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RAW TIME CHANGES OF MARKOV PROCESSES'

BY JosEPH GLOVER

University of Rochester

Let A, be a nonadapted continuous additive functional of a right continuous
strong Markov process X;, and let 7. denote the right continuous inverse of A;,.
We give general sufficient conditions for the time-changed process X, to again
be a strong Markov process with a new transition semigroup. We give several
examples and show that birthing a process at a last exit time and killing a
process at a cooptional time may be realized as raw time changes.

0. Introduction. Additive functionals have long been used as intrinsic measures of
“time” for a Markov process. That is, instead of running the Markov process ¢t — X;, we
run the Markov process ¢ — X, , where 7, is the right continuous inverse of a continuous
additive functional. This process is again a strong Markov process [2]. Certain natural
transformations of Markov processes which incorporate some knowledge of the future
have been exhibited recently [4, 8, 11], and it seems entirely natural to investigate the
effect of time-changing a Markov process by a nonadapted or raw continuous additive
functional. We present a general approach to this matter in Section 1. Our approach has
been influenced by the techniques used in the recent papers of Getoor and Sharpe [6, 7].
Theorem (1.5) presents general sufficient conditions for the time change of a strong
Markov process to again be a strong Markov process. In general, the transformed process
has a different transition semigroup and may fail to have the strong Markov property at
time ¢ = 0. This is unavoidable and an entirely natural occurence in many cases (cf. Section
2).

In Sections 2, 3, and 4, we verify the hypotheses of Theorem (1.5) for certain raw
additive functionals. In particular, in Sections 2 and 3, we show that the procedures given
by Meyer, Smythe and Walsh [11] of birthing the process at a coterminal time and killing
the process at a cooptional time may be reformulated in terms of a raw time change. In
Section 4, we show how to delete pieces of paths which do not reenter a set C in a certain
manner, and we show how to shorten paths in the complement of C. These examples serve
as prototypes for a large class of transformations. We have not tried to achieve maximum
generality in constructing examples. Rather, we choose to present those which we feel
offer some insight into the range of available raw time changes and which require a bit of
thought in order to verify the hypotheses of Theorem (1.5).

The remainder of this section contains the notations, definitions, and hypotheses of the
paper. First, we shall henceforth abbreviate additive functional and continuous additive
functional as AF and CAF, respectively. We have chosen an “algebraic” framework in
which to present the results; i.e., we have assumed that equalities hold identically in many
places. We indicate in some remarks scattered throughout how these conditions may be
relaxed.

Let (E, &) be a Lusin topological space together with its Borel field to which we adjoin
an isolated point A to act as cemetery. A function f € b&™* is a bounded positive Borel
function on E (similar conventions hold for other o-algebras). We denote by &* the
universal completion of &, and we let .# denote the collection of finite measures on (Ej,
&4). All functions on E are assumed to vanish at A.
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Let © denote the collection of right continuous paths from R* to E u {A} such that if
w € Q and w(s) = A, then w(s + t) = A for all ¢ = 0: we allow the lifetime ¢ to be infinite.
Let (X;):~0 denote the usual family of coordinate mappings, X;(w) = w(f), and let #; =
o(X:s=t), F° = 0(X,: s = 0). Let #* denote the universal completion of %#°. We make
the conventions that X., = A, and that F- 6, = 0 for all F € #*. Let (P,):= be a semigroup
mapping Borel functions on E to Borel functions on E, and let (P*).cr be a family of
probability measures on (£, #°) under which X, is a strong Markov process with semigroup
P, and such that P*(X, =x) = 1.

If u € A, let #* denote the P*-completion of #°, and let N* denote the P*-null sets in
F*. We define:

The class of (#*%)-optional processes (resp. (#%)-predictable processes; (#})-optional
processes; (#7)-predictable processes) will be denoted by O(F%) (resp. P(F4); O(F?);
P(F?)). Following [7], we say that Z is an Z-optional process (and write Z € (%)) if for
each measure p on E, Z is P*-indistinguishable from a process Z € O(%%).

We define a raw CAF (A,) =0 to be an increasing process in Z(R*) ® #* which satisfies
Ay=0;Airs=A;+ A;060,identically; A, = A for all ¢t > §; t — A, is continuous. Usually one
requires (A,) to be only Z(R*) ® #-measurable, but in this paper we require A, € #(R")
® #* (see Remark (6) and the Appendix). We shall say that a raw CAF (A;)=0 is o-
integrable if there exists a right continuous process Z € 0(%) with Z > 0 on [0, {) such
that E* [§ Z, dA, < w for all x. Each raw CAF given in Sections 2 through 4 is o-integrable
(take Z, = e7').

We shall need the canonical killing operators k;:  —  defined by

X(kw) = Xo(w) if s<t
= A if s=¢t

If Fe #° then F € #}_ if and only if F = Fok,[1].

