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ARM-ACQUIRING BANDITS

By P. WHITTLE
University of Cambridge

We consider the problem of allocating effort between projects at different
stages of development when new projects are also continually appearing. An
expression (14) is derived for the expected reward yielded by the Gittins index
policy. This is shown to satisfy the dynamic programming equation for the
problem, so confirming optimality of the policy.

1. Introduction. The classic multiarmed bandit problem can be posed in specialised
or varied forms; we shall understand it as follows. At each stage in time one has the option
of working on exactly one of N projects. To do so causes the “state” of that project to
change, in a Markov fashion; the states of remaining projects do not change. One receives
a reward depending on the project and its state. Rewards are discounted and added over
time. One wishes to deduce an optimal policy; i.e., a sequential rule for determining which
project to work on at each instant of time in order to maximise the expected total
discounted reward. )

In the gambling-machine version of the problem the projects are the “arms” of the
machine. However, the problem describes a range of much more significant practical
situations; e.g., sequential selection trials in medicine and agriculture, the evaluation and
programming of evolving projects generally. It is also important because it embodies a
universal problem: the conflict between taking those actions which yield immediate reward,
and those (such as acquiring information, or preparing the ground) whose benefits manifest
themselves only later.

In medical, agricultural and technological applications one can expect that new projects
will be added as time goes on, as new compounds, technical possibilities, etc., become
available for investigation. This variant of the problem has been considered by Nash
(1973), and is the subject of this paper. In seeking a name for it one realises the
inappropriateness of “multiarmed bandit” as a technical term. “Arm-acquiring bandit”
maintains the analogy, although a term such as “open sequential allocation” would be
preferable. We shall certainly find it convenient to refer to the cases of fixed and increasing
N as the “closed” and “open” cases respectively.

At this point one should enter a disclaimer. A rational approach to project selection
cannot allow in any real sense for the possibility of fundamental scientific or technological
advance. This it could do no more than a rational approach to hypothesis testing could
allow for the possibility that additional hypotheses might be added in the course of time,
of natures not even formulable initially, because they lie beyond the investigator’s initial
conception and insight. So, we shall regard the “new projects” as being very much variants
as the old ones, occurring in a statistically homogeneous stream. For example, one might
think of an industrial chemist routinely testing the efficacy of a large number of compounds
as adhesives, or of an agriculturalist routinely testing a large number of wheat varieties.
Such “research” is exploratory rather than innovative. But, by its nature, creative research
cannot be formalised.

The multiarmed bandit problem is classic because of its difficulty as well as its
importance. The most fundamental contribution has been made by Gittins and his
coauthors (see especially Gittins and Jones (1974), Gittins and Glazebrook (1977) and
Gittins (1979)). Gittins shows that to each project can be attached an index », which is a
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function only of the project and its current state, such that the optimal policy is to work
on a project whose index is currently greatest. We shall refer to » as the “Gittins index”; it
obviously supplies a formal project evaluation. Gittins shows that it is determined by
solving the problem of choosing between the project in question and a “standard project”
(of fixed state and reward) and so effectively reduces the case of general N to that of N =
2 (or N = 1%, one might say, since one of the projects is standard).

Gittins’ contribution has not been appreciated at its true value, possibly largely because
the proofs he and his coauthors give are difficult to follow. However, such a fundamental
result must have a natural derivation. In a recent paper (Whittle (1980)) I gave what I
believe to be such a derivation, by a constructive argument which leads to an explicit
expression for the maximal expected reward for the multiproject case in terms of those for
the single (versus standard) project case.

The present paper extends this result to the open case. This is a nontrivial matter,
because a one-project situation does not remain so, and one is forced to employ rather
different methods.

Nash used Hamiltonian and dynamic programming methods in his 1973 work, and did
not obtain solutions of the relatively explicit form derived here. Workers other than those
of the Gittins school (see, e.g., Berry (1972), Wahrenberger, et al. (1977), Rodman (1978)
and Berry and Fristedt (1979)), have tended to exploit special properties of special versions
of the problem. :

2. Formulation. A project is usually described by two variables: a label for the
project itself, and a “state” variable, indicating the stage of development of the project.
For an open process we shall have indefinitely many projects, so it is better to use a single
project state variable x, which indicates both the type of the project and its stage. For
example, for the industrial chemist, “type” might label particular classes of compound
being investigated. If a project cannot change type then “type” labels ergodic classes, and
“stage” labels state within a class. For simplicity of exposition we shall assume that the set
of values X which a project may adopt is finite, although this assumption could almost
certainly be relaxed.

