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LOG LOG LAWS FOR EMPIRICAL MEASURES!

By J. KueLss AND R. M. DUDLEY
University of Wisconsin, Madison, and Massachusetts Institute of Technology

Let (X, @, P) be a probability space and C a collection of measurable sets.
Suppose C is a Donsker class, i.e., the central limit theorem for empirical
measures holds uniformly on €, in a suitable sense. Suppose also that suitable
(Pe-Suslin) measurability conditions hold. Then we show that the log log law
for empirical measures, in the Strassen-Finkelstein form, holds uniformly on C.

1. Introduction and preliminaries. Let (X, @, P)be any probability space. Let
X Xy + -+, beiid. (independent and identically distributed) in X with distribu-
tion P. Let P, be the random nth empirical measure n~! (8, + - -+ +8x). Let
Lln=Inln n, n>3; LLn:=1, n=1,2 (we use “:=" to mean “equals by
definition”). For any C € & let

I(n, C) == (P, — P)(C)(n/2LLn)""* o(C) = (P(C)(1 — P(C)))"/%
Khinchin (1924) proved the first log log law: for each C € @, almost surely
lim sup,,_, . I(n, C) = —liminf, , _I(n, C) = o(C).
For C c @ let
I(n, C) = supceel(n, C), A(n, C) =supcedl(n, C)|,
0(C) = supcee0(C), T(C) = sup,A(n, C).

Given any collection C c &, let LS(C) = LS(C, P) := lim sup,_, . A4(n, C). If
the I(n, ©) are measurable, at least, then LS(C) is a constant a.s. with o(C) <
LS(C) < + oo by Khinchin’s theorem. We do not know any € for which a(C) <

LS(C) < + 0. If LS(C) = a(C), we call C a log log class for P.

Chung (1949)? proved that for any law P on R' with a continuous distribution
function, {] — o, x]: x € R} is a log log class. Kiefer (1961) extended this log log
law for empirical distribution functions to R¥, k > 1.

For log log laws of Strassen’s type, we define

Hy, = {f € LXX, &, P): [fdP = 0}.
Let B be the unit ball of the Hilbert space H,,,
B={f € Hy IfI?:= JIfFdP < 1}.
Then B defines a set B of functions on C:
Bo={C—[fdP,C € C: f € B}.
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We call © a Strassen log log class for P iff, with probability 1, I(n,-) restricted to ©
form a relatively compact set whose set of limit points coincides with B
Finkelstein (1971) proved that {] — o, x]: x € R} is a Strassen log log class, for
any nonatomic P with bounded support. Richter (1974) extended this result to R,
k > 1, and arbitrary P.
For a Strassen log log class C, we have in particular almost surely

lim sup,.,supc ce{(n, C) — o(C)} = 0
= liminf,_, _ inf.co{I(n, C) + o(C)},
and so
lim sup,_, supceel(n, C) = —liminf, ,  inf.col(n, C)
lim sup,_, ,A4(n, C) = o(C).

Thus every Strassen log log class is a log log class. We do not know any log log
class which is not a Strassen log log class.

For € infinite, the Banach space /*(C) of bounded real functions on C with
supremum norm || - || is nonseparable. Thus, as in [4], some measurability prob-
lems arise. We recall some definitions. If Y is a set and % is a o-algebra of subsets
of Y, then (Y, B ) is a measurable space. It is called Suslin if there is a metric on Y
for which % is the g-algebra of Borel sets and such that there is a Borel measurable
map of a complete separable metric space onto Y. Given a probability space
(X,&,P),Cc@, and a o-algebra S of subsets of C, we say (X, €;C,5) is
P e-Suslin iff the following conditions hold:

(i) (X, @) and (C, §) are both Suslin measurable spaces;

(ii) The € relation, {{x, C): x € C € €} is measurable in X X C for the

product o-algebra @ X & generated by rectangles 4 X E, A €&, E €5

(iii) For the pseudometric d,(C, D) := P(CA D) on €, all open sets belong to

S.

We say C is PE€-Suslin iff (X, €;C, S) is for some S.