Finally, we need to introduce the random times and associated o¢-algebras we shall
discuss. If R € #* is a random time, we define a ¢-algebra %% and a o-algebra F_ as
follows. A random variable Z € & is #z-measurable (resp. #z—-measurable) if and only
if there is a process Y € 0(%) (resp. Y € 2(%)) with Yr=Zon {R < ©]. Let ' C R™
X Qbein Z(R*) ® Z If 11(s, H,w) = 1r(s + ¢, w) for all s > 0, t = 0, then I is said to be
homogeneous. A cooptional time L is defined to be the end of a homogeneous set: L =
sup{t: (¢, w) ET'} (sup @ = 0). Then L satisfies L°6, = (L — t)* = max(L — ¢, 0). If ' is
also an (%)-optional set, then L is said to be a coterminal time.

1. Raw time changes. Let A, be a o-integrable raw CAF, and let 7,(w) = inf{u: A.(w)
> t}. Then 7, is the right continuous inverse of A, A, = ¢t on {7, < o}, and ¢t — X, is right
continuous. The following is a standard fact [2].

(1.1) LEMMA. Ters =7, + 7500,

Proor. If 7, = oo, then 7,4+, = o. Therefore, we assume 7, < . Since A,., = A, +
Asol,=t+ A,00,, we have A, >t + v if and only if A,0 8, > v. But 7,°0,, = inf{q: A,
°f, > s} =inf{q: Ags, >t + 58} = Trss — 712

Let Y € b0O(£)*, and let F € b#*. Our first objective is to show that

12) E* J Y, Feo0, dt = E* f Y. K(X,, F) dt
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for some appropriate kernel K (x, dw) from § to E. The left-hand side of (1.2) may be
rewritten as

E'x f Yt F°0¢ dAg,
by the time-change theorem [3]. Define a new raw CAF by setting

t
B, = f Fo0,dA. € #(R") Q@ #*.
0

Then the left-hand side of (1.2) becomes
Ex J’ Yt dBt = Ex f Yt dB},
where B' denotes the dual optional projection of the additive functional B. It is by now a

standard fact that B' is an AF, asis A' (here we are using the o-integrability of the AF’s)
[12]. Moreover, B* and A! are continuous, since if T is an (£)-optional time,

Exj l[T] dBtl = E'1|r f 1[7‘] dBt = 0
Ifhebs”, thenE* [ h(X,) dB,=E* [ h(X,)F-0,dA,, and this integral is zero whenever
E* [ M(X.) dA. = E* [ h(X,) dA} is zero. Thus B' is absolutely continuous with respect

to A', and by Motoo’s theorem, there exists a function g € &° (the o-algebra on E
generated by the p-excessive functions, p = 0) such that B! is indistinguishable from

t
f g(X,) dA;.
o

Note that g depends only on the function F (and, of course, the AF A,). It is a standard
fact [5] that there exists a bounded kernel K (x, dw) from (2, %) to (E, &*) such that B!
is indistinguishable from

t
f K(X,, F) dA,.
0

Thus the left-hand side of (1.2) now becomes
E"f Y.K(X,, F)dA, = E“J’ Y. K(X., F) dt.

(Since K (x, F) is only &*-measurable, the measurability in the line above requires some
justification. Define a measure @ on (E, &) by setting

Q(g) = E"f e'Y.g(X,) dA, = E"f e”'Y, g(X.) dt

for g € &*. For any f € b&*, there are functions g, g; € & such that g, < f< g, and Q(g:
— &1) = 0. Therefore, the line above is well defined.) We define a family of kernels K;(x,
dy) from (E, &) to (E, 6*) by setting K.(x, /) = K (x, f(X.,)). We shall often write K,(x, f)
as K f(x). Notice that s —» K,(x, f) is right continuous for all bounded continuous functions
f, and hence the map (s, x) = K, f(x) is jointly measurable.

(1.3) PROPOSITION. Assume that for each t > 0, A,ok, = A, for all u < 1,. Then the
time-changed family of o-algebras (4, )0 is increasing.

ProoF. Fix p a finite measure on (E, &), and define a measure @ on (R, #°) as follows.
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If F € bF°, Q(F) = E*[F + Fok, . ]. It is a simple matter to construct a continuous
process (B.).=0 € #(R*) ® #° which is Q-indistinguishable from (A.).=o. Thus if we
define o,(n) = inf{u = 0: B, > s}, then o,(u) = 7, a.s. (P*). Moreover, B,ok., =A.ok
= A, = B, on [0, 7,1,] a.s. (P").

We define two o-algebras %% and %“_ on Q as follows. A random variable G € %" is
%'-measurable (resp. %._-measurable) if and only if there is a Z € O(F%) (resp. Z €
P(F1) such that G = Z, on {7, < }. It follows that ¥4 = % v N* (resp. ¥_ = 7. - vV N¥).

It is evident that %_ C %%. We now show that % C %, _ for ¢ > 0. For each u,
define a process

T4y

Ti=u on {(t, w): Bu(kw) lu=yy > s}
= elsewhere.