Let n;(x) be the number of projects in state x at time ¢. We shall set the problem in
integral time, so that ¢ takes only integral values. We shall regard n, = {n.(x); x € X} as
the state of the decision process at time ¢, and shall denote a generic value of this state
variable by n = {n(x)}. By n > 0 we shall understand that n(x) = 0 for all x, with strict
inequality for some x.

Let e(u) = {e(x, u)} denote the value of the vector n which is zero except for a unit in
the uth place:

1, xX=u
elx, u) = 0 X # u.

Suppose that at time ¢ one works on a project of state u (so that necessarily n, = e(u)).
Then we shall suppose that n, undergoes the transition

(1) N1 =n.— e(u) + e(u’) + Wiy

where W,.:(x) is the number of new projects of state x which enter the process at time ¢
+ 1, and u’ is the state which the project (state u) engaged at time ¢ acquires at ¢ + 1.
Implicit in relation (1) is the statement that no other project changes state. The quantities
W,.+1 and u’ are random variables. We shall suppose that the process is stochastically time-
homogeneous; that, conditional on u, the new state «’ is independent of {n,, W;; s < ¢}
and of allocation decisions before time ¢; and that W,.; is independent of these variables
and also of u, u’.

We shall suppose that if one works on a project in state u at time ¢ then one receives an
expected reward R (u), which is uniformly bounded

|R(x)| < K(1 — B) < .
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Here g is the discount factor, taking a value in [0, 1). Again, the assumption of boundedness
is convenient, but probably not necessary. We shall allow the option of inactivity at any
stage (i.e., of pursuing no project at all) so that a standard project of zero reward is
effectively always available. Being always available, it need not be listed in n.

Suppose that at time ¢ one operates a project of state z and then terminates at ¢ + 1
with reward y/(n.+1). The expected total reward conditional on n, = n would then be

) Luy(n) = R(u) + BE[Y(n — e(w) + e(u’) + W) |u],

where the expectation E[ . |u] is over u’ and W, but the u-conditioning of course affects
only «’. In the actual process operations will continue indefinitely, but the one-stage
operator L, plays an essential role in the later discussion.

We are now interested in maximising the total discounted expected reward E ¥, B8R,
from time ¢ = 0, where we have used R, to denote the reward received at time ¢. If the
expectation is made conditional on process history up to time ¢ = 0 then, in virtue of the
discounted Markov character of the decision process, the maximal expected reward will be
a function of initial state alone, ®(n,), say, and will be the unique bounded solution of the
dynamic programming equation

3) ® = supuev(n) L. P

(see Blackwell (1965); Bertsekas (1976) page 229). Here U(n) is the set of u for'which n(x)
> 0. We shall refer to ®(n) simply as the “reward function”.

3. The retirement option. We now modify the process by assuming that one has
the additional option of retiring at any time with reward M. Let us refer to process thus
modified as the “M-process”, and to the unmodified process as the “continuing process”.
If F(n, M) is the maximal expected reward for this modified process then it satisfies the
modified dynamic programming equation

(4) F = max[M, supucvn) L.F].

LemMa 1. F(n, M) is nondecreasing function of M and n for which

M, M=K

Fin, M) = {(D(n), M<0(0)

and the optimal policies for the continuing process and the M-process are identical for
M < ®(0).

Proor. Increase in M plainly cannot decrease F. Increase in n increases the range of
options (because inactivity is permissible) and so also cannot decrease F. Since in the
continuing process one has the option of inactivity, one also has the option of effectively
discarding all projects currently available. To take this option is to settle for an expected
reward of ®(0), so it is as if one retired with a reward of ®(0). For the M-process this
option will be equally as attractive as retirement if M = ®(0), and retirement will be an
option never exercised if M < ®(0). On the other hand, it will be an option as attractive as
any if M = K, for to continue for s steps and then retire cannot yield a reward exceeding
(1 — B°)K + B°M = M. The assertions of the lemma then follow. O

4. Write-off policies. Consider a policy in which a project is considered written-off
(ie., permanently abandoned) as soon as its state enters a write-off set ¥, a subset of X.
The policy is further such that one never uses a written-off project, one continues as long
as there are projects not written-off, and retires when all projects are written-off. “Inactiv-
ity” is a project of constant state value, which may or may not belong to %.