A class C is called a Donsker class iff the normalized empirical measures
v, = n%(P,, — P) converge in law (as defined in [4], Section 1) in a certain
subspace Dy(C, P) of the space of all bounded real functions on € with supremum
norm; [4], Section 1 gives detailed definitions.

2. Statements of results. Pisier ((1975) Theorem 4.3) proved that in any
separable Banach space, if ¥, V,, - - - are independent and identically distrib-
uted, with EV; = 0 and E||V;||> < oo, and if the central limit theorem holds, i.e., if
WVy+---+V)/ ni converges in law, then the Strassen log log law holds. In our
case, ¥V, =8y — P, and || f|| = || flle = supced AC)|, so |[V}]| < 1, which im-
plies some exponential bounds, but in general || - || is nonseparable.

2.1. THEOREM. Every PE-Suslin Donsker class C is a Strassen log log class
for P, and for every B > 0, E exp(BT(C)?) < .
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The proof will be given in Section 3. Here we give some corollaries using the
results of [4].

2.2. CoOROLLARY. For any sequence C := { Con} m>1 of measurable sets such that
for some r < o0,

2,.P(C)'(1 - P(C,)) < oo,
C is a Strassen log log class.

Proor. By [4], Theorem 2.1, C is a Donsker class. Let S be the o-algebra of all
subsets of C. Then (X, &;C, §) is Pe-Suslin if (X, @) is Suslin. Take the
measurable map f: x — {lc, (x)};51 from X into a countable product Z;° of copies
of {0, 1}, with its usual product ¢-algebra, a Suslin measurable space. It is enough
to prove the result for P o f~! and the sets D; = {{y;}: y; = 1}. So we may assume
(X, @) is Suslin. []

Corollary 2.2 applies in particular to any sequence of disjoint measurable sets
(r = 1). Thus we reobtain the theorem of Olshen and Siegmund (1971).

2.3. ProrosiTioN. If C,, are independent for P, p, = P(C,), and 2, ph(1 —
Pn)" = + oo for all n, then LS(C) = + oo a.s., where C = {C,, }m>1 50 C is not a
log log class.

Proor. Since |I(n, C,)| = |I(n, X \ C,)| we can assume p,, < 3 for all m. Then
PI'(X, € Cm fOI'j =1--- ’”) =P;,

and ¥,p,, = + oo implies by independence (Borel-Cantelli) that this event occurs
1

for infinitely many m a.s. for each n. Then |I(n, C)| > (n/2LLn)2(1 — 1 /2) -

as. with n. J

Thus Corollary 2.2 gives a best possible result in the case of independent sets.

Given a collection © of subsets of a set X, let V(C) be the smallest n such that
for every set F with n elements, not every subset of F is of the form F N C,
CeclC.If V(@) < + oo we call C a Vapnik-Cervonenkis class (VCC). We refer to
Vapnik and Cervonenkis (1971, 1974) and [4], Proposition 4.5 and Section 7, for
discussion of such classes. Theorem 2.1 and [4], Theorem 7.1 give:

2.4. CoOROLLARY. Any P€E-Suslin VCC C is a Strassen log log class for P.
For a real function g on X let pos(g) = {x € X: g(x) > 0}. For a set G of such
functions let pos(G) = {pos(g): g € G }.

2.5. COROLLARY. Let (X, e) be a locally compact, separable metric space and G
a finite-dimensional real vector space of continuous real functions on X. Then pos(G)
is a Strassen log log class for any Borel probability measure P on X.

PROOF. For the usual Borel measurability structure on G, and any x € X,
g —> g(x) is linear and hence measurable. Thus by [4], Proposition 4.5 and the
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remark after it, pos (G) is PE€-Suslin. By [4], Theorem 7.2, pos(G) is a VCC. Thus
Corollary 2.4 applies, []

In particular, for X = R we can take G to be the collection of all polynomials of
degree < d for any fixed 4. (Philipp, 1972, showed that ellipsoids parallel to the
axes form a log log class.) Steele (1978, Section 5) proved the strong law.

