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ON THE GROWTH OF ONE DIMENSIONAL CONTACT
PROCESSES!

BY RICHARD DURRETT
University of California, Los Angeles

In this paper we will study the number of particles alive at time ¢ in a one
dimensional contact process £ which starts with one particle at 0 at time 0. In
the case of a nearest neighbor interaction we will show that if |£?| is the number
of particles and 7, /, are the positions of the rightmost and leftmost particles
(with 7, = 7, = 0 if |£0| = 0) then there are constants v, a, and 8 so that |£0|/¢,
r,/t, and I, /t converge in L' to y1,, al, and B1, where A = {|£?| > O for all
t}. The constant y = p(a — B)* where p is the density of the “upper invariant
measure” ¢Z.

1. Imtroduction. In (1974) Harris introduced a class of Markov processes with
state space {0,1}* which he called contact processes. If we interpret the 1’s as
occupied sites and the 0’s as vacant sites then the evolution of the system may be
informally described as follows: (i) 1’s die (i.e., become 0’s) at rate one (indepen-
dent of the configuration) while (ii) there is a finite set N C Z so that births occur
at an unoccupied state x at a rate which depends upon the number of neighbors
Y € x + N which are occupied with (iii) the birth rate is 0 if none of the neighbors
are occupied. The last assumption explains why these processes are called contact
processes— 1’s can only spread to adjacent sites where adjacency is defined by the
neighborhood set N.

Let £, be the state of the contact process at time ¢ and let |£,| be the number of
ones in the configuration. Assumption (iii) implies that the state £ = 0 is absorbing
so if we start from a state with |£,| < oo there is a positive probability that the
system will be absorbed in the all 0’s state. It is easy to show that if the birth rates
are too small (e.g., all the birth rates are less than 1/|N|) then this probability is 1
whenever |£,| < oo. It is much more difficult to show that the other alternative can
occur. Harris (1974) has shown that if \,2 i = 1,- - - ,| N| are the birth rates when
the number of occupied neighbors is i and the A, are sufficiently large then starting
from any § 2 0 there is a positive probability of not being absorbed in the all zeros
state.

It is easy to show that if |£,| » O then |£,| - oo. This suggests the problem of
determining the rate at which |£,| grows. Harris (1978, Theorem 13.5) has shown
that
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TueoReM 1.1. Suppose N D {—1,1}. If Ay,- - -, Ay are sufficiently large then
starting from any £, with |§g] > 0

P(inf,>ol—£t’—I > O‘ AR O) = 1.
It is easy to show, by comparing with a system with no deaths, that |£,| can grow
at most linearly so on the basis of Harris’ result it seems natural to conjecture that
if |£€] = 1 then as # — oo|£,|/¢ will converge a.s. to a limit . In this paper we will

obtain a partial solution of this problem. We will show

THEOREM 1.2.  If§, is a contact process withAy < Ay -+ < A\yand N C {—1,1}
then there is a constant y so that if |§g| = 1 and = {|£2| > O for all t} then

|§,|/t—>yl>\ inL'.

The assumption that A; < A,--- < Ay, is natural and has been used by many
authors. It says that the birth rate is an increasing function of the number of
occupied neighbors and it implies that if we have initial configurations which have
£o(x) < €y(x) for all x then we can construct a joint realization of the contact
process starting from these initial configurations which has the property that
£,(x) < §,(x) for all x,¢. (This is called the basic coupling, see Liggett (1976),
Section 2.2 for details.)

The assumption that N C {—1,1} is a technicality which is required by our
proof. At several points in Section 3 we use a coupling result (Lemma 3.1) which is
only valid in the nearest neighbor case. To explain where and how this difficulty
occurs we have to describe our method of proof.

To prove Theorem 1.2 we begin by studying 7, the position of the rightmost
particle when the initial configuration is 1_,, ¢;- The processes {7,z > 0} while
they do not have stationary increments are in many ways similar to the subadditive
processes of Hammersley and Kingman. In Section 2 using some ideas from
Kingman’s proof of the subadditive ergodic theorem and several applications of the
basic coupling we show that

THEOREM 1.3. There is a constant a so that i/t >a as. If a > —oo the
convergence also occurs in L.

(The disclaimer in the second line is necessary. D. Griffeath has shown that
a = —oo for A < A_,. For this and other related results the reader is referred to
B

The last result of Theorem 1.3 does not require the assumption that N C {—1, 1}.
In fact it is valid for any system which is attractive (i.e., joint realizations can be
constructed using the basic coupling), has £ = 0 as an absorbing state, and is
described by a set of flip rates which are translation invariant and have finite range
(hereafter these systems will be called growth models).
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Let {8 be a realization of the growth model with ¥ = 1(_«,01and let 7, =
sup{y : §&(») = 1}. If we use the basic coupling to construct £? and ¢X on the same
space then £R > £ so 7, < 7, and we can use Theorem 1.3 to get upper bounds on
the rate of growth of r,. We conjecture that these upper bounds give the exact rate
of growth in all cases. We have only been able to prove this conjecture in the
nearest neighbor case. In this case if we construct £® and £ on the same space
using the basic coupling then it follows (from Lemma 3.1) that £2 = ¢ for all
x>l =inf{y:£(y) =1} so r,=7, on Q,= {|£| > 0}. Using this observation
Theorem 1.3 can be translated into the following result about r,.

