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ORDER CONVERGENCE OF MARTINGALES IN TERMS OF
COUNTABLY ADDITIVE AND PURELY FINITELY ADDITIVE
MARTINGALES'

BY KENNETH A. ASTBURY

Wayne State University

Let (E, %, 1) be a measure space, let 6 be a directed set with a countable
cofinal subset, and let (4,).es be an increasing family of sub-¢-algebras of %.
A martingale (f;).es is said to be of semibounded variation whenever the set
{fs f. du|T € 6, B € #.} is bounded either from above or below. Denote
conditional expectation by & We show that if every martingale of the form
&(f| B.).cs for some B-measurable function f with [|f|dp < o is order
convergent, then every martingale of semibounded variation is order conver-
gent. When the family (4%.).cs satisfies a certain refinement condition, we
obtain a sufficient condition for order convergence of martingales of semi-
bounded variation in terms of order convergence of martingales which con-
verge stochastically to 0.

1. Introduction. Let (E, %, n) be a o-finite measure space and let N be the set of
positive integers. Let 6 be a directed set under the relation <. (6 is nonempty, and < is
reflexive, transitive, and has the following property: for each 7, o € 6 there exists p € ¢
such that p > 7, p > 0.) A subset A of ¢ is called cofinal whenever for each r € § there
exists o € A such that 1 << 0. Let (%,).e¢ be a family of sub-o-algebras of % such that (E,
%,, u) is o-finite for each 7 € 6, and %, C %, for each p < 0. By function we mean an
extended real valued, 8-measurable function. Our setting and notation are virtually the
same as those of [5].

The conditional expectation of a function f with respect to the sub-o-algebra % of % is
denoted by &(f| %). A family of functions (f;).cs is called a martingale whenever f. is %,-
measurable for each r € § and &(f,| #.) = f. for each o >> 7. A martingale (f;).s is said to
be of bounded (semibounded) variation whenever the set { [z f; du|7 € 6, B € %.} is
bounded from above and below (either from above or below).

In the case that (§, <) is N with the usual ordering, then, according to Doob’s
martingale convergence theorem, every martingale of bounded variation is pointwise
convergent almost everywhere. However, for an arbitrary countable directed index set, the
pointwise convergence of martingales requires additional assumptions. In [6] Krickeberg
introduced the notion of order convergence, which coincides with pointwise convergence
for countable index sets, and he showed that for an arbitrary directed index set, if the
family of o-algebras (4.),co satisfies the Vitali condition, then all martingales of semi-
bounded variation are order convergent. We remark that if 6 is totally ordered by <, then
the Vitali condition holds. In [1] we give a condition on the family of o-algebras (%.).cs
which is weaker than the Vitali condition and which is also sufficient for the order
convergence of martingales of semibounded variation. Whether this condition is also
necessary is an open problem. The purpose of this paper is to give necessary and sufficient
conditions for the order convergence of martingales of semibounded variation in terms of
the order convergence of countably additive and purely finitely additive martingales. We
consider only the case that 6 has a countable cofinal subset; whether our results are valid
for arbitrary directed index sets is an open problem.
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Throughout this paper, sets and functions are considered equal if they are equal except
on a p-nullset. Consequently, for B € %, u(B) = 0 if and only if B = &J. Denote by %., the
sub-o-algebra of # which is generated by U,cs #.. We recall that the essential supremum
and essential infimum of a family of functions ( f;).es are the unique functions ess sup.es f;
and ess inf, f; such that all functions g satisfy:

(i) f=sgforalrEfl = esssup.es [, < &;

() f,=gforalltrEf=essinfe fr = &

By union and intersection of a family of %#-members we mean the essential union and
essential intersection, which are defined analogously. For a family of functions ( f;),es, the
extreme order limits are defined by

lim sup-ep f; = ess inf,eq(ess supr, f;)
lim inf,ey f; = ess sup,eq(ess inf, f;)

[6]. Whenever the extreme order limits are equal, the common function is called the order
limit, denoted by lim.es f;, and the family ( f;).es is said to be order convergent (to lim,e
;). Let B € %... Whenever both of the extreme order limits coincide with a function f on
B, we say that (f,).es is order convergent (to f) on B, and we write lim,e f; = f on B.

