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THE OPTIONAL SAMPLING THEOREM FOR MARTINGALES
INDEXED BY DIRECTED SETS!

By THOMAS G. KURTZ
University of Wisconsin-Madison

A natural generalization of the optional sampling theorem for martingales
is given. For discrete valued stopping times the result holds for directed sets; for
more general stopping times the result holds for lattices satisfying a type of
separability condition. The discrete case improves a lemma of Chow. The
general case depends upon a lemma showing that all martingales with respect to
o-algebras satisfying a “right continuity” condition have a modification which
has a regularity property that is similar to, but weaker than, right continuity. A
result of Wong and Zakai is obtained as a corollary.

1. INTRODUCTION. Work on martingales indexed by partially ordered sets
has been primarily concerned with generalizations of the martingale convergence
theorem, motivated in part by differentiation theory. (See Helms (1958), Kricke-
berg (1963), Chow (1960), Cairoli (1969) and Gut (1976).) In addition there have
been extensions of Doob’s Inequality (Cairoli (1969) and Shorack and Smythe
(1976)), and extensive work on integration with respect to martingales by Wong
and Zakai (1974, 1976) and Cairoli and Walsh (1975, 1977).

Various decomposition and representation theorems are included with the work
on integration. Extensions of the optional sampling theorem include a lemma in
Chow (1960) (see (2.3) below), some unpublished work of Biihler, and a result of
Wong and Zakai (1976) for a special class of martingales and a notion of stopping
time that does not immediately generalize the one dimensional concept.

In this paper we give a natural generalization of the optional sampling theorem
for martingales using a definition of a stopping time that is identical to the linearly
ordered definition. Our proof is similar to that of Chow (for discrete valued
stopping times), but without an unnatural restriction on the definition of a stopping
time.

In Section 2 we give the definitions and basic materials we need, prove the
optional sampling theorem and give an example of Chow demonstrating that the
optional sampling theorem does not hold in general for submartingales.

In Section 3 we discuss the relationship of our result to that of Wong and Zakai.

In a related paper (Kurtz (1980)) we apply the optional sampling theorem in the
study of simultaneous random time changes of Markov processes. In particular we
show that a large class of diffusions can be represented as multiple random time
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changes of Brownian motion and give a converse of a theorem of Knight (1970)
concerning time changes of continuous orthogonal martingales.
In addition we anticipate applications in the study of point processes.

2. The optional sampling theorem. Let § be a directed set with partial ordering
denoted by ¢ < s. That is, J is partially ordered and for ¢,, ¢, € I there exists t; € §
such that ¢, < t; and ¢, < ¢;. Let (R, ¥, P) be a probability space and let {%,} be
a family of o-algebras (%, C %) indexed by 9 and increasing in the sense that
%, c 9, whenever ¢ < s. A stochastic process X(¢) indexed by 9 is a martingale if

2.1) E(X(#)|%,) = X(s) forall ¢ > s.

An 9 valued random variable 7 is a stopping time if {r < t} € ¥, for every t € 9.
As in the lmearly ordered case we define
(2.2) ={A€F:An{r<t} €Y, forallr

The following lemma is similar to one found in Chow (1960). Chow however,
requires that both {7 < ¢} and {7 > ¢t} € ¥, for all 1.

LemMA (2.3). Let X(t) be a martingale and let T, and T, be stopping times
assuming countably many values and satisfying v, < 7, a.s. If there exists a sequence
(T} C 9 such that

24) lim,,  P{n, <T,} =

and

(2.5) lim oo E(| X(T,)| X (1< 7,0¢) = O

and E(| X(r,)|) < oo, then

2.6) E(X(m)F,) = X(n).

ProOF. Define

(2.7 Ti = T; on {7, <T,}

=T, on {7,<T,}.

If T,, < t then {7, <t} =Q € 9; if T,, £ ¢ then

{im <t} = {n<t} n {n<T,;}
- U —a e,

Therefore 7,,, is a stopping time.