THEOREM 1.4. If £2 is a nearest neighbor growth model then there is a constant «
so thatr,/t > a as. on Q= {|£€2| > 0 for all t} and

(r,/t) 19— alg_in L.

Applying Theorem 1.4 to é,(x) = {,(—x) gives that there is a constant 8 so that
(l,/1) 1g,— Blg_ as. and in L'. By using this result and Theorem 1.4 it is easy to
prove Theorem 1.2. To do this we observe that if we let £Z be a realization of the
contact process with initial configuration ¢£ = 1 and we construct (¢§Z and £ on
the same space using the basic coupling then) £¢Z(x) = ¢2(x) for /, < x < r,. Now it
is a known fact about attractive processes that as t — o0, £Z converges weakly to a
limit £¢Z with P(¢2(0) = 1) = p and we will show that {£Z(x),x € Z} is an ergodic
stationary sequence so it follows from the last three results that Theorem 1.2 holds
with y = p(a — B)*. The reader should note that while we know 7, /¢ and /, /¢
converge a.s. we have not been able to show that |£0|/7 converges a.s.

In order to claim that Theorem 1.2 gives the exact rate of growth for contact
processes we need to show that y > 0. It is easy to show that if « — 8 < O then
P(Q,) = 0 but it is difficult to rule out the possibility that a — 8 =0 or p =0
when P(£,) > 0. In Section 4 we solve this problem for the one-sided (N =
{—1},A, =A) and basic two-sided (N ={—1,1},A; = A,A, =2A) contact
processes and we will show that in each case y > 0 if

A > A, = sup{A: P{|£)| >0} =1}.

In the two-sided case this result can be applied to prove the following conver-
gence theorem (which is essentially due to Griffeath (1978)).

THEOREM 1.5. If A > A, and &, is an arbitrary initial distribution then as t — oo
£, converges weakly to
P(|§,1 > 0) v, + P(|£,[+0)»,
where v, is the pointmass on § =0 and v, is the limit distribution when the initial

configuration is £§ = 1.

-At this point the result is an easy consequence of the coupling of £Z and ¢° and
the limit theorems for /, and r,. The details are given in Section 5, following the
outline of Griffeath (1979) with a slightly different ending. Our contribution has
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been to show that /,— — o0 and 7,— oo almost surely on @, for all A > A_, (he was
only able to show this when A > 4 > A ).

2. Limit theorems for 7,/t. Suppose £, is a growth model with a finite range
interaction. Let £f be a realization of the process with initial configuration
¢k = 1(_ 0,0y and let 7, = max{y:£8(y) = 1}. In this section we will show

THEOREM 2.1.  There is a constant a so that 7,/t — a almost surely. If a > — o
then the convergence also occurs in L.

ProoF. To analyze the growth of 7, we introduce a family of “reset” approxima-
tions §,R’M » M € (0, o0) which start from 5{} and evolve according to the following
rules.

() On the time intervals [0, M), [M,2M),- - - the process evolves according to
the rules of the growth model.

(i) At times M,2M,- - - we “reset to one” the values at all the sites to the left of
the rightmost one, thatis, if k > 1 we let §%(y) = 1 if there is an x > y for which
ERit (x) = 1.

Since the growth model is attractive £ and £®' can be constructed on the same
space in such a way that £§ < &M for all £ so if we let 7™ = max{y : £FM(y) = 1)
then 7™ > 7. The growth rate of 7 is easy to determine. Because of the resetting
P — FX-pm k > 1 is a sequence of independent and identically distributed
random variables, so k~'F¥ — ErM = EF, almost surely. To extend the conver-
gence to times which are not multiples of M we need a bound on how fast 7, can
grow. Let L be the range of the interaction and A the maximum birth rate. If we
consider a system with no deaths and suppose that each x € [kL + 1,(k + 1) L]
becomes occupied at rate A when some site in [(k — 1) L + 1,kL] is occupied then
we get a process which grows at a faster rate than the growth model in the sense
that if we let £f be a realization of the process with initial configuration | PN
then we can construct £* and £X on the same space in such a way that £ > R for
all ¢. Let ,* = max{y :£}(y) = 1}. It is easy to see that

P((k—1)L <r* <kL) = e (ALt)*/k!
so we have
€)) P(r* > kL) = e *'S%, (ALt)'/j!
and
E(maxgy_, pr*) = Erfy < LIZL_ P(r¥ > kL) < AL*M.
From the definition of £&°, the coupling, and the last 'equation it follows that if
e>0

2?-1P(max(k—1)u<z<kMﬁM - f&l—l)u > (k- l)Me)
*

E
<SP P(rgy > (k- 1) Me) < A;’: <
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so applying the Borel-Cantelli lemma we have
limsup, , 7™/t < Efy/M
and it follows from the coupling that
limsup,_,7,/t < Ery,/M.