Then T is predictable since the process ¢t — B, k, is predictable [1]. For fixed ¢, u — T%
is left continuous, so the process T defined by T, = inf{ T: u > 0} is P*-indistinguishable
from the (%)-predictable process R, = inf{T%: u a positive rational}. Therefore, T, €
P(FY%). Since we may rewrite T, again as inf{u < ¢: B,ok, > s} on { T, < «}, T, =T,
=inf{u < 7+y Buok,, >s} =inf{u<r., B,>s}=r1=o0,p) as. (P*)on {r,< o}.
Nowif Y € O(Z%), then Y(T,) € 2(F%). To see this, it suffices to consider the case where
Y = 1is,«), with S an (#%)-optional time. Then {(¢, w): Y(T.) =1} = {((t, ®): T, = S} =
{(t,w): T, =S A t}. Since t > S A tis a predictable process, this set is predictable, and the
claim follows. Therefore, to complete the proof of the claim that ¥ C %,.,_, let Z €
@.. There is a process W € O(Z%) such that Z = W, on {r, < x}. By the discussion
above, W(T,) € (%Y%), and

W(T,,) = W, = Zas. (P").

The “a.s. (P*)” is necessary in the expression above since T, = 7,only a.s. (P*). However,
%1+~ contains all P*-null sets, and therefore Z € %, _.
We have proved that for each p, (%%):~0 and (%%-),-o are filtrations. Therefore,

«% = nyE.l{ g’?
and
H— = Nye v Y-

are filtrations. It is clear that % C #, and we now know % C #, C #..,- and %, - C
#.,.- By adapting a standard argument in Markov process theory, we shall now show that
Hivo- = %, -, which will complete the proof.

Clearly, # _ C #;- and N C % _. To show #._ C % _, let H € b#;_. Define yet another
o-algebra &7 _ as follows. A random variable R € #° belongs to #°_ if and only if there
is a process Z € 2(#)) such that R = Z, on {r, < }. Note that #°_ is separable since
P(F7) is separable. Define a family of measures @* on F ? _ by setting @*(G) = E*[ GH]
for G € b#?_. Since @* < P~, F1_ is separable, and x — @*(G) and x — E*[G] are &*
-measurable, Doob’s lemma guarantees the existence of a density p(x, w) € &* ® 972&_
such that E{GH] = E*[p(x, -)G] for all G € b _. If we set H*(w) = p(Xo(w), w), then
H* € #9_ v % C #_. Since E/{GH] = E*[GH*] for all G € bF,_, it follows that
E'{GH] = E'{GH*] for all G € b#°_ v N* = %!_, In particular, take G = H — H* €
%4_. Then E'[(H — H*)*] = 0 implies H — H* € N*. Since this holds for every finite
measure y, H — H* € N. Because N C % _, we conclude H € % _. Therefore % _ =
H.-.0

(1.4) LEMMA. Assume that for each t > 0, Ayok,, = A, for all u < 1,. Then for each x €
E, there is an optional process Vi such that Vi1l <ey =t 1i;<m) as. (P%).



94 JOSEPH GLOVER

Proor. Fixp =€, on E, and let (B,) € Z(R*) ® #° be the process obtained in the
proof of (1.3). Set RY = B,°k/1wu=q. Since R* is predictable, Vi = sup{R?: u a positive
rational} is predictable. Since u — R is left continuous a.s. (P*), V7 is P*-indistinguishable
from sup{R% u > 0} = B,ok,. But Vi =B,ck, =B, =ton {1, < ®} as. (P7).

We now state and prove the main theorem of this section, after which we shall make a
series of remarks about the hypotheses of the theorem and sundry generalizations. Recall
that #,_ = N, & .

(1.5) THEOREM. Let A, be a o-integrable raw CAF. Assume
(a) Foreacht>0,A,ok,=A,forallu=r;
(b) For each s, and for each bounded, positive continuous function fon E, t — K.f(X.)
is almost surely right continuous on (0, ).
Then (X.)):>o is a strong Markov process over the filtration (%, ).

Proor. Hypothesis (a) and Proposition (1.3) guarantee that (7, ) is indeed a filtration.
Since f(X:,, ) = f(X:)°0,,, we have shown that

t+s

E* f f(X..,) Y, dt=E* f K.f(X.)Y,, dt

for all Y € b 0(%)* such that E* [ Y, dA, < « for all x, and for all functions_f which are
bounded, positive and continuous on E. Fix a right continuous strictly positive optional
process Z such that E* [ Z, dA, < o for all x, and let Y € b O(£)". For a > 0, define Y¢
= exp(—aV7), where V7 is the process defined in Lemma (1.4). Replacing Y with Z-Y*. Y
in the equation above, and applying Fubini’s theorem, we find that

J’ e “E*[f(X.,)Z,Y,]dt

= J’ e_atEx[st(X-r,)Z-r, Y‘r,] dt,
for all « > 0. Since both integrands are right continuous on (0, x), we conclude by
uniqueness of the Laplace transform that
Ef(X.,)Z.,Y,] = E(K[f(X.)Z,Y.]

for each ¢t > 0. Since % = o{ W, : W, is a right continuous process adapted to (%)}, it
follows from the right continuity and strict positivity of Z that

(1.6) E1f(X.,) | #]=Kf(X.,)as P* forall ux.

