jedy h(y)@e(y) = —fay v.(¥)p(¥)
where
h(y) = fdx n(x)h(x + y); v.(y) = [v(dx)I(|x] > e)n(x — y).

Clearly, A.(y) is smooth and satisfies
(10.10) f5ay h(y)[m(dz)I(|z] >e)I(4de <y +z<R—¢) < +©
and, therefore,

@*h(y) = ahl(y) = bh(y) + [n(dz){h(y — 2) = B(¥) + K(y)sin z}
is well defined for 4e < y < R — &. Moreover, it follows from (10.9) after varying

@ that @*h,(y) = — »,(y) for 4¢ <y < R — e. Now fix D open with compact
support contained in (4¢, R — ¢) and let M = (0, + o0) \ D. Then

B[ X*(T% A D)) + [57Tds v (X*), t>0,
e M 0 e\ s
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is a martingale relative to ¥, for any x € D. (Use the fact that 6h,(X}*) —
fods @*(Oh)X}), t > 0, is a martingale for # > 0in CZ (R) such thatd = lona
neighborhood of [4e, R — €], truncate at time 7,, and pass to the limit in § with
the help of (10.10).) In particular, A, is coexcessive on D. Letting  run through an
approximation to the identity, we conclude that 4 has a version which is coexces-
sive on D and Theorem 7 follows upon varying D.

We finish by showing how Theorem 7 cau be combined with some simple
Fourier analysis to give an independent proof of Theorem 1(i) and also to prove
(1.10).

Suppose first that 0 is regular for both (0, + c0) and (— oo, 0). The formula (2.29)
and its dual immediately imply
(10.11) ¥(E) = 9(0, — i&)g*(0, ié).

For n € C,(0, + o) define the Fourier transform 7"(£) by
7" (8) = fdx e~ "(x).
Extending the definition of the Fourier transform to tempered distributions in the
usual way, we get
(@n)*(¢) = —¥(E)n" ()
and, since by (2.11) and (1.9),
(10.12) ¥(§) = 1/9(0, i)
we get
(10.13)  fdx y(x)@n(x)
= (2m)7'/dE{1/9(0, i)}~ (En)"(§)
= — (2m)7'[dE 9*(0, )" ()
—b*1'(0) + c*n(0) — [g°I*(dz){n(—z) — n(0)}
=0
and Theorem 7 guarantees that y(x) is coharmonic on (0, + o0).

Essentially the same argument works if O is regular for (0, +o0) but not
(_ o0, 0)°

If 0 is regular for (— o0, 0) but not (0, + o0) then (10.11) must be replaced by
(10.14) ¥(®) = {1 - B0, i)} 9*(0, if),

(10.12) must be replaced by

(10.15) v ={(1-20§)" -1

and the calculation (10.13) is replaced by ;

(10.16)  fdx y(x)@n(x) = — (2m)”'[dE{9*(0, i§) — ¥(®)}n ()
‘ = —&n(0)

= —Jom(dz)n(2)

and (1.10) follows from Theorem 7 and Theorem 1(ii).
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