Given P, C and ¢ > 0, let N,(¢, C,P) = min{m: 34,,- - - , 4,, € @: for all
CeC,3rs: A, C C C A4, and P(4,\4,) < ¢}.

Then Theorem 2.1 and [4], Theorem 5.1 give:

2.6. COROLLARY. If [} (log Ny(x2 C, P))idx < oo and C is P E-Suslin then
@ is a Strassen log log class.

In particular, [4], Theorem 5.13, gives:

2.7. CoROLLARY. (Philipp, 1973). Let P on R? have a bounded density (with
respect to Lebesgue measure) and let C(U) be the collection of all convex subsets of a
bounded open set U. Then C(U) is a Strassen log log class.

For the collection C(k) of all convex sets in R¥, k > 4, and the uniform
probability on the unit (hyper) cube, the log log law fails; in fact for some constant
8,any nand X, - - -, X,,, SUPc cquy|?,(C)| > 8n*~3/@**D (Schmidt, 1975, Theo-
rem 1, cf. also Stute, 1977). For k = 3 the question remains open as far as we
know. ’

Now for X = R* let J(k, a, M) be the collection of compact sets with
boundaries defined by functions with all partial derivatives of orders < a bounded
by M, as defined in [3]. Then Theorem 2.1 above and T.-G. Sun’s theorem [4],
Theorem 5.12, give:

2.8. COROLLARY. (cf. Révész, 1976, for a = k). If P on R* has a bounded
density with respect to Lebesgue measure and a >k — 1 then J(k,a, M) is a
Strassen log log class.

Révész (1976) considers unions of at most m sets in collections of sets with
differentiable boundaries. Let C be any class of sets and form= 1,2, - -, let

U(C, m) :={U :UjEG}.
It is easily seen that for any ¢ > 0,
N,(e, U(C, m), P) < Ny(e/m, C, P)™.

So if the hypothesis on N, in Corollary 2.6 holds for C, it also holds for U(C, m)
for each finite m. Likewise, unions can be replaced by intersections, etc.

We do not know in general whether the P €-Suslin property for © implies it for
U(C, m). The following result will suffice for some applications.

Let (X, d) be a metric space and 9 the collection of all open sets (topology) on
X. Let & be the Effros Borel structure on 9, i.e., & is the o-algebra of subsets of

1<j<m []1
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QL generated by all sets
{(ea:UoV}LVe.

2.9. ProrosiTioN. If (X,d) is a locally compact separable metric space with
topology U, then
(D U, V)>->UUVand{U,V)>->UnNYV

are measurable: (U, &) X (U, &) - (U, &);
D) If € Cc U and C is a Suslin set for &, then for each m, U(C, m) is also a
Suslin set.

Proor. For (I) we must show that for each open W,
Sy ={U, V> UuVDOW}EbL X6b.

(For intersection in place of union this is trivial, requiring no hypothesis on X.)
Since W is a countable union of compact sets, it is enough to show S, € & X &
for K compact.

Let F* == {x: d(x,y) <eforsomey € F}. Forn= 1,2, - -, let F, be a finite
subset of K with K c F,/". For each subset G of F, let

Ag={KU,¥>: UD GY" and ¥V > (F,\G)""}.

Then A; € & X & and Sx = U, U {44: G C F,}, proving (I).

Iterating (I), we see that {CU,,- - -,U,>: WC UKKng.} is 6x---%x6
measurable. Then, U(C, m) is the image of a Suslin set € X .- X €
by union, an Effros measurable map, hence U(C, m) is also a Suslin set. []

There is also a result corresponding to (2.9) for collections of closed sets.

Hence, in Révész (1976), Theorems 2 and 2* (on collections of sets with k-times
differentiable boundaries in R*) now follow from our Corollary 2.6 and Proposi-
tion 2.9, in the light of [3] and [4], proof of Theorem 5.12.

3. Proof that PE-Suslin Donsker classes are Strassen log log classes. Given a
probability space (X, &, P) and a P€-Suslin class C c &, let X(1), Y(1), X(2),
Y(2),- - -, be independent on a probability space (2, Pr) with £(X)) = £(Y)) = P
for all j, where X; := X(j), ¥; == Y(j), and £(X)) = Pr o X{‘l on (X, @).