The standard argument [2] shows that (X, ). is a strong Markov process; we give a
brief sketch of the argument here. Let T' > 0 be an optional time for the filtration (% ).
Define a sequence of (4 )-optional times (T,) decreasing to T by setting

T.=(k+1)2™" on {(k2"=T<(k+1)2™")
=0 on {T = oo},

Let f be a bounded continuous function on E, and compute

E* f e f(X.,,) dt
= limy_.. E¥ j e f(X.,,) dt

= lim, .. E* ¥7-, [ j e f(X,,,-n,,) dt; Ty = k2"‘]
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Using the simple Markov property (1.6), this becomes
lim, . E* ¥ 5= U’ e K. f(X,,,-») dt; T, = k2_"}
= lim,_. E* f e““‘th(X,T") dt

=fe‘“‘E"[th(XfT)] dt,

the last equality holding by the right continuity of s — K, f(X:) for each t, and Fubini’s
theorem. Since ¢t — E*[f(X.,,,)] and ¢t - E*{K,f(X,,)] are right continuous on (0, «),

(1.7 ETf(X.,,)] = E'[K.f(X.,)]

for each ¢ > 0. If G is open in E, we let ( £,) be a sequence of continuous functions increasing
to 1g, whence (1.7) and the monotone convergence theorem imply that

P (X,,, € G)=ETKlc(X,,)]

REMARKS. (1). (X, )0 is a strong Markov process if, for each s, t - K, f(X:,) is right
continuous on [0, ). This right continuity at zero is simply not true in several natural
situations (cf. Section 2).

(2). We may weaken (1.5a) as follows. If we replace (1.5a) by

(1.8) For each t > 0, P*(Auok,, = A forallu=1,) =1

for all x,
then the proof of (1.3) shows that if Z € & , there exists Z’ € &, __such that Z = Z’ almost

surely. Thus if #7 denotes the o-algebra %, augmented with the P*-null sets in the P*
completion of &, then (#7) is a filtration. Moreover, the process V7 defined in Lemma
(1.4) has the property that Vi =t a.s. (P*) on {r, < }. The proof of Theorem (1.5) then
shows that (X.,):>0 is a strong Markov process over the filtration (#;, ) for each x. In the
examples we present in the succeeding sections, it is easy to see that (1.5a) is satisfied,

except in Section 3, where we need to introduce a technical device in order to satisfy the

hypothesis.
(3). We may weaken the hypothesis (1.5b), also. For example, if t — K, f(X.,) is almost
surely right continuous except at a finite collection (7T, ..., T,) of times which are

optional for the filtration (%, ), then the strong Markov property holds at an optional
time T if and only if P*(u,{T = T%}) = 0 for all x. It may be of some use in this situation
to appeal to the “usual” compactification arguments to explore the behavior of the process
at these times.

(4). The fact that A is an AF is used in two places in the proof. It is used to show that

(i) its right continuous inverse 7, satisfies

Teas = Te + 7500,
(i) A'is an AF.

Thus we might rephrase the statement of Theorem (1.5) in terms of a continuous increasing
process A satisfying (i) and (ii) above.

(5). If A is an adapted CAF, then the hypotheses of Theorem (1.5) are always satisfied
(take K,f(x) = E*[f(X.)]). This recovers the usual time-change theorem for CAF’s. [2].

(6). As mentioned in the introduction, the requirement that A, € #(R*) ® F* is a
stronger measurability condition than the usual requirement that A, € #(R*) ® & Meyer
[9] has examined in certain cases when one can choose a version of A, satisfying the
stronger measurability condition. In the appendix at the end of the paper we show that
any raw AF satisfying a mild integrability condition has a version which is Z(R*) ® F#*-
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measurable. As a corollary, every cooptional time has a version which is #° measurable.
We also show that if u is a Borel natural potential of X, then the natural additive functional
A, generating u may be chosen so that A, € Z(R*) ® #°.

The stronger measurability condition is used only to verify that the %, increase and to
produce an optional process V7. These facts can sometimes be verified by hand. In this
case, if hypothesis (1.5b) holds, then the conclusion of Theorem (1.5) remains true.

2. Birthing a Markov process. We show that “birthing” a Markov process at a
coterminal time may be realized as a nonadapted time-change. Let L be a coterminal time
(the canonical example of which is the last exit time from a Borel set). Set

t
A= f 1(1,5.,) du.
0

The reader may easily verify that A is a raw CAF, and a version of A may be chosen in
B(R*) @ #* by the corollary in the appendix.

In this section, however, the reader can also verify directly that the &, increase and
that there is an (4;)-optional process Vi with V3 =t a.s. (P*) on {7, < o}. We now
compute the kernel K.