We shall term such a policy a write-off policy. Note that there is no prescription of the
order in which projects are operated before retirement, and the policy need be neither
Markov nor stationary, except insofar as ¥ is held fixed.
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Let H, be the observational history at time ¢ = 0, which includes knowledge of n,. We
shall assume that 7, takes the value n; a generic value of the vector of project numbers.
The expected reward E[Y5 8°R. | Ho] for a given policy will then be a function V(H,) of
H,.

LEMMA 2. For a prescribed policy, independent of M,

5) ;’T‘; - E(B" | Ho)

where T is the moment of retirement. For a prescribed write-off policy

©) =B\ n).

Proor. Relation (5) follows from the fact that
(7) V=V.+MEB"| Hy)

where V, is the expected reward before retirement, independent of M. In the case of a
write-off policy, the quantity 7' is the time needed to bring all projects currently available
(i.e., those initially available plus those which have entered the process) into ¢. History
before ¢ = 0 may affect the order in which these projects are operated, but cannot affect
the value of T, so (5) reduces to (6). O

Note that there is no presumption that 7' < o; the event of nonretirement can be
identifitTad with the event T'= + o because, since | 8| < 1, neither contingency will contribute
to E(B").

Although V is in general a function of Hy, in the case of a write-off policy we shall
sometimes write 8V (H,)/dM as dV(n)/dM, since the derivative does indeed depend on Ho
only through n, = n.

Now let o, be the work-load in the system at time ¢, i.e., the time needed to take all
projects currently in the system to %. The quantity o, is a random variable, determined by
events after time ¢. However, since projects do not interact, we can regard each project in
the system as carrying a sealed label with a random “time needed for completion” noted
on it. The quantity o, can then be regarded as defined at ¢, even if not then observable. It
is a nonnegative integer and obeys the recursion

(8) Oir1 = 0 — 1 + Wes1, 0. >0

where w,+: is the additional work-load brought by the bundle W,.. of projects entering the
system at time ¢ + 1. By the assumptions on W of Section 2, w;. is independent of {o,, w;;
s <t} and has a distribution independent of ¢. Provided there is work in the system (i.e.,
a. > 0) then one unit of load will be worked off in the passage from ¢ to ¢ + 1, hence the
—1 in (8). The termination time 7 is the smallest nonnegative value of ¢ for which o, = 0.

LEMMA 3. For a write-off policy

vV r _ o0
© o= BB n)=E(™/n)

where ¢ is the smaller real root of
(10) §=PBA(S)
and A(Z) is the probability generating function of w.

ProoF. We can regard the o-process as a random walk on the integers with an
increment whose probability generating function is A(Z)/Z. The state ¢ = 0 is absorbing,
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and 7' is the absorption time. It follows then by standard arguments that
(11) E(BT| 00) = ¢

(An appeal to Wald’s identity suffices, or see formula (67) on page 53 of Cox and Miller
(1969) which makes the domain of validity of Wald’s identity quite plain.) The result (11)
is exact (because 0:+1 — o, = —1) and again holds even if T' = + o with positive probability
(because | 8| < 1).

The second equation of (9) now follows from (11). O

THEOREM 1. For a write-off policy

Vin) _ o [aV(e(x))]”“’

(12) oM oM

ProoF. Because the work-loads generated by distinct projects are independent, then
(13) E(¢/n) =] [E($ | e(x))]"™
Relation (12) then follows from (9), (13). O

Theorem 1 states the key property of a write-off policy. It turns out to be shared by the
optimal policy.

5. The reward function for the Gittins index policy. The Gittins index policy is
a Markov policy, whose expected reward for the M-process we shall denote by V(n, M). It
is characterised by the fact that at any stage one works on an available project of largest
index, provided this exceeds M, where the index M (x) of a project in state x is defined as
the infimal value of m for which V(e(x), m) = m. If no available project has index exceeding
M, then one retires. The policy is then a write-off policy, with ¥ = {x: M(x) < M}.Itis
to be noted that ¥ depends upon M; let us denote it %». Let us also denote V(e(x), M)
by ¢(x, M).