Since this result holds for all M we have
2) limsup, 7/t < a = inf,_oEf\/M.
At this point we have proved half of the almost sure convergence. If a = — oo we

are done so for the rest of the proof we will suppose a > — o0. Our next step is to
prove the L' convergence. To do this we observe that |x| = 2x* —x so

3) E|Fr/t — a| = 2E(F/t —a)" —E(F/t — a).

From (2) it follows that (7, /¢t — a)* — 0 almost surely. To show that E(F,/t —
a)* — 0 we observe that

(R/t—a)™ < |a| +1r*/t < |a| + r*/t

where r* is the upper bound we defined earlier. From (1) it follows that r* /¢ is
uniformly integrable so E(7,/t — a)* — 0. Using this in (3) gives

limsup,, E|F,/t — «| < limsup, , (a — EF,/t) < 0

since a = inf,,_ o Ery /M.
The last inequality proves the L' convergence 7, /¢ to a so to complete the proof
of Theorem 2.1 we need to show

4 limsup, , 7./t > a.

To do this we will (i) construct a stationary sequence {Y,,k > 1} so that r, >
371 Y, as. and then (ii) show that liminfn~'37_, Y, > a.

To accomplish (i) we will take a limit of the reset processes 7;’. The increments
X =g — Ff_, of these processes are not stationary but they are periodic so if we
introduce an independent random variable U, with P(U,= k) = 1/nfor0 < k < n
the shifted increments Y’ = X/, , are a stationary sequence with

EY!'= n"'Sl_EX?= n"'Ef} > a.

By considering what happens in a contact process without deaths and using (1) we
see that E(Y]")* < AL% Since EY;" > a it follows that E(¥Y")~ < AL>— a so
E|Y"| < 2AL?— a. From the last inequality we see the sequence of processes
(Y, k > 1) is tight (as a sequence of random elements of R(®"""'}) so we can find
a subsequence which converges weakly to a limit {Y,,k > 1} (see Billingsley
(1968), page 19).

Having constructed the sequence we want for (i), the next step is to show that 7,
n > 1and Y, k > | can be constructed on the same probability space in such a
way that
(5) 1 Ye<r forall n > 1.
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To do this we will use a coupling argument. Let ¢} = £R. Let ¢2 be a process which
starts at time — U, with initial configuration ¢X and runs from time — U, to time 0
according to the rules of the contact process. At time 0 we translate the process so
that the rightmost particle is at 0. Since the translated configuration is < &F it
follows that if we let £2, ¢ > 0 be the process which results from running the
contact process from this initial distribution with resetting at times kn — U,, k > 1
we can use the basic coupling to construct £ and ¢2 on the same space in such a
way that for ¢ > 0, £/ > £2 on {t < n — U,}. From the last inequality it follows that

> 2k, Y on {k<n-U,}.

For any fixed K, P{U,<n— K} —>1 as n— oo so it follows from the last
inequality that we can construct 7, and Y, on the same space in such a way that

P > 25;113. forall 1 < k£ < K.

Since X is arbitrary this proves (5).

At this point we have completed step (i) and it remains to show (ii). The first step
is to realize that the sequence Y, is stationary and by the computations which
showed tightness, has E|Y;| < oo so if we let k — oo then

1
(6) ZZj=1 Y > E(Y,|9)

where 9 is the o-field of shift invariant events. To prove (ii) then it suffices to show
(7 E(Y,|%) = a.
The first step is to show

(@) E(Y,|9) < a almost surely. To do this we observe that since any reset

process grows faster than the contact process it follows from (5) that we can
construct 7y’ and Y, on the same space in such a way that

k=7 > k'S5, Y, almost surely.

Letting kK — oo in the above gives
E(Y,|%) < n"'Er".
Taking infimums over now proves (a).
Having shown (a) the next step is to show (b) E£Y, > «a. To do this let n; be the

subsequence which was chosen to give the limit {Y,,j > 1}. Y7 converges weakly
to Y, and we have from (1) that

P(Y! > kL) < e ™3 (AL)*/k!  for k > 0

so it follows from Fatou’s lemma that

liminf,_ E(—Y") > E(-Y,)

so we have
EY, > limsup, , ,EY" > a.
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Combining (a) and (b) shows EY, = a and E(Y;|$) = a almost surely, complet-
ing the proof of (7). Combining (5), (6), and (7) shows that
®) liminf, , 7,/k > a
so to complete the proof we need to show that we can replace k by ¢ in the last

formula. To do this we observe that if ¢ > 0 it follows from the Markov property
and the monotonicity properties of the contact processes that if

A= {7 <(a—2e)k forsome t€[k—1,k],F > (a—e)k}

then
P(4;.,) < P(7t> ke)

where 7* is the position of the rightmost particle in a contact process with no
deaths and initial configuration £X. Summing on k gives

P(A;  io0.) =0 forall e

Combining this with (8) shows

liminf, 7/t > «

t—>00
and completes the proof of Theorem 2.1.