Exf Yuf(Xm)"ou dAu = Exj Yuf(X‘ra)oaul(Lsu) du
=E* f Y.E*[f(X.); L =0] du

= E"J’ Y. E*[f(X,); L = 0] du.
On the other hand,
E"J’ Y. K f(Xu)1(1=uy du = E"f Y.K.f(X,) P*«(L = 0) du.

Thus we set

K.f(x) = E*[f(X,); L=0] if PYL=0)>0;

1
P*(L =0)
=f(4) if P*(L=0)=0.

We now rewrite K,f in the form obtained in [11]. Define 7', = inf{¢ > 0: L(k;w) > 0}. Then
Ty is a perfect, exact terminal time, and T, = « on {L = 0} [11]. Thus, E*[ f(X,); L = 0]
= E*[f(X,); TL = »; s < T.] = E*[f(X,)P*(L = 0); s < T.]. Therefore, if V, is the
semigroup P, killed at Ty, Vif(x) = E*[f(X;); t < T.], then K, is the semigroup V,
conditioned by the function g(x) = P*(L = 0) = P*(TL = ).

Since 7, = L + t, Lok, = L for all ¢ > 0, and it follows that (1.5a) is satisfied. To check
(1.5b), we adapt an argument of Getoor [4]. Let f be bounded positive continuous function
on E, and define R°fg(x) = [§ e *“V,+.fg(x) du. Then R°fg is a-excessive for the
semigroup V.. Therefore, t —» R°fg(X,)1<1,) is right continuous a.s., and hence is an
optional process. Since s — fg(X,) is right continuous (g is excessive!), s = V,fg(x) is
right continuous. Therefore, lim,_... nR"fg(X/)1y<r,; = V.(fg)(X:)1y<1, is an optional
process. Let (T,) be a sequence of optional times decreasing to 7. Then E*{EX'T[ f(X,);
L=0); T.<T.} = E*[f(Xs+1,); L < Tn, Tn < T], and this converges to E*[ f(X,+7); L
=T, T<T.]=E*{E*T[f(X,); L=0]; T<T.) as n increases. Therefore, t —> E*[ f(X,);
L = 0]1(<r,) is right continuous almost surely [3]. Set A = {t > E*[ f(X,); L = 0] is not
right continuous}. Then 0 = P*(P*"(A; Ty, = ) = P*(A°8,; Tpo8, = ) = P*(A6,; L
< r). Therefore, t - E*[f(X,); L = 0] is a.s. right continuous on (L, ). Since g(x) is
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excessive, g(X,) is optional, and a similar argument shows that ¢ — g(X,) is right continuous
on [0, ). Therefore, t - K,f(X,) is right continuous on (0, ) if X;,, = X, & {x: g(x) =
0} for all £ > 0. Getoor [4] gives the following argument to show this. Let T'= inf{¢: g(X,)
= 0}. For each p, T is an (#%)-optional time. We need only show that for each r, A = {L
<r,r+ T°0, < o} is a P*-null set for all u. Since T°8, = » on {L < r}, and g(Xr) * 6,
=0on {r + T°f, < o} by right continuity of g(X;), A C {Tr°6, = o, r + Tef, < oo,
£(X1)o0, =0} C {TLobOro8, = oo, Toh, < o, g(X7) 26, = 0}, the last containment holding
because r + T8, =r. Thus P*(A) < E*P*(Ty°0r= o, T< o, g(Xr) = 0) = E*EX[P*"(T,,
= ®); T< »; g(Xr) = 0] = E*E*[g(Xr); T < »; g(Xr) = 0] = 0.

Interesting variants of the birthing procedure are suggested by the following example.
Let B now be an open set, and assume that the boundary of B is a polar set for the process.
(We are deliberately avoiding (interesting) difficulties at the boundary in this way; see the
example at the end of this section.) Let L be the last time the process leaves B, and set

¢ t
A= J’ 15(X.) du + f 1iz<u du.
4] 4]

If 7, denotes the right continuous inverse of A, then forming X, amounts to deleting all of
the excursions from B except for the last one. We leave it to the reader to verify (1.5a) and
to check that

E*f(X,); L =0] + E[f(X.)]15(x)
1p(x) + P*(L = 0)

and to check that ¢t — K,f(X,) is right continuous on [0, ©) P* as. for all x & aB.

If x € 8B, t — K.f(X.,) is right continuous on (0, ®) P* a.s. The reader may consider
various special cases when ¢t — K,f(X,) is right continuous on [0, «), but this is not true
in general.

A moment’s thought will convince the reader that some hypotheses on the set B are
necessary above in order to obtain the strong Markov property. Let X denote Brownian
motion on R killed at an independent exponential time, and let B = {0}. Then the CAF
A, above should be replaced with

K. f(x) = if x& 8B,

¢
M, + f 1(Lsu) du,
0

where M, denotes the local time of the Brownian motion at 0. If we time-change, the
process X, sits at zero for some positive time, and then moves away continuously. Such a
process cannot be a strong Markov process.