Let T; denote the set of values assumed by 7;. In order to verify (2.6) it is enough
to show that
(2.8) fAn(7,=z)X(”'2) dp = fAﬁ(flﬂt)X(’rl) P = fAﬁ(‘r|=l)X(t) dap

for every t € Ty and 4 € &, . Note that for any s either # < s and hence 4 N {7, =
t}y N {n, =5} €Y, orAn {(n=t)n{n,=s}=0. Let t€T, and t < T,

T.
a<t;a<T,,,{ !
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Since X(s) = E(X(T,)|%,) for s < T, we may write X(7,,) =
SE(X(T,)|%,)X s, -5 and obtain
fAn(»r,-t)X('er) dP = f,m(f,-;)EE(X(T».)I('};)X{Q,,-:) dp

= EfAﬁ{f.‘f)ﬁ(TZm—s)E(X(Tm)I%:') ap
29) = Zunr=00(ranmn X (T) dP
= fan(r=nX(T,) dP
= fun(n=nX(1) dP.
Finally
(2.10) fAﬁ{Tl-t)X(’rZM) dp
= [an(n=0nin<t,)X(12) AP + [4nt=nn(n<1y X (D) dP.

By (2.5 we have
(2.11) limm—mof,{n(v,-t) X(ry,,) dP = fAﬁ(f,—l) X(7,) dP,
and (2.8) follows from (2.9).

ReMARK. The following example shows that the above lemma cannot be
extended to submartingales: let § = {1, 2,2/, 3} with < given by 1 <2< 3,
1<2 <3 Let P{Y=1} =P{(Y= —1} = 1and define X, =0, X, =7, X, =
=Y, X;=1%={ 0,9 =% =% =0¢Y) Thent=2o0n {Y= —1} and
7= 2"on {Y = 1} is a stopping time, X, is a submartingale but E(X,|F,) = —1 <
X,

In order to extend the result in Lemma (2.3) to a more general class of stopping
times we must place additional restrictions on the martingale X(¢) and the index
set 9. The most convenient assumption for § is that it is a topological lattice. That is
9 is a Hansdorff space and for ¢, t, € § there exist unique elements ¢, A ¢, € §
and ¢, vV ¢, € 9 such that

{sed:s<y)n{s€d:s5<t,} = {s€J:s5<t, AL}

and

{(sed:s>n)n {s€%:s>1t,} = {s€J:s >1,A1,},
and ¢, A ¢, and ¢, V ¢, are continuous mappings of § X J onto § (9 X 9 having the
product topology). Note that this implies sets of the form [¢,, t,] = {r: ¢, <t < t,}
(called intervals) are closed and hence Borel measurable.

We will say that a topological lattice 9 is separable from above if there exists a
sequence {#,} C 9 (which we will call a separating sequence) such that for all t € §
t =lim, ¢ where ‘™ is defined by
(2.12) . t™ = min{t,: k< n, t, >1).

(If necessary adjoin to § a point co and define min{J} = 0.)
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We will also make use of the hypothesis that every interval [T, T,] =
{t€$: T, <t<T,)} is separable from above. Note that if J is separable from
above then every interval is separable from above (take {(T, A t,) Vv T,} as the
separating sequence) but not conversely. For example consider the lattice of all
positive continuous functions on (— oo, o0) with the topology of uniform conver-
gence on compact sets.

LeEMMA (2.13). Let § be separable from above and let X(t) be a martingale with
respect to an increase family of o-algebras {%,} indexed by §. Suppose that 5, = N ,F,m
(¢t defined in' (2.12)). Then there exists an adapted measurable modification X of X
such that lim,_ X (™, w) = X(¢, ) for every w € Q for which the limit exists.

n—oo

PrOOF. (Define X(o0, w) = 0.) Since X(¢(™) is a reversed (one parameter)
martingale for n such that ) % co, lim,_,  X(¢#(™) exists a.s. for each . Define
X(1, w) = lim,_, X(+"”, ) if the limit exists; X(z, w) =0 otherwise. Since
(Y® = ™ for k > n, X(t™, w) = X(t", w) so that X(¢, w) =
lim, . X(¢™, w) if the limit exists. Define Y, (f, w) = X(1™, w). Y, (¢, ) is a
measurable function on (§ X , B(9) X F) and hence X (¢, w) is measurable.

