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A LAW OF LARGE NUMBERS FOR IDENTICALLY DISTRIBUTED
MARTINGALE DIFFERENCES'

By JouN ELTON

University of Texas

The averages of an identically distributed martingale difference sequence
converge in mean to zero, but the almost sure convergence of the averages
characterizes L log L in the following sense: if the terms of an identically
distributed martingale difference sequence are in L log L, the averages
converge to zero almost surely; but if fis any integrable random variable with
zero expectation which is not in L log L, there is a martingale difference
sequence whose terms have the same distribution as f and whose averages
diverge almost surely. The maximal function of the averages of an identically
distributed martingale difference sequence is integrable if its terms are in L
log L; the converse is false.

1. Introduction. Let (22, & P) be a probability space, and (%) an increasing sequence
of sub-o-algebras of % For f€ L'(=L"(P)), we use E,(f) to denote E (f| %), the conditional
expectation of f given %,. A sequence f, € L'(%,) will be called a martingale difference
sequence (mds) if E,(f»+1) =0, n € N (N is the set of positive integers); in other words, the
sequence s, = Y %-1 fz of partial sums is a martingale.

If the £, are independent and identically distributed (id), the sequence a, = (1/n)s, of
averages converges almost surely (strong law of large numbers) and in L'-mean to zero
(see, e.g., Chow and Teicher (1978), page 131). In Section 2, we show that a, — .1 0 without
the hypothesis of independence. In Section 3, we show that a, — 0 almost surely without
the hypothesis of independence if we require that f; € L log L, where

Llog L= {f€ L"“E(|f|log" |f]) <}.

In Section 4, we show that if f € L' with E(f) = 0 but f & L log L, we can construct an id
. mds (f,) with fi having the same distribution as f such that (a,) diverges almost surely.
This is our main result in this article. In Section 5, we show that the maximal function of
the averages

M (w) = sup, (1/n) | Yi=1 fe(w) |

isin L' if f; € L log L, which generalizes a result of Marcinkiewicz and Zygmund (1937) for
the independent case. However, unlike the independent case, the converse is false. In fact,
if fis any symmetric random variable in L', there is an id mds (f,) with ; having the same
distribution as f such that M € L'. This is probably true without the hypothesis of
symmetry, but we don’t know how to show it in general, for f having mean zero.

We introduce some notation. If g is a real-valued function and ¢ = 0, define

‘glx) = g(x) if |g(x)| < ¢,

=0 otherwise;

~g(x) = g(x) — ‘g(x).
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With a sequence f, € L'(%,) we associate the sequence
dn = nfn - En—l(nﬁt)

which is a mds whose terms are in L2

2. Convergence of the averages to zero in mean.
THEOREM 1. If (f,) is an id mds, then E(|a.|) — 0.

ProoF. Write
[ ="fh+ 7 =dpn+ Esr("fa) + Tfa
=dp + fo — Epa("fa),
observing that E,—1(""f,) = —E,-1("*f,) since E,_i(f,) = 0. Thus
E(|an|) = E(|(1/n) $i=1 dr]) + (1/n) Sia E(| 7| + | Eaas () )
=< (1/n) (Ti-1 E(dR))? + 2/n) Ti-1 E(|7*A)),

since the d are orthogonal elements of L?, E;-, is a contraction on L’, and the f; are id.
Now E(|~"f,|) — 0 as n — oo since f; is integrable, so the averages (1/n) Y3-1 E(| ~*£])
— 0 also.
Next, Lemma 1, which follows, shows that

Y- (1/nY)E(d7) < o,

so (1/n%) Y3 E (d%) — 0 as n — o by Kronecker’s lemma, and the proof is complete.

LEmMA 1. If (f,) is an id sequence with f, € L*, then there is K < o such that
Yr-1 (1/nY)E(d7) < KE(|fi]).
Proor. I — E,_,is a contraction on L?, so
E(d}) = E(("f, = B (")) = E(C*)).

The rest of the proof is the same as in the classical proof of Kolomogorov’s strong law of
large numbers:

Yo 1/nADE(("f)?) = L1 E(f3 Xn1<ifii=m) Tn=m (1/0°) = KE(|£i]),
where K < o is such that Y5, (1/n?) < K/m for all m € N.

3. Convergence of the averages almost surely to zero when f; is in L log L.
LEMMA 2. Letf€ L, f=0. Then
f€ Llog Liff Y51 (1/R)E (fx(r>m) < .

Proor. .
E(f10g+ f) = 2:—1 (log n)E(fX(n</5n+l)) = 2;=2 (2?=2 (l/j))E(fX(n<fsn+l))
= Y52 (1/)) T3~ E(fXn<rsn+ny) = Ti=2 U/DE (fx(r>1)-

The other direction follows similarly.
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THEOREM 2. Let (f.) be an id mds with f, € L log L. Then a, — 0 almost surely.

ProOF. Write
fo=dn+ "fn — Ena("'fa)
as in the proof of Theorem 1. Then
E(| Tk (1/R)fs]) = E(|Zi-1 (1/R)di|) + 2 Tiey I/RE(| ™ ks)
= (Ti-1 (I/E)E @' + 2 Ties /RVE(| i xo<ifiy)-
By Lemmas 1 and 2, this is bounded. So the martingale Y%-: (1/k)f. converges almost
surely. Thus by Kronecker’s lemma, a. = (1/n) ¥%-1 fr — 0 almost surely.