3. Killing at a cooptional time. Let L be a cooptional time, and let A, be the raw
CAF given by

¢
A, =L A t=f lu<zy du.
1)

Again we compute K,f:

E* J’ Yuf(Xr,) o0l <y du = E* J’ YE*[f(X,)1i1=0) du,

and
E~* f Y. Kof(Xu)lu<ry du = E"J’ Y. K.f(X,)P*(L > 0) du.

But E*[f(X.); L > 0] = E*[f(X.); L > s] + E*[f(Xx); L =< s] = E*[f(X,)P*(L > 0)].
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Thus we set

1
P*(L >0)

= f(A) if P*(L>0)=0.

K.f(x) = E*[f(X,)P*(L > 0)] if P*(L>0)>0,

Right continuity of K,f(X;) is easily verified for continuous functions f, and (1.5b) is
therefore satisfied.

The reader will easily check that A, <k, # A, on [0, 7,) in general (even when L is a last
exit time). However, we may show directly that the %, increase. If Z € #,,then Z = W,
on {r, < «} for some optional process W since 7, = t on {r, < ®}. Set W, = W,_,1(t=y.
Then W, , = Wiy = Wion {14, <o} C {1, < ®}. Thus Z € &, . Moreover, if we set V;
=t, then Vi =t on {r, < }.

With but a few technical machinations, we can adjust the example so that hypothesis
(1.5a) is satisfied. The reader may cringe at what we do now since we have just verified
enough by hand to guarantee that the conclusion of Theorem (1.5) is true in this case, but
the technique may be of use in more complicated situations where the outcome is not so
obvious. Adjoin an isolated point A to E u {A} and extend the semigroup P, so that
Pi(A, {A}) = 1. Let & denote the collection of right continuous paths from R* to E u
{4, A} such that for ¢ € Q,

(i) if &(s) = A, then G (s + t) € {4, A} for all £ > 0;

(i) if &3(s) = A, then &(s + ¢) = A for all £ > 0;

(iii) (o) is defined to be A.

Notice that each path & €  can be identified with a pathi (&) € Q as follows. Let &)
= inf{t: 3(t) € {A,A}}, and seti(d) = k)@, where k, is the usual killing operator on £
using A as cemetery.

Define new killing operators £.:{ — & by setting

(B:G)(s) = a(s) if s<t
=A if s=¢t.

We extend the coordinate mappings, the o-algebras generated by them, and the shift
operators in the obvious manner. Each measure P*, x € E, charges only & C  so it seems
as though we have appended a useless piece to . However, if L is the end of a homogeneous
set I' C R* x Q, define a homogeneous set I' C R* x { by setting I'(@) = I'(i(&)) U {¢:
X(4o)=A). Let L =supT"and set A, = L A ¢t. ThenLok, = o for each ¢t = 0. Thus
Aok, =Lok,Au=uand A, =uon {u =<7, < o}: (15a) is satisfied on Q.

Here is an interesting special case of killing. Let A be an invariant event with A(x) =
P*(A) > 0 for all x. That is, A8, = A. Then the set I" = [0, ) X A is homogeneous, and
the end of T,

L=Lr=0 onA°

= onA.
Therefore,
X, (0) = Xi(w) if wEA

=A if wEAS
and X has semigroup K.f(x) = (1/h(x))E*[ f(X,)h(X,)]. Thus X, is a realization of the A-

transform of the process X, by the invariant function 4 (x).

4. Resection of paths. Let D C C be two open sets in E, each having boundaries
(denoted by aC, D) which are polar sets for the process X; (i.e., the process cannot enter
or leave C or D continuously). Set

Zi=1 if Xr6,€D orif Tcef =,
=0 if Xpec6,€C-D,
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and define a raw CAF by setting A, = [5 Z,1(,<yy ds € B(R*) ® F#°. If we time-change by
7:, the right continuous inverse of A, then, roughly speaking, we are excising all of the
excursions from C which return to C — D and pieces of path in C — D. Let W =
1(x(1)eD)u(T.=w) - Then

E~ J' Yuf(X:) o0, We0, du=E* j Y.EX[ f(X,)W]du,
while

E* j Y.K.f(X,) Wel, du = E* j Y.K.f(X.,)EX*[W] du.
Therefore, we set

1
K.f(x) = WE"U(XT,)W] if PY(W)>0,

= f(4) if P*(W)=0.

The right continuity of K,f(X.,) requires careful attention in this case. Let (T,) be a
sequence of optional times decreasing to 7. Then .

EPX T (W)] = P*(X1,+7000;, € D) + P*(Tcolr, = ).

But the first term in the sum converges to P*(Xr4 1.0, € D) since the boundary of D is a
polar set (similarly for the second term in the sum), and this implies that P*/(W) is right
continuous. Now we examine

EKEX(T")[f(Xn) W1=ET f(XTana,,T") Wolr,]

for continuous functions f on E. It follows exactly as in the argument above that Wefr,
converges to We fr almost surely as n increases. Since f is continuous, we need only show
that 7, = 7,207, converges to 7 = 7,°fr as n increases. Recall that 7, is the largest number

such that
Ty+m,
J’ Z[ dt =s.