To every martingale of bounded variation ® = (f.),es there corresponds a finitely
additive set function (of bounded variation) Z(®) on U,ey %, defined by

Z(<I>)(A)=J f- dp. for any 7 such that A € %..
A

According to a theorem of Yosida and Hewitt [9], every finitely additive set function can
be expressed uniquely as the sum of a countably additive set function and a purely finitely
additive set function. A martingale of bounded variation ® is called countably additive or
purely finitely additive whenever Z(®) is countably additive or purely finitely additive,
respectively. It follows that every martingale of bounded variation can be expressed
uniquely as the sum of a countably additive martingale and a purely finitely additive
martingale. A countably additive set function on U.e¢s 4, can be extended to a measure on
(E, %) [3, 4], and by the Radon-Nikodym theorem, it follows that the countably additive
martingales are precisely those of the form (£(f| %.)).es for some function f with [ |f| dp
< o. For a more complete discussion of the above see [5]. The purely finitely additive
martingales can be characterized by a well-known property of purely finitely additive set
functions [9]: for each € > 0 there exist 6 € § and D € %, such that

(a) J'|1fo|du<e forall 7> o,
and
(b) p(E\D) <e.

The purely finitely additive martingales also are known to be precisely those martingales
of bounded variation which converge stochastically to 0 [8] (see also [5]). Every countably
additive martingale (&(f| #.))-es satisfies

lim inf.ep &(f| B.) < E(f| B=) < lim sup,es E(f| B-),
and every purely finitely additive martingale (g-).es satisfies
lim inf,¢6 g, < 0 < lim sup,ep &-

[7, 8] (see also [5]). Consequently, if the martingale of bounded variation ( f;).e¢ is order
convergent on B € #.,, then lim inf,<s f, = lim sup.e f; < ® on B.

We call S € U, &, a stable set whenever there exists o € § such that S € %, and for
each p > o the families of sets {B.€ %,|B C S} and {B € %,|B C S} are identical. We
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assume for the remainder of this paper that the index set 4 has a countable cofinal subset,
which we denote {1, € |n € N}.

In Section 2 we show that, for B € %., if every countably additive martingale is order
convergent on B, then every martingale of semibounded variation is order convergent on
B. In Section 3 we establish a property of sub-o-algebras which we use in Section 4. In
Section 4 we show that, for C € U,ep %, if C contains no stable sets and if every purely
finitely additive martingale is order convergent on C, then every martingale of semibounded
variation is order convergent on C. We also show, by example, that the preceding statement
is not always true for C € ...

2. Martingales of semibounded variation and countably additive
martingales. We call a function positive whenever it takes only nonnegative functional
values, and we call a martingale positive whenever all of its member functions are positive.
The following theorem appears in [1].

THEOREM 2.1. There exist A, B € #., B = E\A, such that:

(i) There exists a positive martingale of bounded variation (f.).es satisfying lim sup,es
f=®on A;

(ii) Every martingale of semibounded variation is order convergent on B.

We remark that the extreme order limit inequalities given in Section 1 imply that the
decomposition is unique. Furthermore, the decomposition is independent of the base
measure y, which we now show. Let » be a positive measure on (E, #) which is equivalent
to u and which is o-finite on (E, %) for some ¢ € 6; denote by A,, B, the corresponding
decomposition of Theorem 2.1. Let (g;).co be a martingale of bounded variation in the
space (E, 4, v). Define the function f to be the Radon-Nikodym derivative of (E, %, v)
with respect to (E, %, p), and for each v € 6 define the function £, to be the Radon-
Nikodym derivative of (E, 4., v) with respect to (E, 4., u). Then (f;).cs, restricted to an
appropriate %,-member, is a countably additive martingale in (E, %, p) and lim,e f; = f
> 0 on B. For each ¢ > 7 and for each C € %