ReEMARK. The reader should note that the first two parts of the argument
(limsup 7/t < a, and 7,/t - a in L') above are similar to the first two parts of
Kingman’s proof of subadditive ergodic theorem. The third part (liminf 7, /¢ > a)
corresponds to the hardest part of Kingman’s proof—the subadditive decomposi-
tion theorem. In this part the arguments are necessarily different. In Kingman’s
proof the issue is to show that a general stationary subadditive process dominates
an additive process with the same time constant while in our proof we need to
show that our particular nonstationary additive process dominates an additive one

with the same asymptotic mean.

3. Nearest neighbor growth models. In this section we will assume that the
growth model has a nearest neighbor interaction. In this case we have the following

useful coupling result.

LEMMA 3.1. Let &R and &0 be realizations of the growth model with initial
configurations 1_, ,; and 1,g,. If £} and &) are constructed on the same space using
the basic coupling then £R(x) = £%(x) for all x > I,= inf{y: £)(y) = 1}.

Proor. We will prove this by showing that every .transition in the coupled
process preserves this property. Suppose the configuration before the flip is £ and
the flip occurs at x. If x > /,_ then since the flip rates only depend upon the
nearest neighbors £8(x) and £°(x) flip together. If x = /,_ then £ (/,_) =1 so
£°(/,_) = 0 and the new boundary /, > /,_. Since £ (x) = §_(x) for all x > /,_
we have £R(x) = £2(x) for all x > I,. Finally we observe that if x </,_ then
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x=1_—1s0 £ (x) =0 and £’(x) = 1. Since £&(x) > £)(x) it follows that
£R(x) = 1 and we have §X(x) = £X(x) forall x > ,=1,_ —1.
Note if the interaction has range 2 and the configuration is

1 1 0 1 1 1 1 1 0 0
0 0 0 0 1 1 1 0 0 0

then we can get a 1-0 discrepancy at r, — 1 or get a 1 at /, — 2 which will cause the
left boundary to move across a discrepancy.

From Lemma 3.1 it follows that on €, = {|£2| > 0} we have r, = 7,. Using this
observation we can translate Theorem 2.1 into a result about 7,.

THEOREM 3.2. Let Q= {|£°| > 0 for all t}. There is a constant a so that
r/t > a a.s.on Q.
If a > — o0 then
(n/t)1g,> alg_  in L

Proor. Since r, = F, on §,, the a.s. convergence is an immediate consequence of
Theorem 2.1. To obtain the L' convergence observe that

I(r,/t) 1g, — alg_| = I(7/t) — allg + allg — 1g_|

and the expectation of the right-hand side converges to 0 as ¢ — 0.

Applying Theorem 3.2 to £,(x) = £,(—x) shows that if we let /, = inf{y : £2(y)
= 1} then there is a constant 8 so that /, /t— B a.s. on @ and if 8 < co then

(1,/t) 19, Blg_in L.

. Combining this with Theorem 3.2 shows that the width of the set of occupied sites
in &2 grows like (@ — B)* ¢ on Q. This suggests the following result.

THEOREM 3.3. There is a constant vy so that

€21/t > ylg_ in L.

Proor. To study the convergence of |£2|/¢ we will use the basic coupling to
compare £° with ¢Z, a version of the growth model starting from ¢5(x)=1. By
imitating the proof of Lemma 3.1 it is easy to show

LEMMA 34. Letl,=inf(y:£2(y) = 1} andr, = sup{y:£X(y) = 1}. If ¢Z and £°
are constructed on the same space by the basic coupling then £Z(x) = £2(x) for all
L, <x<r, '

Lemma 3.4 says that between /,-and r,, £2 looks like £Z. From this we get that
1 €7 = 23, 2(x) = 2o, Z(x)onQ,.

At this point we have to pause to discard the trivial case. If P(Q,) = 0 then
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since £0 < &* (the contact process with no deaths) we have that
€71/t < (I§1/1) 1g,> Oin L'

since |£f|/¢, ¢ > 1 is uniformly integrable. Having proved the result in the case
P(2,,) = 0 we can for the rest of the proof assume P(2_) > 0. If we do this it
follows from results in Section 2 that —c0 < 8 < @ < oo and hence that r, /¢t > «
and /, /t —» B in L'. Using this observation we can replace the /, and r, in (1) by B¢
and at. Since |¢Z(x)| < 1 we have

2o, 87(x) — Z3p87(%) < |n,—at| + |I,— Bt|  on €,
so it follows from the results of Section 2 that
E|&01/t — 1g (17 'S5 4, 87(x))| — 0.

If & = B the last expression shows that |£0|/¢ — 0 in L' so for the rest of the proof
we can assume a > 8. Now

g, (2 7255, 87(%)) — Ylg | = lg|t T'ZiL 5 87(2) — v| + vlg,— 1g|
so to prove Theorem 3.3 in the case a > @ it suffices to show that
t7I3 5 85(z) >y in L.