REMARK. The restriction of Y, (¢, w)to {t: t < T} X QisB{t: < T} X Frm
measurable for all m > n. Unfortunately N,B{r: ¢ < T} X Frw need not equal
B{t:t< T} X %, so we cannot conclude that X X(t, w) is progressively measura-
ble, that is, the restriction of X to {f: t < T} X @ may not be B{r: t < T} X F.
measurable. (We thank C. Dellacherie for this observation.)

LEMMA (2.14). Let 9 be separable from above and suppose 9, = N, Fym. If T is a
stopping time such that T < t, for some k < n, then v™ is a stopping time, and

%, = N,%wm.

ProOF. Let S denote the collection of elements of the form
Lo A, A zkm, k;<n Then (W<t} = U _.., w{f < s5}. Since s < ¢
implies {1- <s} €%, 7™ is a stopping time. If 4 € N,F,» then 4 N {r™ <
tM) € 9, for all n and hence AN {r<t}=nN,4nN {1-(") <t} e n,Gm=
%,.

THEOREM (2.15).

(a) Let § be separable from above with separating set {t,}, 5, = N, % for all ¢,
and let X(t) be a martingale satisfying

(2.16) lim, X", w) = X(¢, )

for all (t, ) for which the limit exists. Let T, and 7, be $-valued stopping times such
that 7, < 7, a.s. Suppose there exist T,, € {t,} such that

lim m—>ooP{TZ <T }

and

(2.17) lim,,_, oo E(| X(T,) X (r,<7,)¢) = 0
and that E(|X(7,)|) < . Then

(2.18) E(X(7)|%,) = X(7) as.
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(b) Suppose all intervals in  are separable from above and that lim,_,  X(s,, w)
= X(¢t, w) for any sequence {s,} such that s, , > s, > tandlim,_, s, =t and all

w. Let 7, and 7, be $-valued stopping times such that 7, < T, a.s. Suppose there exist
S,, and T,, € § such that

(2.19) lim,  P{S,<7<T,} =1
and

(2.20) lim, o E(| X(T,)|X (r,<7,)) = O,
and that E(| X(7,)|) < . Then

(2:21) E(X(n)|F,) = X(7).

Proor. Note that in (b) U ,,[min, ,S,, max, 7] is separable from above.
By the “right continuity” assumption (2.16) will hold for any separating set and we
may assume {7,,} C {¢,}. Consequently the proof of (b) reduces to the proof of
(a).

As in the discrete case, let

Tim = Ti

=T,

m

on {r, < T,}

2.22)

on {7 < T,}.

For n suffuciently large T,, € {#,¢,..t,} and hence 7{" < T,,.

Since 7™ > 7{"*D Lemma (2.3) implies X(7{") is a reverse martingale and
hence lim,_ X(7{™) exists a.s. and by the continuity hypothesis must equal
X(7;,,) a.s.

LetA €9, .Sincedn{r, <T,}N{r,<t}=4An{rn <T,At}€F, AN
{n <T,} €Y, C 9% and Lemma (2.3) gives

(2.23) angn <ty X($2) dP = [40(r ) X (7)) dP.

Since X(7) = E(X(T,,)|%,w), they are uniformly integrable and letting n— oo
we have

(229)  funinerynimetyX(12) AP + [4n(n<tyn(n <) X(T,) dP
= fAn(f.<T,,,}X("'1) dpP.
Letting m — oo we obtain the desired result.

3. Theorem of Wong and Zakai. We will not introduce all of the notation and
terminology of Wong and Zakai (1976) or of the theory of stochastic integration in
the plane. It should be clear, however, to someone familiar with their work that
their Proposition (5.2) (Wong and Zakai (1976), page 583) is a special case of the
result we give below.