Let D, = dy; — 8y, and S, = X, ;<,D;. Let v, == n2(P, — P) where P, =
n" ' (E < j<ndxiy)- Let || flle = supcee|AC)| for bounded real functions f on C.
Let dp(A, B) == P(A\ B) + P(B\ A).

Here is an outline of the proof of Theorem 2.1, which is similar to proofs in [11].
Finkelstein (1971) proved the result for any finite collection C. We first consider
symmetrized variables S, / ni = v, — v, where », is an independent copy of »,.
The - central limit theorem (Donsker property) will imply, as in (3.4), that

sup, E||S,||/ ni < oo. Using boundedness of the basic random variables, ||0y[|c <
~ 1, we will get exponential bounds (3.17) E exp(h||S,||) < exp(hE||S,| + 4nh?). For
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symmetric variables we have a Lévy inequality (3.1), allowing a proof that
lim sup,,_, .|| S,lle/ (2nLLn)2 < oo a.s. via a subsequence of the S,,.

Now, we approximate C within & for d, by a finite set @ = {4, - - , 4.}. Let
C(j) = {C € C: dp(C, 4)) < &}. We will replace C above by C(j) and || - || by
I - 1, defined (not just supgyy| - [) by [1fl]; = Supc ey AC) = fid)). Givene > 0,
for § small enough we can then get, as in (3.14), “< &” in place of “< o’ above.
Next, (3.16) removes the symmetry assumption, and Finkelstein’s theorem will
finish the proof.

Now we begin the detailed proof of (2.1). Let ¥ be a real vector space. Recall

that a seminorm on V is a nonnegative real function || - || satisfying [|x + y|| < || x|
+ ||y|| and ||ex|| = |c| ||x|| for all x,y € V and real c.
For our case V = Dy(C, P), we will have various seminorms || - ||c and || - ||;,

and even various o-algebras (e.g., o-algebras B, generated by balls {x: ||x — o|| <
r} for the various seminorms). Random variables with values in ¥ will be required
to be measurable only by specific hypotheses in Lemmas 3.1 and 3.2.

The following fact is well known, at least for separable normed spaces with Borel
measurability. In our applications, D; will be independent and symmetric. (Measur-
ability problems prevent this from implying directly the hypotheses of 3.1).

3.1. LemMa. (Lévy inequality). Let V be any real vector space and || - || a
seminorm on V. Let Dy, D,, - - - , be random variables with values in V, S, == D,
+:--+D,, and S,, =S, — Dy + - +D,), 1 <m<n. Suppose that
whenever 1 < m < n, ||S,,|| and ||S,,,|| are measurable, and that {||S,|, - - - , || S,ll,
I1S,||> have the same joint distribution on R™*" as || Sy|l, - * = , |Splls [|Spnll>- Then
forany K >0and n=12,- - -, Pr{max;,[|S;|| > K} <2 Pr{IIS I| = K}.

ProoF. As in Kahane ((1968), page 12), for 1 < m<n let A4, be the event
(Sl <K+, I8 ill <K [IS,ll > K). Since S,, = (S, + Spm)/2, A, is the
union of the two measurable events 4,, N {||S,|| > K} and 4,, N {||S,.ll = K},
which have the same probability. Thus

Pr(||S,ll > K} = 27,_,Pr{4,, n {[IS,]| > K}}

> 13 _\Pr(4,,) = ;Pr{max, ,|IS,| > K}. 0

The next fact is also well known in the separable case (Kahane, 1968, pagé 16;
Hoffmann-Jergensen, 1974, 3.3; Jain and Marcus, 1975,_ Lemma 3.4).