To study the growth of the number of particles in £Z in [Bt, at] we need three

facts from the theory of attractive processes.
I. Ast— oo the distribution of £Z converges to a limit £Z. The distribution of £Z
is a stationary distribution for the contact process.

Proor. This is an easy consequence of the basic coupling (for details see
Section 2.2 of Liggett (1976)).

II. If we fix ¢ and consider £Z(x), x € Z as a stationary sequence of random
variables, then this is an ergodic sequence.

ProoF. This is true whenever the interaction has finite range (see Holley
(1972) page 1967).
IIL. In ¢2(x), x € Z is an ergodic stationary sequence.

ProOF. By using the basic coupling it is possible to define the random variables
Z 0< n< o on the same probability space (2,%,P) in such a way that
§8(x) > £4(x) > - -+ > £Z(x) for all x. Let 6, be the operator which shifts the
configuration by y, i.e., (6,§)(x) = §(x + y). If fis a nondecreasing function then

1

l .
25 W (0(87) > 5y 25--af(6,(£2))-

2n+1

‘From Birkhoff’s ergodic theorem and Holley’s result it follows that if fis bounded
then the left-hand side converges in L'(P) to Ef(£Z) while the right-hand side
converges in L(P) to E(f(¢Z)|9) where 9 is the o-field of shift invariant events.
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Combining the last two results with the inequality above shows that
Ef(¢Z) > E(f(¢2)|9) Pas.

Letting m — oo and using I gives that if f is continuous
E(52) > E(S(:2)9) Pas.

so we have
Ef(¢2) = E(f(£2)I9) Pas.

for all bounded nondecreasing continuous f.

Now if 7 € {0, 1} %1 we have
Lgmnont-z.2y = Yesnont-£,2) ~ ligsnendemnoni—L,L-

It follows from this that any function which depends upon only finitely many
coordinates can be written as a finite linear combination of bounded nondecreas-
ing continuous functions so we have E(f(£2)|9) = Ef(¢Z) for all these functions.
To complete the argument at this point observe that if f, g are bounded functions
on {0, 1}*
1
E\lg—— 2n + 1 )" n (0 (gz)) 2n + 1 y-—ng(o gZ)

1
< 57 20--nElA(6,€2) — 28(6,82) = E|f(£Z) — 2(¢2)|

so it follows now from results proved above that

E(f(£2)I9) = Ef(£3)

for all bounded f on {0, 1}% so § is trivial for ¢Z.

From III we get that as t — oo, 1~ 12;‘_,;, £Z(x) converges to (a — B8) P(£2(0) =
1) in L'. Using this fact it is easy to prove Theorem 3.3. Let ¢! be a version of the
contact process with £/ having the same distribution as £Z. Using the basic
coupling we can construct ¢ and ¢Z on the same probability space in such a way
that ¢/ < ¢Z for all ¢ > 0. If we do this then

E|S3 5 87(x) — ¥ p,8l(x)| = (S35, 1)(EEZ(0) — E£Z(0)).

If we divide both sides of the equation by ¢ and let t — oo then the right-hand side
converges to 0. Combining this with III shows that if p = P(£2(0) = 1) then

f_lzi' ﬁtgt (x) - p(a — B)in L'

By remarks above this completes the proof of Theorem 3.3.

4. Positivity of y for the basic contact processes. In this section we will study
the one-sided (N = {—1},A; = A) and the basic two-sided (N = {—1,1},A; =
A,A, = 2)A) contact processes. Our aim will be to show that in each case if
A > A, =sup{A:P{|£)| >0} = 1} then y > 0 so the process really grows at a
linear rate. To do this we use the fact that these processes are additive in the sense



CHARD
900 RI DURRETT

of Harris (1978). To introduce this concept we need some notation: if 4 C Z let £/
be a version of the contact process starting from & = 1.

DEFINITION. A contact process is additive if we can construct all the processes
{¢1,¢t > 0}, A C Z on the same space in such a way that

(1) §1VB(x) = ¢M(x) V ¢8(x)  forall x,t.
The basic fact we need about additive processes is the following.

LemMMA 4.1, Suppose &, is an additive process and the processes {¢/,t > 0}, 4 € Z
have been constructed so that (1) holds. Let r = sup{x:§/(x) = 1}. If A and B are
infinite sets so that B C A C (— o0, 1] then for any finite set C

0 < rAYC — rA < rBUC — 1B,

PrOOF. The assumptions on 4, B, and C imply that all the variables in the
inequality are finite a.s. From the construction we have

rAVC — pA = (r€ = rA)"  (since §/1VC = ¢4 \/ £°)
rd > B (since £ = £2\/ £/7F)
(r€=rP)" = rPUC — 1P (since £PUC = £8\/£F).