Let 9, be the positive quarter plane with the usual partial ordering and let ¥, be
an increasing family of o-algebras satisfying %, = n,,“fzn for any sequence z, >
z,+1 > z such that lim = z. Note that if z, < z, then the “interval” [z,, z,]
is a rectangle.

n—-)oozn
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Let 9, be the collection of all finite unions of rectangles of the form [0, z],
ordered by inclusion, and let %, be the collection of all compact subsets K of the
quarter plane with the property that z € K implies [0, z] C K. 9, is the collection
of all sets that can be obtained as intersections of sets in 4,. If we identify z with
[0, z], then 9, C 9, C %,, but note that while 9, is a sublattice of 9,, %, is not a
sublattice of 9,. The definition of A is consistent but not that of v .

For a subset A of the plane define 4, = {y : |x — y| < ¢ for some x € 4} and
for A, B € 9, define

(3.1) o(A4, B) = inf{e: ACB,, BCA,}.

For the topology on 9, and 9, we take the topology determined by this metric.
Note, for example, that if {K,} is a decreasing sequence in 4, then lim, K, = K
if and only if K = N2 ,K,. For K € 4,, define

(3.2) Tk = NesoVeex T
If K = [0, z], then Fx = 9,. If K, D K and lim,_, K, = K then

I = N, %,

Finally, notice that 9, is separable from above. In particular we will take the
separating sequence to be an ordering {C,} of the collection of all finite unions of
rectangles [0, z] where z has rational coordinates. The rectangles [0, z], z rational,
form a subsequence {C, } of {C,}. For the separating sequence in 9, we take the
sequence {y;}, where [0, y;,] = C .

Let X(z) be a martingale with respect to {F,} such that X(z) vanishes on the
coordinate axes. By the continuity assumption on {F,}, it follows that for any
decreasing sequence {z,} with lim,_,z, = z we have lim,_,  X(z,) = X(z) as.
Consequently, we will assume (see Lemma (2.13)) that X(z) is measurable and
lim,_X(z™) = X(z) whenever the limit exists. (Recall z” = min{y,: k <
n, Vi >z } )

For z, = (1,, 51) < z, = (1, 5,), let (z;, z,] denote the rectangle

[0, z,] = [0, (#;, 5,)] —[0, (¢2, 51)]-
If we think of X(z) as the “measure” of [0, z] then the “measure” of (z,, z,] is
(33) X(zy,2,] = X(2;) — X(1), 53) — X(t3, 5y) + X(zy).

Since every set K € §, is essentially a finite union of disjoint rectangles of the form
(2, z,] (we can disregard the coordinate axes, as they have “zero measure”), we
can define

(3.4) X(K) = Z7.,X(2)), 23]

where U/L(zy;, ;] = KN (0, ) X (0, c0) and the (z,;, z,;] are disjoint.
X(K) will be a martingale with respect to {%} if and only if X(z) is a strong
martingale in the sense of Cairoli and Walsh (1975); that is,

(3.5) E(X(z,,zz]lvz*zl"};) = 0.

This observation is essentially Theorem 5.6 of Wong and Zakai (1976).
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If X(K) is a martingale on 9;, then we can immediately extend X to a martingale
on 9, by
3.6) X(K) = lim,_ X(K™)
where K™ = min{C, : C;, > K}.

Wong and Zakai define stopping times as indicator functions of random sets y
with the following properties:

3.7 z € y implies [0, z] C v,
(3.8) x,(z) is ¥, measurable.

We observe that 7 = [0, z] N ¥ (¥ the closure of y) is a stopping time in our
sense. Proposition (5.2) of Wong and Zakai (1976) follows from

(39) E(X(2)|%,) = X([0, 2] n¥)
and the fact that in their setting
(3.10) X([O, z]ln ¥) = Jio.21X7 X = Jpo, 21Xy dX as.

REMARK. (a) If [0,z] N v is a stopping time for every z, then x is a stopping
time in the sense of Wong and Zakai.

(b) Cairoli and Walsh (1978) have made a further study of Wong-Zakai stopping
times.

(c) Even in the case of the Brownian sheet there does not exist a modification
that is right continuous on 9.
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