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A BERRY-ESSEEN THEOREM FOR LINEAR
COMBINATIONS OF ORDER STATISTICS'

By R. HELMERS

Mathematisch Centrum, Amsterdam

A Berry-Esseen bound of order n™'/ is established for linear combinations

of order statistics with smooth weight functions. The underlying distribution
function must possess a finite absolute third moment. This improves an earlier
result of the author.

1. Introduction. Linear combinations of order statistics received much attention
during the last ten years. Much is known about them including their asymptotic normality
under quite general conditions. Berry-Esseen type bounds for the normal approximation
of linear combinations of order statistics were established by Bjerve [2] and the author [5].
Bjerve obtained the order bound O(n~'/%) (n being the sample size) for trimmed linear
combinations of order statistics. In [5] the order bound O (n"'/?) was established for linear
combinations of order statistics with weights of the form ¢;, = J(i/(n + 1)),i=1,2, ...,
n for a smooth function </ on (0, 1). The underlying distribution function F must possess
a finite absolute third moment. Though the assumption that there are no weights in the
tails is avoided, the use of a technique of Bickel [1] in the second part of the proof given
in [5] leads to the assumption [§ |J’(s) | dF~'(s) <  (J’ being the derivative of J). In this
note we shall show that this assumption is superfluous and, moreover, that the smoothness
conditions needed in [5] can be relaxed. The result of this paper, as well as similar results
employing a different, more practical standardization, and for a Studentized version of a
linear combination of order statistics are summarized in [6]. Boos and Serfling [3] recently
obtained the Berry-Esseen theorem for statistical functions. As an application they obtain
a Berry-Esseen theorem for a class of linear combinations of order statistics.

2. The theorem. Let, foreachn=1, T, =n"'Y%; J(i/(n + 1))X;, where X, i = 1,
2, ..., n denotes the ith order statistic of a random sample Xj, ..., X, of size n from a
distribution with distribution function (df) F and JJ is a bounded measurable function on
(0, 1). The inverse of a df will always be the left-continuous one. Let F*(x) = P(T* < x)
for —0 < x < o, where

Th = (Tn — E(T)/o(T5).

Let @ denote the standard normal distribution function. We prove the following theorem,

THEOREM. Suppose

(1) the function J satisfies a Lipschitz condition of order 1 on (0, 1);
@ E|X|° < w.

Then o (J, F) > 0 where
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o*(dJ, F) =f f J(F(x))J (F(y))(F(min(x, y)) — F(x)F(y)) dx dy

implies that there exists a constant C, depending on J and F but not on n, such that for
alln=1

sup: | F¥(x) — ®(x) | = Cn™ "2

3. Proof. Let, for each n = 1, Uy, ..., U, be independent uniform (0, 1) random
variables (rv’s). For any rv X with 0 < 6(X) < c we denote by X* the rv X* = (X — E(X))/
o(X). Let xz denote the indicator of a set E. In the first lemma we approximate 7', by a rv
V. given by '

1 i/n
3.1) V.= f J(s)F,'(s) ds =Y, f J(s) ds Xin
0 (

i—1)/n

where F,, denotes the empirical df based on X3, ..., X.

LEmMMA 3.1. Let EX?% < o0 and suppose that assumption. (1) is satisfied. Then o*(J, F)
> 0 implies that as n — x

(3.2) X (T — V¥ = 0@n™).
Proor. The present lemma will be proved by modifying the proof of Lemma 2.2 of

[5]. First note that we can follow the argument given on page 943 of [5] to check that
lim,_... no®(T,) = 6(J, F) > 0 and to find that it suffices then to prove that

(3.3) (T, — V,) =0(n? asn— o.