Since z — (1€ — z)* is a decreasing function combining the last three equations
shows

rAUC

4 BUC _ B
¢ < ’

-, .

t
It follows from the first equation that the left-hand side is nonnegative.
If we let 4 =(—00,—1] and C = {0} in Lemma 4.1 we get that for all
B cC(—o0,—1]
E(r‘Bu{O) _ r,B) > E('} —0,0] _ —oo,-ll) =1
since the system is translation invariant. The last inequality says that if we add a 1

to the right of all the ones in the initial configuration then it increases the expected
location of the rightmost one by at least 1. Using this result it is easy to prove

LEMMA 4.2. Let £} be a one-sided (N = {—1},A, =) or additive two-sided
(N={—-11},A; = A, A, = 0\, 1 < 0 < 2) contact process with initial configuration
£0 = 1_ o0 If we let r} = sup{y: ¢N(y) = 1} and a,(A) = Er} then a,(A + §) —
a,(A) > 6t forall d > 0.

PrOOF. Let ¢ be a fixed time and let § > 0. Use the' basic coupling to construct
¢*% and £} on the same space. Let 7 =inf{s > 0:7**% > r}}. If 7> ¢ then
2% =r* To compare r*? and r} on {r < ¢} it is convenient to introduce a
process £}*® which = ¢+ for s < 7 and from 7 until ¢ evolves according to the
rules of the contact process with parameter A. Since 7 is a stopping time we can use
the basic coupling to construct £+° on the same space with £+° and £ in such a
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way that £} > £M% > ¢2 for all s < ¢ and the first inequality is an equality for
s < 7. From this it follows that if we let 7**® = sup{y : £}*%(y) = 1} then

E( A+8 _ r)\) > E( AN+S I}A;’T < t).

Now at time 7, FA*%= r2% > pA 4 1 and §}+%= ¢2% > £ 50 using the Markov
property and applying Lemma 4.1 gives that the last term above 1s > P(r < t).
Since the birth rate at r*% + 1 is always A + 8 while birth rate at r,* + 1 is always
A we have P(1 < t) > 1 — e %, Combining the inequalities above we get

a(A+8) —a(A) > 1—e%

To strengthen this result to the desired conclusion (recall x > 1 — e™*) we observe
that
a,(A+8) —a,(A) = Zf_ a,(A+08k/n) — a,(A + 8(k — 1)/n)
> n(l — e~¥/n)
and the right-hand side converges to 8t as n — oo.

This completes the proof of Lemma 4.2. Our next step will be to prove an
inequality for the expected location of the leftmost particle. Let £} be a one-sided
or attractive two-sided contact process with parameter A and initial configuration
&= 110, o)+ If 8 > 0 we can use the basic coupling to construct §“8 and &} on the
same space in such a way that £}+® > £ for all . If we let I} = inf{y : EN(y) = 1}
and B,(\) = EI} then we have /% < I} and B,(A + 8) < B,(A). Combining this
with the result of Lemma 4.1 gives

at(}‘ + 8) - :Bt()\ + 8) > at(A) - Bt()\) + ot

(in the two-sided case we can replace 8¢ by 28¢). From the ' convergence in
Theorem 2.1 we have that

a(A) = inf,a,(A\)/1 = lim,_a(A)/1
B(X) = inf,B,(X)/t = lim,_B,(A)/t.
From the a.s. convergence in that result we get that
a(A) — B(A) < 0= P{|£?|—>0} =
Combining the last two results with the inequality shoows that if A > A, =
sup{A: P{|¢°| - 0} = 1} then a(A) — B(A) > A — A, > 0.

The reader should observe that up to this point all the computations in this
section are valid for any additive contact process (or when properly reformulated
for any additive growth model). To prove y > 0 we need to show that if £Z is a
realization of the contact process with parameter A > )\c, and initial configuration

3% =1 then
p(A) = lim,_,P(¢+%(0) =1) > 0.

We do not know how to prove this for a general contact process. In the case of a
one-sided or basic two-sided contact process it follows from the duality theory
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associated with additive processes (combine (4.2) of Harris (1978) with (1.1) of
Harris (1976)) we have in these cases that

P(£1%(0) = 1) = P(|&}° #0)
sop(A)>0if A>A,.

5. A convergence theorem for the basic two-sided process. In this section we
will use the results of Section 4 to prove a convergence theorem for the basic
contact process. The reader will see from the proof that the same conclusion holds
for any additive two-sided (N = {—1,1},A; = A, A, =0\, 1 < 0 < 2) contact pro-
cess. We do not know how to prove this result for § > 2.

THEOREM 5.1. If A > A_, then as t — o0, §, converges weakly to
P([§,| > 0) v+ P(I¢,| »0)

Where v, is the pointmass on £ =0 and v, is the limit distribution when the initial
configuration is £, = 1.

Proor. We will first consider what happens when £, = 1,,,. Let £Z and £ be
versions of the contact process starting from ¢£ = 1 and £ = 1 (o) and use the basic
coupling to construct these processes on the same probability space. From Lemma
3.4 it follows that if we let /, = inf{y : £2(y) = 1} and r, = sup{y : £2(») = 1} then
we have §Z(x) = £)(x) for all /, < x < r. If A > A, then it follows from Theorem
2.1 and the results of Section 4 that there are constants a, 8 with a > B so that if
Q,={|£€] >0} and @, = N, oD, then

(r/t)1g, > alg_ in L'
and
(I,/t)1g, > Blg_  in L.