3.2. LEMMA. Assume the hypotheses of 3.1 and that for some K < o, || Dj|| < K
for all i, and for 1 < m < n, the two random variables: || S|, - * * , ||Snll> in R™,
and IS, — S|l in R!, are independent. Then for any t > K and n =
1,2, - -, Pe{||S,|| > 3t} < 4 Pr{||S, || > ¢}
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PrOOF. As in the cited references, let T(w) == inf{n > 1: ||S, w|| > ¢}. Then
using Lemma 3.1 twice, we get
Pr(|IS,l > 3¢} = 223 Pr{T = m, |8, || > 31)
S Zicmen P{T=m, S, — S,|l >2t - K}
< Zicmen Pr{T = m}Pr{||S, — S,/ > 2t — K}
< Zicmen Pr{T = m}2 Pr{||S,| > ¢}
< 2Pr{[|S,|| > t}Pr{max;,| S| > 1}
< 4Pr{||S,] > )
Lemmas 3.1 and 3.2 (with K = 1) apply to our D, := 8y, — 8y and || - || =
Il + lle by [4], Proposition 3.2.

3.3 LeMMA. For any P€E-Suslin Donsker class C and ¢ > 0, there is some
finite r and a decomposition C = C, U - - - UC,, C; digjoint, such that each C; =
C(j) is PE-Suslin and for some A; € C;, N = N(e) < co, and |f|; =
sup¢ e o)l (C) — f(4))], we have for eachj =1, - - ,r,

1
sup,, >NPr(||S,,||j > nze) <w%-

PrROOF. We can assume ¢ < %. By [4], Theorem 1.2b, there is a § = 8(¢) > 0

and an N = N(e) such that for n > N, the outer probability
Pr*{sup{|»,(4) — »,(B)|: 4, B € C,dp(4, B) <8} >¢/2} <e/2.
Hence,

Pr*{sup{|(», — »,)(4) — (» — ¥,)(B)|: 4, B € C,dp(4, B) <8} > ¢} <.
Also, by [4], Theorem 1.2a, € is totally bounded for dp. Take r and 4,, - - - , 4, €
C such that for all C € €, dp(C, 4;) < & for some j. Let

B, = {C € C:dp(C, 4) <8}
and C()) = G = B, U i< ®;. Then C; form a decomposition of C and are
Borel sets for dp. Let (X, @;C, §) be PE-Suslin and §, ={6 N C;: & €5}.
Then (G, &) is Suslin (e.g., Parthasarathy, 1967, page 16, Theorems 3.1, 3.4).
Hence (X, @;C;, ;) is PE-Suslin.

Now for any ¢ > 0, ||S,||; > c iff either

supCE@(j)Sn(C) >t > Sn(Aj) +c
or '

infCE@(j)tS'n(C) <t < Sn(Aj) - C

for some rational ¢. The events S,(4) <t—c and S,(4;) >t + c are clearly
measurable. The set of (w, C) such that S,(C)(w) > ¢ is jointly measurable in
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£ X C by the P€E-Suslin assumption, SO supceg,S,(C) is measurable as in [4],
proof of Proposition 3.2. Likewise, infc ¢ S,(C) is measurable, hence so is ||S,,|| ;-
Then by choice of 8, for each j

Pr{[IS,l, > nie} <e <. 0

34 LEMMA. For eache > 0,eachj=1,- - - ,r and n > max(2e 2 N(e)) with
N(e) and C; as in 3.3 we have E||S,|3 < 17¢n.

PrOOF. Let u == ne? > 2. From the measurability of ||.S,|| j» in the last proof,
and the form of the D;, Lemmas 3.1 and 3.2 with K = 2 hold for || ||, in our case.
Thus

E|IS,I2/9 = fg Pr(|IS, ||, > 3¢3)at
<u+ 2 Pr(|IS,|I; > 363)dt
<u+ (24 Pe(|IS, ||, > 17) dr (by Lemma 3.2)
<u+ [2Pi(|IS, I, > 13)dt/20  (by Lemma 3.3)

<u+ [ Pr(|S,Il; > £2)dt/20,
so
E||S,|} < 180u/11 < 17né’. 0
Of the estimates in the next lemma, (3.9) and (3.10) are the most important.