To see that (3.3) is true we simply apply the inequalities (2.8) and (2.10) of [5] and use the
Lipschitz condition for /. This completes the proof of the lemma. 0

Define for 0 < u < 1 the function

1 1
(3.4) Y(u) =J’ J(s)ds— (1 — u)J’ J(s) ds
u 0

and let ¢ = [§ J(s) ds. Then (cf. (2.18) of [5])

1
(3.5) Vo= J Y(Ta(s)) dF () + en”' Tis F7H(UY)
0

with probability 1. Here and elsewhere I', will denote the empirical df based on Uy, ...,
U,.. To proceed we note that, as </ is Lipschitz of order 1 on (0, 1), we can approximate V,
from above and below by

r1
Wos = f {¥(s) + (Tn(s) — s)W ()} AF 7' (s) + en”' Titt F7H(U)
(3.6) 0

1
+ Kf (Tuls) — 8)* dF \(s)
0

and
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1
W, = f {¥(s) + (Tuls) = )¥/(5)} dF 7' (s) + en”™' Ty FH(UI)
3.7) 0

1
- KJ’ (Ta(s) — s)> dF'(s)
0
for some fixed K>0and alln = 1;ie,foralln=1

(3.8 W= Vo< Wae.

It will be convenient to have

LEMMA 3.2. Let E|X;|** < » for some € > 0 and suppose that assumption (1) is
satisfied. Then o*(J, F) > 0 implies that as n — ©

O(Wn+) _ -1/2 E(Vn - Wn+) - —1/2
(3.9) AR 1+0( ),——————————————o(Vn) o™
and

O(Wn—) - -1/2 E(Vn - Wn—) _ —1/2
(3.10) PN 1+0(n ),———-—————————a(Vn) =0([n"?).

Proor. It is immediate from (3.5), (3.6) and assumption (1) that

| Vi — Wi | = O(J’l (Ta(s) — 5)* dF”(S))
) -
as n — . A simple moment calculation, using the moment assumption of the lemma,
yields that
E|V, - Wu|=0n",
and
0* (Vo = Wyi) < E(V, — Wo)? = O(n7?)

as n — . As in the proof of Lemma 3.1 we also have that lim,_,.n6%(V,) = ¢%(J, F) >0
under the present assumptions. The Cauchy-Schwarz inequality implies that | o(W,.) —
(Vo) | < 0(Why — V,,) and (3.9) follows. The proof of (3.10) is similar. 0

In the following lemma we relate W, and W,_ to appropriate U-statistics. Define for
eachn=1

-1
3.11) U, = ('2') YL AU, Uy)
and
n -1
(3.12) U,- = (2) L1 Y (U, Uy)

where the functions A, and A_ are given for 0 < u, v < 1 by

1
h+(u, v) =-— f J(S){X(o,s](u) + X(o,s](l)) - 28} dF_l(S)
(3.13) 0

1
+2K J’ (x0s1(#) — 8)(x0s1(V) — 8) dF(s)
0
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and A_(u, v) similarly by replacing K by —K in (3.13). The constant K is as in (3.6) and
3.7).

LEMMA 3.3. Let EX: < « and suppose that assumption (1) is satisfied. Then ¢*(J, F)
> 0 implies that as n — x

(3.14) oA (Wi — Uk) =0(n™d
and
(3.15) o2(Wi — Ur) = O(n™).

ProoF. The present lemma will be proved by modifying part of the proof of Lemma
2.3 of [6]. We first prove (3.14). To start with we note that the argument leading to relation
(2.26) of [5] can be repeated (replace —27'J’(s) by K and W, by W,.) to find that

1
W —E W = —n™' 31y f J(s) (xw0(Ui) — s) dF7\(s)
0
(3.16) + Kn? Y Y J’ (xos(Ui) = 8)(x0a(U;) = s) dF~(s)
0

— Kn™! J’ s(1 — s) dF7(s).
0

Combining (3.16) with (3.11) and using the assumptions of the lemma we find after a
little calculation that

(3.17) o2<1/2(1 - %) U — W, ) =0n"% as n— w.