Since the basic two-sided process is symmetric we have 8 = —a. Combining this
with the last result shows that a > 0 so r,— oo in probability on £ and by
symmetry that /, - — oo in the same sense. When we combine the last conclusion
with the result of Lemma 3.1 it becomes clear that £, converges weakly to the
indicated limit. To prove this we follow an argument given by Griffeath (look at
the proof of Theorem 5.1 in (1979)). Let A be a finite subset of Z.

P(¢)=00onA) = P(Q) + P(£2=00nA,2,).
As t — oo the first term converges to
P(Q) = P(Iﬁ?l-—)O)vO{é:é(x) =0onA}.

To compute the limit of the second we observe that r,—> c0 and /,—» — o a.s. on
Q, so

o0

P(£2=00nA,Q,) — P(¢2=00n A,9,) - 0.
To compute the limit of P(£Z = 0 on A, Q,) we observe that if s < ¢ then it follows
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from considering the distribution of (£Z|Q,) that
P(¢£=00nA,Q,) > P(Q,)P(¢Z,=00nA)
sO
liminf, ,, P(¢Z=00nA,Q,) > P(Q,)P(¢Z =0o0nA).
Similarly
liminf, , P((Z=00nA,Q%) > P(Q)P(£(Z =00nA).
Since lim, ., P(¢Z =0 on A) = P(¢Z =0 on A) it follows from the last two
inequalities that
lim, , P(¢2=00nA,Q,) = P(Q,)P(¢Z =00nA)
so we have shown
lim,_, lim,  P(¢Z=00nA,Q,) = P(,)P(¢2=00nA).
To compute the limit of lim,_, , P(§Z =0 on A, Q,) from this we observe that
0 < lim,_lim,_(P(¢?=00nA,Q,) — P(¢2=0on A, Q,))
< lim,_  P(Q,—-92,) =0
)
lim, , P(¢2=00nA,Q,) = P(Q,)P(¢Z =00nA).
Combining this with previous results shows that for all finite A C Z
lim,, P(£2=00nA) = P(Q,) + P(R,)P(¢Z=00nA).

Now if fis a function on {0, 1}* whose value at any £ only depends upon the values
of £(x) for x €[—L,L] then f can be written as a linear combination of the
indicator functions of the sets {£°=0 on A} for A C [—L, L] so it follows from
the last equation that

lim,_,, Ef(¢)) = P(QS) [fdv, + P(R,) [ fdv,.

This proves Theorem 5.1 in the case £, = 1.

To extend this result to an arbitrary initial distribution we will use what can be
called a “restart” coupling. Let 4 be a nonempty subset of Z and let £ be a
version of the contact process starting from an initial configuration with £g(x) = 1
for x €4 and =0 for x &€ A. Let y be the element of 4 which minimizes
|¥ — 1/3| and let £§ be a version of the contact process starting from £§ = 1,,.
Using the basic coupling we can construct £7, £/, and ¢7 on the same space in such
away that £y < £ < £Z. If we do this it follows from Lemma 3.1 that £} = ¢/ = ¢2
on [/},r”] where [ = inf{x:£}(x) = 1} and r/ = sup{x:§}(x) = 1}. From the
argument we have given for £? it follows that if we let 7, = inf{z:|£)| = 0} we
have

P(¢ =0onA,r, >t) — P(¢Z=00onA,7, >t) -0
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and

P(¢2=00nA,7 >1t) - P(£Z =00nA)P(r, = ).
Since £ < £ < ¢Z it follows from this that

P(¢=00nA,7, >1t) - P(¢2 =00n A)P(1, = )

and since P(t < 7; < 00) — 0 that P({;f = 0 on A, 7, = c0) has the same limit.

To finish our computation we have to consider what happens when 7, < co. If
|€7] = O then |£| = O for all ¢ > 7. If [£/] > 0 let y be the location which has
é;‘:( »") =1 and minimizes |y’ — 1/3|. Let £’ be a version of the contact process
starting from §§’ = 1.,,. Using the basic coupling we can construct £}, £/, and ¢Z
on the same space in such a way that &’ < &/, < £7 and again if we do this it
follows from Lemma 3.1 that these three processes are equal on [127,r?’]. If we let
7, = inf{z:|£}’| = 0} then by repeating the argument given above with some minor
changes shows that

P(& =0onA,m < 00,|£4] > 0,7, = )
— P(£Z =00n A)P(7, < o0,|¢4] > 0,7, = o0).

By repeating the construction above we can define a sequence of times 7, and a
sequence of times T, = 7, + - - - +7,. Since P(|§)| - 0) > 0 and is independent of
y it follows from the strong Markov property that the sequence 7, ends after a finite
number of terms with either |¢7| =0 or |¢7| > 0 and 7,,, = oo. From this it
follows that we can write

P(¢'=0onA) = 2, P(4 =00n A,|¢1 | =0)
+ 2;‘,°_0P(£;“ =00nA,7, < o,[{f|> 0,7, = oo).