JgofodI‘:jgﬂdV:fg‘rd,'=Jgfﬁl‘d”';
C c C C

hence (g.f,)s is a martingale of bounded variation in (E, %, p), and lim,c g.f. exists and
is finite on B. Therefore

lhn‘reﬂ 8 ‘rf T . & fﬁ‘ :
— = o 227 = lim - B.
Times . 0 2 e &r ON
Hence A, n B =J and B C E\A, = B,. The other direction follows by symmetry.
We now prove an existence theorem for countably additive martingales.

o >

THEOREM 2.2. Let A € %.. and let ( f,).es be a positive martingale of bounded variation
satisfying lim sup.ep f, = © on A. Then there exists a positive function f with [ f dy <
and satisfying lim sup,es &(f| %.) = © on A.

PrOOF. Let (D,)»en be an increasing sequence of %, -members such that u(D,) < o« for
each n € N, and E = U,en D,. For each p > o define the function
£(0, p) = es8 SUPoacracp fr-

Then for each ¢ € 8 the family of functions (g(o, p))». is increasing, and lim,s., g(o, p) =
€8S SUP.», f; = © on A. For n € N we choose inductively o, € 6 as follows. Choose o1 = 71;
choose o, > 06,-1, T, such that

g(0n-1,0,) >n2" on A n D, exceptfor aset having u-measure less than 1/n.
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Define the positive function f = Y,.en (1/2")f, . Then

1 1
deu = ZneNE;J’fan dp = Znezvgjfoldn = J fo, dp < .
Furthermore, for each m € N,

€sS SUDrwr, E(f | #B.) = €SS SUPnom €8S SUPs,_«raca, E(f | B:)

1
= €3S SUPnom €8S SUPs, ,<r<co, 3 E(f.,| %)
1
= €SS SUPn>m 2_,, g(on—l, on)
=ow on A.
Therefore,
lim sup.eo E(f | B.) = ess infnen (€SS SUP.»r, E(f| B:)) = on A.
We now combine Theorem 2.1 and Theorem 2.2.
THEOREM 2.3. There exist A, B € #., B = E\A, such that:
(i) There exists a positive function f with [ f du < « and satisfying lim sup.e &(f |

RB.) = o on A,
(ii) Every martingale of semibounded variation is order convergent on B.

A related partition in terms of countably additive martingales is given in [1].

COROLLARY 2.1. Let B € #... Assume every positive function f with [ f du < « satisfies
lim sup,<p £(f| #:) <  everywhere on B. Then every martingale of semibounded variation
is order convergent on B.

3. A property of sub-¢-algebras.

THEOREM 3.1. Let € C 9 be sub-o-algebras of #. Then there exist A, BE€ %, B = E\A,
such that:

O {(FE¥|FCA}Y={FEZ|FCA);
(ii) There exists D € @ with D C B such that all C € ¥ satisfy

CCDorCCB\D= C=0.
PrOOF. Define ¥ = {L € €| there exists D € 2 with D C L such that all C € ¥ satisfy
CCDorCCIL\D= C=0}.Clearly D € % Define B=Uycoe LEY.IfL E Land if L

2 K € ¢ then K € 4 hence B can be expressed as the countable union of disjoint £
members

B = U,en L,.
For each n € N, let D, € 2 be such that D, C L, and all C € ¥ satisfy
CCD,or CCL\D, = C=0@.
Define D = U,en D, € 2. Clearly D C B. Let C € %. Then
CCD=C=Unn(CNnD,) =Upen(Cn Ly)
where Cn L, € ¥and Cn L, = C n D, C D, for n € N by the disjointness of (L,)en, and
CCD=C=Upen (CN L) = Upnen D =3
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analogously
CC B\D=»C = Uyen (C n (L,\D»)) = Unen (C N Ly)

where Ch L, € ¥and C n L, = C A (L.\D,) C L,\D, for n € N by the disjointness of
(Lr)nen, and ,

CCB\D=C=U,en(CN L,) =Upen D =0.
Therefore (ii) holds. Define A = E\B € 4. Let F € 2 with F C A. Define
D = F\Uceg;ccr CE 9
L =ncegcon CE %.
Then D C L, and all C € ¥ satisfy
CCDorCCIL\D = C=g,

hence L € £and L C B. However D C F C A € % and, hence, L C A. Therefore L =&, D
=@, and F = Uceg;ccr C € ¥, establishing (i).