T,

n

Since T < T,, it followsthat T+ 7 < T, + 7,, whence T + 7 < T + lim inf,, oo 7, =< T +
lim sup,_, 7. Let (7,,) be a subsequence of (7,) converging to lim sup,—.« 7.. Then

s =limse J’ Y7, Totm,) Zedt= J 117, 7+ lim supy—m Zt dE.

This implies that lim sup,.. 7. = 7, and we conclude that 7 = lim,_... 7. The right
continuity of E*[ f(X, ) W] follows. Note than we have shown that ¢t - K.f(X,,) is right
continuous on [0, ©) P* a.s. for all x not in dC U aD since X,, & {x: P*(W) = 0} (by virtue
of the fact that dC U 4D is a polar set).

In order to verify (1.5a), we let S = sup{u: X, ok, € C}. Then A, = A,°k, forall u €
[0, S]. Since X, ok, & C for all u € (S, ), Z,°k, = 1 on (S, »). Since Z, is constant on
excursions of X outside C, and Z,, = 1, Z, = 1 on (S, 7). Therefore, A, = A, <k, for all u
(S [0, T,:].

REMARKS. (1). Let /# denote the collection of raw CAF’s satisfying the hypotheses of
Theorem (1.5). It is simple to see that s# is not a positive cone. For if we set

Z,=2 if X6 €C—D orif Teof =,
-0 i Xro6€D,
and 4, = [% Z, ds, then A, also satisfies the conditions of Theorem (1.5). If B, = A, + A,
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satisfies the conditions of (1.5), then there exists an optional process Y; such that Y, =t
where 7, denotes the right continuous inverse of the CAF B. Since B is strictly increasing,
Y(r) = Y., and therefore, Y, = B;. But B, is definitely not adapted.

(2). For a related transformation, the reader should consult the work of Knight and
Pittenger [8]. We briefly describe their procedure here for the purpose of discussion. Let
A and B be Borel sets with A n B = &. Define Sy = Lo = T, = 0,

S, = Dg = inf{t = 0: X, € B}

Li=sup{t<S;: X, EA}

Ti=inf{t>S: X, € A},
and by recurrence we define

Sn+1 = Tn + Sl°07'"
Loyy=T,+ L,°0r,
Tour = Ty + Tiofr,.

Then intervals of the form [L,, T,) are the time intervals of excursions from A which hit
B. Delete these intervals by letting Z;(w) = 1 if and only if (¢, w) € (U, [L., T.)), and
setting A, = [§ Z, ds. Then A is not an AF. However, Knight and Pittenger show that X,
is a strong Markov process, where 7, denotes the right continuous inverse of A. One might
hope initially that Remark (4) following Theorem (1.5) is relevant here since 7,4s = 7. +
s00,. However, A' is not an AF. For E*[A.]= E*[Al], and therefore if A' is an AF,
E*[A.] must be an excessive function. We give a trivial example to show that this is not
the case. Let X; denote uniform motion to the right with speed one on (0, 5) with death
occurring when the process strikes {5}. Let B = (0, 1) U (4, 5), and let A = (2, 3). Then
E'’[Ax] =1, but E'[A.] = 2. Thus E*[A.] is not decreasing and cannot be excessive.

We briefly indicate a transformation which “shortens” the paths a bit. Let C be a finely
open set in E with the fine boundary of E being a polar set, and set

Z=1 if Tco6, = a,

=0 otherwise,

t
Al = j Zs dS.
0

We leave it to the reader to choose the kernel K, and to check that the hypotheses of
Theorem (1.5) are verified. Note that if one replaces the condition T'cc 6, = a with Tc° 6,
=< a, hypothesis (1.5a) is no longer satisfied.

APPENDIX

Let A; be a raw AF which is only #(R*) ® #-measurable, and set m; = exp(—A,).
THEOREM. Assume that for some a > 0,
E~* j e “'m, dt < o for all x.

Then there is a process B, € B(R*) ® #° C B(R*) ® F* which is indistinguishable
frOm A[.

Proor. Letfi,fs, f5, -+, fr be bounded positive continuous functions on E, and let ¢,
t, - -+, t, be positive real numbers. Set H = fi(X,) f2(X,,) - - - fu(X.,). Then
Gb(x) = E~* j e_b‘H°0,m,+u dt

0
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is a b-excessive function. Since ¢ |> e *‘H © §,m,. is bounded and right continuous, lim,_.»
bGp+o(x) = E'[H-m,] and E*[H-m,] € &°, being a limit of b-excessive functions. A
monotone class argument shows that E*[F-m,] € &° for all bounded #°-measurable
functions F. Similarly, P*(F) € &°. By Doob’s lemma, for each rational u, there is a
density p,(x, w) € £°® #°such that E*[F-m,] =E*[F-p.(x, w)]. Then c.(w) = p.(Xo(w),
w) € #°and E*[F-m,] = E*[F-c,]. Set

d,(w) = c.(w) if ¢,(w) is nondecreasing as s
runs through the rationals;

=0 otherwise.