As it is easily verified that lim,_... no*(W,+) > 0 under the present assumptions we have
(cf. the proof of Lemma 3.1) proved (3.14). The proof of (3.15) is of course similar. 0

In the fourth and final lemma of this section we establish Berry-Esseen bounds for
U, and U}_. This lemma is a direct consequence of a Berry-Esseen theorem for U-
statistics due to Callaert and Janssen [4].

LEMMA 34. Let E|X:|® < » and suppose that J is bounded on (0, 1). Then ¢*(J, F)
> 0 implies that as n — o

(3.18) sup; | P(U} < x) — ®(x)| = O(n™*?)
and
(3.19) sups | P(UE < x) — ®(x)| = O(n~2).

Proor. It is immediate from (3.13) that

1

(3.20) E(he (U, U | Uh) = —J J(8) (X (U1) — ) dF~'(s)

0

with probability 1. Also note that

1 N
(3.21) 02( J’ J) (xoa(U1) = 8) dF"(s)) =o%(J, F) >0
0
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so that we find that the conditional expectation (3.20) has a positive variance. Moreover
it is immediate from (3.7) and (3.8) of [5] that

1
(3.22) E f J(8)(x0,(Ur) — s) dF7(s) ’ < oo,
o

Since

1 1
f Xos( U1 — 8)(xws)(Uz) — s) dF7(s) | = J | x0s(Ur) — s| dF~Y(s)
0 0

we also have by a similar argument that

3
< ©

(3.23) E

1
j (xos(U1) — 8)(x0.s(Us) — s) dF™(s)
0

under the present assumptions. Hence it follows that E | A.( Ui, Uz)|® < . The conditions
of the Berry-Esseen theorem for U-statistics ([4]) are therefore satisfied and (3.18) follows.
The proof of (3.19) is, of course, similar. 0

We are now in a position to prove our theorem. First we use Lemma 3.1 and Chebychev’s
inequality to find that

(3.24) P(|T% -V} =n ) =nX T} - V¥) = 0(n?),
Using this we see that

F}(x) = P(Tx = x)
(3.25) =P(Visx+n )+ P(Tk-V¥|=n?

=P(V}=x+n)+ 0On??

uniformly in x. A similar argument yields the opposite inequality
(3.26) Fix)=P(Vi=x—n??+0n?®
uniformly in x. Secondly we remark that, because of inequality (3.8),

o(W,) E(W,_ -V,
a(Vy) a(Vy)

(3.27) P(Visx+n?)= P( Wi =x+ n_2/3>

and

(3.28) P(Visx—-n)= P( * = n

"oV T eV
This, together with Lemma 3.2 yields that

G(Wn-i-) E(WIH- - Vn) <x-— _2/3>

(3.29) P(Vi<sx+n) < P(W} < xn4)

and

(3.30) PVisx—n)=P(Wk < x,-)

for appropriate sequences x,+,n=1,2,...and x,—, n =1, 2, ... satisfying
(3.31) Zne = (1 + O(n7%)) + O(n™'?%)

uniformly in x. We can now simply repeat the argument leading to (3.25) and (3.26), using
this time Lemma 3.3 and Chebychev’s inequality, to see that
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(3.32) P(Wk_ <x,) < P(UEL < xp0 + 0773 + O3
and

(3.33) P(Wk < x,) = P(U¥ < xa- — 7% + O(n™*?)
as n — oo, uniformly in x. Combining all these inequalities we see that
(3.34) P(T}=x) = P(U}- < Xns + 073 + O(n7%?)
and

(3.35) P(Ty=x) =z P(U} < xp- — 7% + O™

as n — oo, uniformly in x. Applying now Lemma 3.4 we see that the first terms on the right
of (3.34) and (3.35) are equal to ®(x,+ + %) + O(n~'?) and ®(x,—- — n~%%) + O(n~""?)
respectively, uniformly in x. As these two expressions are easily seen to be equal to ®(x)
+ O(n"'?), as n — o, uniformly in x, the proof of our theorem is complete.
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