As an application of Theorem 3.1 we prove the following lemma, which is used in the
construction of purely finitely additive martingales.

LEMMA 3.1. Let o € 0, let f be a positive B,-measurable function with [ fdu < », and
let { f > 0} contain no stable sets. Then there exists a positive function g such that £(g|
B;) =f, m({g >0} =% u({f> 0}), and g is B,-measurable for some p E 6.

ProoF. Consider the restriction of (E, %,, ) to {f> 0}. By Theorem 3.1, for each p
>oletA,, B, € B,with A, C {f> 0}, B, = { f > 0}\A, be such that:

() {(FERB|FCA)}={FER|FCA)

(ii) There exists D, € 4, with D, C B, such that all C € 4, satisfy

CcD,orCCB\D, = C=02.

If 7 > p > o then the #,-members A, N D, and A, N (B,\D,) are also %,-members by (i),
A, 0 B,= (A, 0 D) U (A, n (B\D,) =B U @ =B by (ii), and A, C (f> 0}\B, = A,;
hence (A,),», is a decreasing family. Furthermore n,., A, € %, is a stable set and
consequently N5, A, = J. Let p > o be such that u(A4,) < % u({ f > 0}). By redefining D,
to be B,\D, if necessary, we assume u(D,) < % u(B,). Define E, = A, U D, € %,. Then

w(Ep) = w(4,) + p(D,) = p(4,) + % u(B,)
=% u(A,) + % p({f>0}) =% p({f> 0}).
IfCE %, and C n E, =, then
Cn {f>0}=Cn (B\D,) CB\D,,

and, by (ii),
Cn{f>0}=0.

Therefore we can define a positive measure v on

(E,,{CNE,|CER}) by v(CnE,,)=ffdu for CE &,.
(o]

Let g be the function defined by

{CnE,|CE %,},p)onE,,

{ the Radon-Nikodym derivative of (E,, {C n E,|C € %,}, v) with respect to (E,,
g =
0 elsewhere.
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Then g is positive, %,-measurable, and
n({g > 0}) = p(E,) =% u({f>0}).
Finally, for each C € %,

Jgdu=j gdu=v(CnEp)=deu;
c CnE, c
hence &(g| %.) = f.

4. Martingales of semibounded variation and purely finitely additive martin-
gales. In this section we make use of the following result, which is a consequence of a
corresponding result for purely finitely additive set functions, or which can be established
with an elementary argument using the characterization of purely finitely additive martin-
gales given in Section 1. Let {(gn.).co|n € N} be a family of purely finitely additive
martingales satisfying

YneN SUPres J | gn,r | dp < oo,

and for each 7 € flet g, = Ynen &n,-; then (&.).e0 is a purely finitely additive martingale.
We now prove two existence theorems for purely finitely additive martingales.

THEOREM 4.1. Let o € 0, let f be a positive B,-measurable function with | fdu < o,
and let { f > 0} contain no stable sets. Then there exists a positive purely finitely additive
martingale (g;).co With g, = f.

Proor. By the property of purely finitely additive martingales given above, and by
the o-finiteness of (E, %, p), it suffices to prove the theorem for the case u({f > 0}) < oo.
For n € N we choose inductively o, € § and f,, a positive %, -measurable function, as
follows: choose 61 > o0, 71 and define f; = f; choose f, according to Lemma 3.1, satisfying
E(fn|Bs,_,) = fa-1and p({f, > 0}) < % p({ fu-1 > 0}), and choose 6, >> 6,-1, 7» such that
fris %, -measurable. We remark that the hypotheses of the lemma are satisfied throughout
the inductive process because [ f, dp = [ fo—1 dp < o and {f, > 0} C { fo-1 > 0} contains
no stable sets. (ox).en is a countable cofinal subset of 6, and we define the martingale
(g'r )160 by

8. = 6(fn| &) forany n € N such that o,> 7.