Now UX, {|£}‘n| =0} = {|¢| -0} and we have that for each fixed n that the
terms in the sum converge to P(|£7,| = 0) and P(¢Z = 0 on A)P(r < oo, |é7 | >
0,7,,, = o) so it follows from Fatou’s lemma that

liminf, . P(¢f =0onA) > P(|¢,]|—0)
+ P(|¢,| »0)P(£Z =00n A).

By truncating at N and using P(T < o) to bound the remainder it is easy to show
that the limsup, | P(¢§ =0 on A) < the right-hand side. This completes the
proof of Theorem 5.1.

6. Discrete time models. Since this paper was ‘first written, discrete time
contact processes have arisen in connection with Richardson’s model (see [2]) and
an interest has developed in having the results of Sections 2 and 3 available for
discrete time processes. In this section we will describe the modifications of the
proof which are necessary in discrete time.
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The first thing we have to do is to introduce the discrete time model. It is
described by giving the transition probabilities

p(x,m) = P(n,44(x) = 1n,=1n)
which we will assume to be of the form

P(x,ﬂ) = f('r'(x - L)" o ,"I(x + L))

Given the transition probability one defines the process inductively by computing
P(n,,,(x) =1) for the given n, and then determining the outcomes at different
sites by independent coins.

From the description of the process it is clear that if p(0,7) is an increasing
function of n the system is attractive in the sense that if n}) < 73 joint realizations
can be constructed so that n}, < n2 for all n. If we assume in addition that
p(0,0) = 0 then in the terminology of Section 1 we have a discrete time growth
model and it is reasonable to expect that under these conditions we have

THEOREM 6.1. There is a constant a so that r,/n — a almost surely. If a > — 0
then the convergence also occurs in L'.

PrROOF. A proof of this result can be obtained by following the proof of
Theorem 2.1. (The resulting proof is somewhat simpler since estimates for inter-
mediate ¢ are no longer required.)

Differences between discrete and continuous time appear when we consider
generalizing the results of Section 3. Lemma 3.1 is not valid for every discrete time
growth model.

ExampLE. Suppose L = 1 and we have f(1,1,1) > f(0,1,1) and f(0,0,1) > 0
then the following can happen with positive probability.

Time 0 1 1 1 1 0 0
0 0 0 1 0 0
Time 1 1 1 1 1 0 0
0 0 1 1 0 0
Time 2 1 1 1 1 0 0
0 1 0 1 0 0

so the conclusion of Lemma 3.1 fails.

A similar argument shows that Lemma 3.1 is false if £(0,1,0) < f(1,1,0) and
f(0,0,1) > 0. If this and the preceding case are excluded, i.e., if we assume (i)
f(0,1,1) = f(1, 1, 1) and £(0, 1,0) = f(1, 1,0) or (ii) (0,0, 1) = O then the conclusion
of Lemma 3.1 is valid. To see this observe that in case (i) the values at /, at time
n +-1 will always be the same and in case (ii) /,, , > /,. Once we have lemma 3.1 it
is trivial (as it was in Section 3) to deduce.
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THEOREM 6.2. If (i) or (ii) is satisfied there is a constant a so that
r,/n — aas.onQ,.

If a > — oo then
(r,/n)1g— alg_inL'.

Applying Theorem 6.2 to 7,(x) = n,(—x) shows that if we assume (iii) f(1, 1,0)
= f(1,1, 1) and £(0, 1,0) = £(0, 1, 1) or (iv) (1,0, 0) = 0 then we can obtain a limit
theorem for /,. Combining this with the previous result and using the methods of
Section 3, it it is easy to show that if (i) or (i), and (iii) or (iv) hold then the
conclusion of Lemma 3.4 holds and we can in the same way prove the L!
convergence of |7,|/n. Since in a growth model either one of the conditions

(a) p(x,m) = f(n(x),n(x + 1))
or
(b) p(x,m) = f(n(x = 1),9(x),n(x + 1)) and

fis constant on {n(x) = 1}

are sufficient for (i) or (ii), and (iii) or (iv) ((a) implies (i) and (iv), (b) implies @)
and (iii)) we have the following result.

THEOREM 6.3. If (a) or (b) is satisfied there is a constant vy so that
[n,1/n = ¥'Q,in L'.

At this point we have generalized the results of Sections 1-3 to discrete time. If
the growth model is additive (see the definition in Section 4) then the results of
Sections 4 and 5 also hold but some of the proofs (e.g., Lemma 4.2) need slight
modifications. Details for a special case are given in Section 2 of Durrett and
 Liggett (1979).

Note added in proof. In the last year many of the problems mentioned above
have been solved due to the work of David Griffeath alone (see [3]) and in
conjunction with Maury Bramson and Larry Gray (see [16]). The reader should
look at these papers to see the latest results on a condensed version of my paper
(Section 4 of [3]).

Acknowledgment. The author would like to thank Tom Liggett who contributed
several ideas which were important in obtaining the results in this paper and
simplifying their proofs.
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