THEOREM 2(i). The reward V(n, M) for the Gittins index policy is a nondecreasing
convex piece-wise linear function of M.
(ii)) V(n, M) can be expressed in terms of the one-project rewards ¢(x, M) by

K n(x)
(14) Vin, M) =K — f 1. [M] dm.
M

om

(ili) The one-project rewards are the unique solutions of the recursions

(15)  ¢(u, M) = maX{M, R(u) + E[¢(u’, M) | ul{(M) +f

M

E[¢(w', m) | u] d{(m)}

satisfying ¢(u, M) = M (M = K), where

Wi(x)
(16) M) = BE{IL ["’ﬂa’;l—M—’] }

Proor. We shall prove the assertions recursively for decreasing M. All assertions hold
trivially for M = K, when V(n, M) = M. Suppose they hold for M = p.

Now, although the index policy is a write-off policy, we cannot necessarily deduce from
(12) that

(oY)

aVin, M) _ a¢(x, M) 1"
oM =1 oM ’
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because (12) was deduced under the assumption that the write-off set ¢ was independent
of M, whereas now we have an M-dependent write-off set ¥%,. However, if % does not
change for M in some interval then V(n, M) will vary linearly with M in that interval, and
(17) will hold in that interval (with the derivatives interpreted as directional derivatives
into the interior at the ends of the interval).

If % does not change as M decreases from p then (14) will continue to hold by
integration of (17). We require that the one-project rewards continue to satisfy

(18) ¢(u, M) = max[M, L.¢(u, M)]
where L, is the operator defined in (2). Partial integration of expression (14) shows that
(19) V(W + e(u'), M) = ¢(u/, M)m(W, M) + Jm o(u’, m) dpm (W, m)
M
where
(W, M) = T[. [9-‘%7@] e

a nondecreasing function of M which is certainly constant for M > K. From (18); (19) we
deduce (15).
Note that, since dp(x, M)/dM = 1 for x in %y, then it follows from (14) that

(20) Vn+r, M) = V(n, M)

if 7(x) > 0 only for x in %. That is, addition of written-off projects does not change V.

All assertions of the theorem continue to hold, as M is decreased from p, as long as the
maximising option in (18) does not change for any u, and so % does not change. However,
at some point the maximising option will change, and % will change, and we must
establish that the assertions of the theorem continue to hold as M decreases further,
despite the discontinuous change in policy.

Suppose that at the current value of M we have ¢(u, M) = L,¢(u, M) > M, so that u
& 9um. Since dp/0M < 1 then the inequality ¢ > M continues to hold as M decreases, and
the maximising option in (18) does not change.

Suppose that at the current value of M we have ¢(u, M) = M = L,¢(u, M), so that u
€ Yum. As M decreases past some value (which is just M(«)) it may be that this inequality
is violated, so that M < L.¢,(u, M), where ¢,(u, M) is the value of ¢(u, M) calculated on
the hitherto constant evaluation %, of %. By relation (20) this implies also that M <
L,V.(n, M) if n = e(u), and n(x) > 0 only for x in ¥,. That is, that the policy hitherto
employed would be improved if, when left with projects with states in %, one operated a
project of state u, if available. (The inequality implies that to employ this procedure for
one step and then revert to the previous policy constitutes an improvement. It follows
then from the Howard improvement theorem (see Blackwell (1962) page 720) that
indefinite application of this modification will provide an improvement).

For the modified policy at M = M(u) the write-off set % has decreased from %, by
deletion of state u. Note, however, that projects of state u will be used only when these are
the only unabandoned projects available. That is, when no projects of greater index are
available. The policy thus recursively constructed is just the Gittins index policy.

It may be that several states are deleted simultaneously from the write-off set in this
way. However, the effect is always that % decreases as M decreases.

As %y decreases, so the time T required to bring all projects to % increases, and the
value of E(87/n) = aV(n, M)/aM appropriate to the smaller % is smaller: That is, V(n,
M) is indeed convex in M, and linear in those intervals of M for which % is constant.