Clearly (g:).e is positive and is of bounded variation. (g,).c is purely finitely additive
because for eachn € N

f g,dy.=f frdp=0 forall 7> o,,
{£=0} {£,=0}

and u(E\{fn=0}>=u<{fn>0}>s(§) w((f>0)).

Finally,
&= &(f1| B,) = 6(f| B.) =f.

THEOREM 4.2. Let C € U,y #. contain no stable sets, let A € B, be a subset of C, and
let (f;).co be a positive martingale of bounded variation satisfying lim sup,es f, = © on A.
Then there exists a positive purely finitely additive martingale (g.).cs satisfying lim
Sup.co & = ®© on A.
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Proor. Our proof is similar to the proof of Theorem 2.2. C € 4, for some g, € 6.
Denote by Ic the indicator function of C and define the martingale (A,).<s by

A = lcf. for >0,
= 8cf, | %), any p>>o0,, T for 73 o.

Then for 7 > o,, the set {#, > 0} C C contains no stable sets. Furthermore
lim sup,es A, = lim sup,es lc fr = lc lim sup,ep f, = on A.

Let (D.)nen be an increasing sequence of %, -members such that u(D,) < « for each n €
N, and E = U,en D,. For each p > o define the function

&(a, p) = ess SUPswcrep Ar.

Then for each o € § the family of functions (g(o, p)),». is increasing, and lim,., g(o, p) =
€SS SUpP;», A, = © on A. For n € N we choose inductively o, € § as follows. Choose a; >
0o, T1; choose 6, >> 6,-1, T, such that

8(0n-1,0,) >n2" on AnD, except for a set having y-measure less than 1/n.

Applying Theorem 4.1 for each n € N, let (gn.).cs be a positive purely fimtely additive
martingale such that g., = (1/2")h, . Then

1
Zen SUPres J lgn-ldn=2% _\ J 8n.o, Au = Z,,eNp f ho, dp.

1
=z,.e@fhoo du=fho,, du < .

For each 7 € 6 define g, = Ynen &n., and (g:).co is a positive purely finitely additive
martingale. For each m € N

€SS SUDys5r,, &+ = €SS SUPr>m €SS SUP,, _,«r<a, 6(&o, | %B:)

= €SS SUPn>m €8S SUPq,_,«r<o, 6(&n.o, | Br)

1
= €SS SUPnom €88 SUPs, rscs, 5 E(he, | B.)

1
on g(on—lg on)

= €SS SUPr>m 2

= on A.
Therefore
lim sup.es g, = ess infnen (ess sup,», &) = ® on A.

We now relate the order convergence of martingales of semibounded variation with
that of purely finitely additive martingales.

THEOREM 4.3. Let B € #.. and let Z = {C € U, B, |either C is a stable set or C
contains no stable sets}. Assume B C Uces C and assume every positive purely finitely
additive martingale (g.).cs satisfies im sup.ey & < o everywhere on B. Then every
martingale of semibounded variation is order convergent on B.

ProOF. On a stable set C, every martingale of semibounded variation is eventually a
family of identical functions, and hence, is order convergent on B n C. For C € U,cy %.
which contains no stable sets, every martingale of semibounded variation is order conver-
gent on B n C by Theorem 2.1 and Theorem 4.2. Finally B = Uces B n C.
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We remark that E can be partitioned according to the following theorem [1] without
any assumptions concerning stable sets.

THEOREM 4.4. There exist A, B € %., B = E\A, such that:

(i) There exists a positive purely finitely additive martingale (g.).cs satisfying lim
Sup.e¢ & = © on 4;

(ii) Every purely finitely additive martingale is order convergent to 0 on B.

We conclude with an example which shows that Theorem 4.3 without the assumption
concerning stable sets is false. In fact we construct a space on which every purely finitely
additive martingale is order convergent (to 0) and we produce a positive function f with
[ fdu <  and satisfying lim sup,es &(f| #,) = ® everywhere except on stable sets.