3.5. LEMMA. For ¢ > 0 and N(¢) as in Lemma 3.3 take N > max(N(e), 2¢~2).

Let T, = Syyand Z, =T, — T,_, for k=1, 2--- (where T, :=0). Then for
allj=1,---,randk=1,2,--,
(3:6) | Zll; < 2N,
3.7 E||Z,|3 < 17N#?,
and
(3.8) E|T,l, < (176%N)3.
(3.9) For allm > 1 and real h,
E exp(h|| T,|;) < exp(hE|T,|; + 2h%**Z7_ E||Z,|%).
(3.10) For any b > 0.and A > 0, we have

Pr(||T,,|l; > 2Ab) <
exp{ —A? + A27'[ E||T,, ||,/ (\b) + exp(2AN/b)b 227 _,E| Z,|I3] }
< exp{ -\ + ’\2_2“[(1782'"1\’ )i/ (AB) + eXp(2>\N/b)b"217esz]}.

PrROOF. || D,||; < 2 for all i and j implies (3.6). Lemma 3.4 implies (3.7) and
(3.8).
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Let ¥, be the smallest o-algebra for which X, and Y, are measurable for
1 < i < kN, so that B, is the trivial o-algebra {¢, 2}. Let E, denote conditional
expectation with respect to B,, so that E,X = EX whenever E|X| < co. Let
F, = (E, — E,_))||T,||,- Then EF, = 0 and
I Tall; = ENT,ll; + ZichcmPr
Thus for any real A,
(3.11) E exp(hlT,|)) = E exp(AE | T, |, + hZ1cicamFe)
= E(exp(hE||T,ll; + hZ\ <k cmFi) E,u-y €xp(hF,,))
since for k < m, F, is ®,,_, measurable. Let U, == T,, — Z,, 1 < k < m. Then
WUl = 1Zell; < I Tall; < NUN; + 1125
so
E | T,ll; < EllUill; + EellZill)»
Ek—I”Tm”j > Ek—l” Uk“j - Ek—l”Zk”j’
and
Fe < E\Ulll; + ElZell; — Ee—nll Usll; + Ex-all Zel -

Now Ei||Z,|; = | Z¢ll)» Ee Z; = E||Z] and E|| Uell; = E 1l Uil Thus
F, < ||1Z|l; + E||Z||;-

Likewise, F, > — || Z,||; — E||Z|;» and

(3.12) |Fel < I Zell; + ENZ|;-
Using (3.11) and iterating, (3.9) will follow from
(3.13) Ey,_, exp(hF,) < exp(2h%e*ME|Z,|3), k=1,2,---,m.

Now E,_,F, = 0. For r > 2, we have by (3.12)
E, 1 F < Ee_((1Zell; + ENZel;)") = E((1Zell; + ENlZl;))
< 2E||Z,);

(since for f = ||Z;||; > 0and s =0, 1,- - -, r, Ef < (EfHY", Ef* < (Ef'y/", and
so Ef*(Ef)~° < Ef"). Thus using (3.6), and 1 + x < e*,

E,_, exp(hF,) < 1 + 2K°E|| Z,|3Y
where ‘
Y =1+42h3"2N + 2222N)*/ (3 - 4) + - - - < &*M,
SO
E,_,exp(hF) < 1+ 21°E| Z,|3e*™
< exp(2h’E || Z, || 2e*™),
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proving (3.13) and hence (3.9). Then in (3.9) set h := A/(2b) to get the first
inequality in (3.10), then apply (3.7) and (3.8) for the second. []

3.14. LemMa. For G as in Lemma 3.3 we have
Pr{lim sup,,maxl<j<,||S,,||j(2nLLn)_% < 268} =1

Proor. It is enough to prove the result for each j, and to consider the
1
subsequence {7,,} = {S,,5} since 2N/(2mNLL(mN))?— 0 as m — . Let m; =
m(k) := 2*. For any A > 0 we have by Lemma 3.1