The relations of the theorem continue to hold as M decreases through the value M(u)
at which the policy changes discontinuously, because the manner of change in policy (with
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u-projects given lowest priority of the unabandoned projects) means that there is no
discontinuity in expected reward. One can thus continue to integrate (17) to deduce (14),
(15).

The course of the proof (inductive in M for decreasing M) shows that the ¢(u, M) are
indeed uniquely determined by relations (15), (16) and the condition ¢(z, M) = M (M =
K): V(n, m) is then uniquely determined from (14). O

The use of ¢{(M) to denote expression (16) is consistent with the notation introduced in
Lemma 3. We have

d¢(x, M)

= R(¢T®
M EE)

where T'(x) is the work-load generated by a project in state x (i.e., the process time needed
to bring the state of that project to %), and ¢ is the smaller solution of (10). The right-
hand member of (16) is then BA(¢), and so equal to {, by (10).

At the points M(x) of discontinuity of policy, where dV/dM is undefined, we shall
henceforth make the convention of identifying its value with the right-derivative. This is
consistent with the convention that, if L.¢(x, M) = M, then we assign x to %u.

6. Optimality of the Gittins index policy.

LEMMA 4. Suppose that n = e(u). Define A,(n, M) = V(n, M) — L,V(n, M) and
8. (M) = Ay(e(u), M) = ¢(u, M) — L.¢(u, M). Then

(21) Au(n, M) = 8.(M)P.(n, M) + J 8u(m) dmPu(n, m)
M
where
n(x)—e(x,u)
(22) Pu(n, M) & T[. [%}

can be regarded as a right-continuous distribution function in M, with all its mass in
[®(0), K).

Proor. The function P, plainly has the properties asserted, being nonnegative, non-
decreasing, and equal to unity for M = K. One finds from (17) that
A 90,

- Pean

whence (21) follows by integration, if one recalls that A, = §, = (1 — 8)M — R(u) and P,
=1forM=K. O

THEOREM 3. The Gittins index policy is optimal.

ProoF. If we can show that V(n, M) satisfies the dynamic programming equation (4)
then this will imply that V = F, and that the Gittins index policy is optimal.
Let us define

w(n) = supym) M(u).
It follows then from (14) that
(23) Vin,My=M

with equality for M = pu(n).
We know that 8,(M) = 0 with equality for M < M(u), and that 0 < P,(n, M) < 1 with
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equality in the second inequality for M = u(n — e(u)). It then follows from (21) that A, =
0, i.e.,

(24) V(n, M) = L,V(n, M) u € U(n)

with equality if M(u) = u(rn — e(u)) and M(u) = M, i.e., if M(u) = p(n) =M.
From inequalities (23), (24) and the cases of equality characterised after them, we see
that V satisfies (4). O

7. An example. The index result constitutes a powerful reduction of the problem.
However, one still has the task of calculating the index function M(x). Even in the closed
case, for which a one-project problem remains a one-project problem, and relations (15)
simplify considerably, there are as yet few explicit solutions or analytic results. In the proof
of Theorem 2 we indicate a natural approach for numerical solution, but the problem of
analytic solution remains.

So, while it would be satisfying to give a substantial example, we must content ourselves
for the moment with a case for which a one-step look-ahead rule is fairly obviously optimal.
This is what Gittins (1979) refers to as the deteriorating case, for which, if one works on
a project of state x(t) at time ¢, then P(x(t + 1) = x’| x(¢) = x) > 0 implies that R(x’) <
R(x). .

THEOREM 4. For the deteriorating case an optimal policy is to work on an available
project u for which R(u) is greatest.

ProoF. If M = M(x), so that x € %y, then also x’ € %y, and F(W + e(x’), M) =
F(W, M), by (20). The relations M(x) = M = ¢(x, M) = L.¢(x, M) thus imply that

M = R(x) + BEF(W, M(x))
= R(x) + 6(M(x))

say. Now the function 8(M) is nondecreasing, convex, and is equal to SM for M = K, so
that

HM)=M - 0(M)
increases, strictly and continuously, from —oo to +o with M. Hence
M(x) = H(R(x))

is a strictly increasing function of R (x), whence the assertion follows. 0
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