ExamPLE 4.1. For k2 € N we define

[k] = (n € N|n = 2%},
%, = the set of all subsets of [%],
Py, = the uniform probability measure on ([£], % ).
Let
(E, B, ) = [I3=2 ([k], P&, Ps),
0={(G,Jj)|i,JEN,i=2, and 2 <j =< 2'} with the ordering (i, j) > (m, n) if and
only if i > m or (i, j) = (m, n).
For 2 = m € N let #(m) be the subset of # whose elements are
(T {ne}) X {1} X ([[3=m+1 [RD where 2=<n,=<2* for k=1,2,...,m— 1.
For 7 = (i, j) € 6 let 7(7) be the subset of # whose elements are
(T2 {me}) X {1, 7} X ([[=ix1 [K])  where 2=n,<2* for k=1,2,...,i—1,
let %(7) be the subset of # whose elements are
(Ii=z {nx}) X (II=+1[k]) where 2=n,=<2* for k=1,2,...,i, and n
ind let
#1) = (Unds Am)) U T(1) U U 7).

Tor T € 6 let #. be the sub-o-algebra of # generated by #17). It is easy to check that %,
Z %, for 6 >> 1. For each 7 € §, #17) is a partition of E; hence, the atoms of %, are precisely
‘he elements of #17). Therefore every element of U;,_, #(m) is a stable set. For S € %,
lenote by Is the indicator function of S. Define the positive function f = Ym-2 Ysesm mls.
Chen [ f dp = Ym=2 mp (Usesim S) < Ym=2 m(1/2™) < co. For 2 = n € N we define

0(n) = {G, j) €0|i=n},

O[n]= U}i_; 6(n).

Chen for each 2 = n € N, each 7 € §(n), and each T € J(r)

J fdu= f Ysesm nls dp = np(T 0 (Usegm S))
T T

n n
== e T = —
 W(T) L2dﬂ,
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and &(f| #,) = n/2 on T; hence

n
€SS SUPreom) E(f| %B:) = 3 on U.,ecpm) Uresn T

= E\(UnZ: Usesrim S).
Consequently, for each p € 6
€SS SUP.»p, 8(f| %) =  on E\(Un-2 Uscoim S),
and
lim sup,es &(f| %) =  on E\(Un-2 Usesm S).

Furthermore [L[E\(U;°,=2 Usesm) S)] =1- Z:=2 [L(Usgy(m) S) =1- Z;=2(1/2n) =%>0.
Let(g:).co be a positive purely finitely additive martingale and let C = {lim sup,es g, =
®} € %.. Let n € N. Then there exists i € N such that

WU eorn{g, > n}) = %gl

Because %, C 4, for 1 < ¢, we can find a family of #-members (M, ), satisfying
M.e%, M, C{g >n} for re€0[i],
(Ureomy M) 0 (U oy M,) =  for h#Ek,
and U.eori) M. = U,cor {&- > n}.

For v € 6[i], by subtracting from M, an appropriate collection of %,-members, we can
obtain a family of #-members (L. ).cq[; satisfying

L.€%®, L.C{g->n} for 7€ 0[],
L.n L, Cc Ufn=2 U se #im) S for 75 o,
and U.eori) L = Ureqr) {&- > n}.

Let p = (i + 1, 2) € 6. Then g, = 0 on the stable set U%—; Uscom S € %, because (&), is
a purely finitely additive martingale. Consequently

nu(C
_,u.% =< np(Y.eo {&- > n}) = nu(Y .o Lr)

=n ZTEO[E] I—L(L‘r) = 21’60[i] f 8+ d"'

L,

T

= Yredri J & du= f gdu= J & du= J 8e, 2 dp.
L. Yoeoritls

T

Hence for all n € N,
2
wC) = o J &e, 2 du,

and u(C) = 0. By Theorem 4.4, all purely finitely additive martingales are order convergent
to 0.
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