Define B, (w) = lim,,}.;se ds(w). It is simple to check that B, € Z(R*) ® #° and B, is
indistinguishable from A,. O ’

COROLLARY. If L is a cooptional time, then there is a random variable M € #° such
that L = M a.s.

ProoF. Simply take the additive functional A, = 1(o<r=s, and apply the preceding
theorem.

The following result of Benveniste and Jacod may be found in [9], page 182. Let %} =
a{f(X,); s = t; fis a-excessive, a = 0}.

PROPOSITION. Let (M,) be an exact multiplicative functional. Then there is a multi-
plicative functional N, adapted to F;. which is indistinguishable from M,.

We shall indicate the proof of the following result, which has hypotheses and conclusion
slightly different from those of Benveniste and Jacod. No hypothesis of exactness is
required.

ProPOSITION. Let X be either a Hunt process or a Ray process with Borel transition
semigroup on E. Let A, be a natural additive functional with finite potential u(x) =
E*[A.] € &. Then there exists a right continuous additive functional B, adapted to F{+
which s indistinguishable from A,.

We briefly sketch part of the “general theory” construction of the additive functional B,
having potential u(x), paying attention to certain points of measurability.

PrOOF. , For each x € E, define a measure m* on (R* X Q, 2(#?)) by specifying the
measure of predictable stochastic intervals. If S and T are two optional times in #° with
S = T, define m*((S, T]) = E*[u(Xs) — u(Xr)]. In fact, m* does extend to be a measure on
(R* X Q, 2(#))) [3]. Since m*((S, T]) € &, it follows by a monotone class argument that
m*(Z) € & for every Z € bP(F?). We extend m* to a measure rii*on (R* X Q, Z(R*) ®
F°) by setting m*(Z) = m*(°Z), where 3Z denotes the predictable projection of Z. Now, in
fact, it follows from the hypotheses and Dawson’s formula [10], page 533, that °Z may be
chosen to be in 2(#?). Therefore, m*(Z) € & forall Z€ bB(R*) ® #°. For each rational
t, define a measure Q7 on (2, #?) by setting Q7 (H) = m*([0, t] X H) whenever H € #,.
Since @7 < P* and #7 is separable, Doob’s lemma guarantees the existence of a density
pux, w) € & ® F! so that QF (H) = P*[ p.(x, -)H] for H € b#F?. Set Ci(w) = p,(Xo(w), w)
€ !, and observe that @7 (H) = E*[C,H] for H € b#}. It is simple to show that C; < Ci+
a.s., and for each real ¢, we define

B;=lim infsut;srational C..
Then B, € ., and the rest of the proof follows as usual to verify that B, is indeed the
additive functional with potential u(x).

Acknowledgment. I would like to thank R. K. Getoor and M. J. Sharpe for helpful
suggestions and criticisms of a first draft of this paper.



102 JOSEPH GLOVER

REFERENCES

[1] AzEMma, J. (1973). Theorie generale des processus et retournement du temps. Ann. Sci. Ecole
Norm. Sup. 6 459-519.
(2] BLUMENTHAL, R. M. and GETOOR, R. K. (1968). Markov Processes and Potential Theory.
Academic, New York.
[3] DELLACHERIE, C. (1972). Capacites et Processus Stochastiques. Springer, Berlin.
[4] GEToOR, R. K. (1975a). Comultiplicative functionals and the birthing of a Markov process. Z.
Wahrscheinlichkeitstheorie und verw. Gebiete 32 245-259.
[5] GETOOR, R. K. (1975b). On the construction of kernels. Seminaire de Probabilites IX. Lecture
Notes in Math. 465 443-463. Springer, Berlin.
[6] GETOOR, R. K. and SHARPE, M. J. (1979a). Some random time dilations of a Markov process.
Unpublished manuscript.
[7] GeToOR, R. K. and SHARPE, M. J. (1979b). The Markov property at cooptional times. Z.
Wahrscheinlichkeitstheorie und verw. Gebiete 48 201-211.
[8] KnigHT F. B. and PITTENGER, A. O. (1972). Excision of a Markov process. Z. Wahrschein-
lichkeitstheorie und verw. Gebiete 23 114-120.
[9] MEYER, P. A. (1974). Ensembles aleatoires Markoviens homogenes 1. Seminaire de Probabilites
VIIIL. Lecture Notes in Math. 381 176-190. Springer, Berlin.
[10] MEYER, P. A. (1975). Sur la demonstration de previsibilite de Chung et Walsh. Seminaire de
Probabilites IX. Lecture Notes in Math. 465 530-533. Springer, Berlin.
[11] MEYER, P. A, SMYTHE, R. and WaLsH, J. B. (1972). Birth and death of Markov processes. Proc.
6th Berkeley Symp. Math. Statist. Prob. III 295-306. Univ. California.
[12] SHARPE, M. J. (1979). Lecture Notes on Additive Functionals. Forthcoming book.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ROCHESTER
ROCHESTER, NEW YORK 14627