1
Py = Pr{maxm(k—l)<m<m(k)”Tm”j > As(zmk—lNLL(mk—lN))z}
1
<2 Pr{ I Tyl > Ae(szLL(zk-"N))z}

< 2Pr{ | Tgoll, > Ae(2*+INLL(2'N))? /3)
for k large enough so that
2LL(2*N) < 3LL(2*~'N).
Now we apply (3.10) with b = (17mNe’)5l and A .= A(LL(mN ))% /18 to get for
m = m(k),
P, < 2 exp{ —A*(LL(2*N))/324 + A*((LL(2*N))(648) '[A~" + exp(2AN/b)]) }.
As k — 00, A\"! - 0 and 2AN /b — 0, so eventually
(3.15) P, < 2 exp{ —A*(LL(2"N)/649)}.
Setting A = 26 gives 3, P, < o0, so by the Borel-Cantelli lemma, 3.14 follows. []
The next step in the proof will be a “desymmetrization.” Let », = »,(w) be the
1
normalized empirical measure nz(P, — P) based on X (w), - - - , X, (w). Likewise

let v, = y,(«") be the independent normalized empirical measure n%(P,: - P)
where

— p—1
Py = n"Zj Sy

Here we may assume £ is a product space, {w, w’) € € where w and «' are
independent for Pr = Pr; X Pr,.

3.16. LemMma. If for some K and € > 0,
Pr{lim sup, |17, — #l|,(2LLn) "> < Ke} = 1,
then .
Pr{lim sup,, o [17,/l,(2LLn) "3 < (K + 2)e} = 1.
Proor. If not, then by Fubini’s theorem there exists an w such that

lim sup,. [17,I1,/ 2LLn)* > (K + 2)e
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and such that
Pr,{@': lim sup,., . |17,(«) — #(@)I|,2LLn) T < Ke} = 1.
Take a subsequence n(k) 1 oo as such that for the given w, we have
i, > (K + 1)e2LLn(K))3.
Then almost surely
lim inf, || v,gey |, (2LLA(K)) "7 > &,
so for k > M large enough,
Pr,{I7500ll; > eRLL(n(K))? } >}
and
Ellvill; > e@LL((K)))? /3.
But by Lemma 3.4,
E||S, [,/ (2nLLn)? = 0.
Let E; denote expectation [ d Pr;, i = 1, 2. Then
E||S,ll; = E;Eisupc eep|Si(C) — S,(4))]
> E, supc e Ei|S,(C) — Sn(Aj)l
> E; supc ee() E1Sx(C) — EyS,(4))|
= E, supceep|n(P — P;)(C) — n(P — P,)(4))]

1 '
= E)|In(P = P)|; = n2E|7,]|;-

lim,

n—oo

For n = n(k) — oo we get a contradiction. []

Now to finish the proof of Theorem 2.1, recall the set B, of functions on C
defined by the unit ball B of the Hilbert space H, For any finite collection
@ = {4;},¢;<r C C, the set of restrictions of functions in B, to @ is exactly Bg
Recall that @ is totally bounded for dp by [4], Theorem 1.2a. For f € B and
C, D € © we have

ff(e — 1,)dP < ([f* dP)*dy(C: D)3

<dy(C, D),
and |[flc dP| < 1. Thus Bg is a uniformly bounded, uniformly equicontinuous
collection of functions on (C, dp). Hence by the Arzela-Ascoli theorem, B is
totally bounded for || - || If f, — f weakly in B C H,, then for the corresponding
8, & € B we have g, — g pointwise on C and hence for || - ||o. Since B is weakly
sequentially compact, B, is a compact set for || « ||q
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Given ¢ > 0, choose r large enough and G small enough, 1 < j <r, in Lemma
3.3 such that dp(C, 4)) < e for all C € C,. Then |A(C) — f(4)| < for all f € Be.
Let @ = {4}, <, Any finite collection & is a Strassen log log class (Finkelstein,
1971, Lemma 2). So, almost surely for n large enough there is an f € B, (depend-
ing on n and w) such that ||I(n, -) — f|l¢ < &. Then by Lemmas 3.14 and 3.16 for
K = 26 for n large enough there is an f € B, such that

(n, -) = flle < max;(|[1(n, -)I|; + | 1(n, -) = flle + II11,)
< 28e + & + & = 30e.

Letting &/0, we see that almost surely {/(n,-)},5, is relatively compact for || - ||
and its set K(w) of cluster points is included in B, For a fixed countable dp-dense
subset Q of C, almost surely the restrictions of functions in K(w) to & are exactly
B, for every finite @ C Q (Finkelstein, 1971, Lemma 2). Let &, be finite and
@,1Q. For any f € By, there exist g,, € K(w) almost surely such thatg, = fon &,
for all m. Then {g,} has a convergent subsequence g, , —> g € K(w), and then
g = fon &, for all j, so g = f on C by continuity. Taking a countable dense set
of f € B, gives K(w) = B ass., so C is a Strassen log log class.

Now for 8 > 0 and T := T(C) we will show that E exp( 8T?) < co.

3.17. LeMMA. Foralln> l,all real hyand || - || = || - |le
E exp(h||S,||) < exp(hE|S,| + 4nh?).

Proor. We follow the proof of (3.9) above, replacing T,, by S,, N by 1, and
Il 1l by Il - I, so that

F = (B — E_)IS,I, k=1--:,n
Then E, _,F, =0and ford > 2, E,_,F¢ <29 so0
E,_exp(hF) < 1 + 2 ,5,(2h)%/d!
, = e* — 2h < exp(4h?),
which takes the place of (3.13). [J

Now by Lemma 3.4, and since sup,max;E|S,(4,)|/ n? < oo, there is a C < oo,
1
where we take C > 5, such that sup,E||S,||/n? < C. Thus by Lemma 3.17,

E exp(h||S,|)) < exp(ChnZ + 4nh?).
Thus for any » and x = hn% >0,
Pr(|IS, Il > un?) < e*E exp(x||, | /n?)
< exp(—xu + Cx + 4x?).
For u := 8x + C this gives
(3.18) Pr(|IS, || > un?) < exp(— (u — C)*/16)
< exp(—u?/64) for u > 2C.
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Let a, == (nLLn)?, M, = sup, IS,/ a,l, n(k) = 2% and k(v) = [log,v]. For
any ¢t > 0 we have

(3.19) Pr(M, > t) < 2, 40 Pr(max,_ 1y <cn<nll S,/ il > 1)
By the Lévy inequality (3.1) and since a, 1,
Pr(max, - 1)<n<n)l| S/ @all > 1) < 2 Pr(||S,pll > taui—1y)-
Thus
(3.20) Pr(M, > 1) < 22, 10) Pr(|Sumll > ta,u-1y)
= 254 ss0) Pr{ S22 > (L2 )3 ).
By (3.18), for ¢t > 4C,
(321) Pr(M, > {) < 22, 40 exp(— 1*(LL2*"") /64).
For v > 4, k(v) > 2, so for k > k(v), LL2*~! = log((k — 1) log 2). Let ¢ := (log

log 2)/64. Then

Pr(M, > 1) < 2 exp(— %)= s i)k — 1)_’2/64.

Thus if ¢t > 4C, Pr(M, > ) >0 as v— + co. From its definition, then, M, <
+ oo a.s. for all v. For any 8 < + oo,

E exp( SM2) = [& Pr( exp( BM2) > {)dt.
Let « == exp(88C?). Then
E exp(BM2) < a + [2 Pr(exp( BM?) > t)dt

<a+ 2B Pr{M, > s)}s exp( Bs?)ds

<a + 4Bf%s exp( Bs® — s2§)2m>k(o)m"z/“ ds.
Let w := s2/64. Then since C > 5, w > 1 and

S koM ™" < [R@-1x""dx = (k(v) = 1)'7"/ (w = 1).

Thus there is a v = v(B) large enough so that the above estimates give
E exp(BM?)<co. Since the || S, || for finitely many » are uniformly bounded, and
exp(max(f, g)) < e/ + €%, we have E exp(BM?) < .

Let E, (resp. E,) denote expectations with respect to { X} (resp. { ¥;}). Then for
any B8 < 0, by Jensen’s inequality,

0 > E, E, exp( B sup,||S,/ a,|1?)
> E, exp( BE, sup,||S,/a,|)
> E, exp( B sup,(supc e d=1 < ;<ndx(»(C) — P(C)|/a,)’)
= E exp( BT?). ’ I
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