4. Existence of an id mds with averages diverging almost surely when f; is not
in L log L.

LEMMA 3. Let f, € L'( %) be an id sequence and no € N. Then for almost all w € L,
lim, ... (1/n) Y%-1 filw) exists iff lim, e (1/7) Yi-1 Ex-1(""*f)(w) exists (and the limits
are equal if they exist).

Proor. Let d, = """, — E.—1(**"f,), n € N (a slight change from the way d, was
defined before). There exists C < o such that
E((Tk-1 (1/R)dr))) = Yi-1 (1/RY)E (d3) = CE(|fi])

just as in Lemma 1. So the martingale Y %-; (1/k)d). converges almost surely, so (1/n) ¥ %1
dr — 0 almost surely by Kronoecker’s lemma.
Now P(|f.| > n + ny infinitely often) = 0 by the Borel-Cantelli lemma, since

Ya-1 P(|fa] > n + no) = E(|£i]).
S0 lim,e (1/n) T3 filw) exists iff lim, .. (1/7) Y%-1 ™**fi(w) exists (and they are equal
when they do), for almost all w € Q.
LEMMA 4. Let (a,) be a nonincreasing sequence of positive numbers. Then

Y1 (1/n)a, =0 Mf Yo apm=00  forall k=2k€EN.
Proor. This is a version of the Cauchy condensation test for series.

Construction of the example. Let f € L' with E(f) = 0 but f & L log L. Without loss of
generality, we may assume f is a nondecreasing function on (0, 1) and P is Lebesgue
measure (the function g(x) = sup{¢t:F(¢) = x}, x € (0, 1), where F is the distribution
function of £, gives such a function with the same distribution as f).

Define intervals I? C (0, 1), i = -3, -2, —1, 0, 1, 2, 3, n € N, which partition (0, 1) for

each n, by
L= (f<—(no+n)
I’y = (—(no + n) = f< —no)
I=I,=(-no<f<0)
13=Io=(f=0)
It=L=0<f=ny
II=@M<f=no+n)
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It = (no+n<f).
Let B7 = [ «|f|dP,n € N,i= -3, ..., 3; and B; = B} for i = £1. Since E(f) =0,

(1) BZs + B2z + B2y = BT + B3 + B3
So we can (and do) choose nq so large that
ﬁ—] = Bé’ + B;’;‘ and Bl = B'ﬁz + B'ia.

For convenience let S = {—3, —2, 0, 1, 2, 3} (note the absence of —1). Define p;, i € S,
n €N, by

pi=PI%) + (B%/B-)P(I2,), =283 e=z=L
2) p1=pi=(1-[B2+ B5)/B-)PU-1) + (1 — (B2 + BZ3)/B)P(L).

Po=pi = P(l).

Observe that Yies p? = 1, and also that p2; | 0, p% | 0.
Next define intervals J%;,i € S,n € N, j = 1, 2, when p? # 0, by

h = (0, (1/p)P D)), 1= %2, 3
) 11 = (0, (1/p1) (1 — (B3 + B3)/B-1)P(I-1));
Jo = (0, 1);
2=1(0,1) — Gf, iES.
Then define functions ¢7 on (0, 1), i € S, such that ¢? is identity if pi = 0, and if p7 # 0,
palder) = I except possibly for endpoints of the interval,
el = I, 1=23e==l;
oi(Jh) = I, except for endpoints;
Pi(Jh) = I except for endpoints;
e5(J0) = Io except for endpoints;

and ¢7 is linear and increasing onJ}. Observe (using (2) and (3)) that
P(J0) = (1/pé) P(I),
P(J52) = (1/pe)(Bei/B-o) P(I-o), i=23e=xl
P(Jh) = (1/p) (1 —(B% + B5)/B-1) P(I-),
P(J1) = (1/p)(1 —(B%2 + B%3)/B1) P(IL),

whenever these are defined. So we have for i = 2, 3; € = 1, that

1
j f(@Z(x)) dx = f flp%(x)) dx + j flgdi(x)) dx
0 Je. J &,
=1/p3j f(x) dx + (1/p&)(Be/B-) f f(x) dx
Iz I,

= (1/p&)(eBs + (BEi/B-)(—€) B-c) = 0.
Similarly,

1
(4) f floi(x)) dx=0 forall i€ S
0
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(for i = 1, use (1)).
We also have for € = 1, P%; # 0,

1
(5) J "f(pes(x)) dx
0

= (1/pss) J’ "othf(x) dx + (1/p&)(Bés/B-e) f "trf(x) dx = (—€)(Bes /pds),
I I,

but

®) f "flgi) dx=0 for i=01%2
0

Now either f* & L log L or f~ & L log L, so without loss of generality, assume
(7) f-&LlogL.
Let b= :/(1 + B1) and
B = max{B:/P(I), B-1/P(I-1)}.
Observe that 0 < b < B. We have for n € N,
P(I%) = B, sopZs =B+ (BZs/B)P(I) = (1 +(1/B1))B%s,

SO

(C)] ‘ B%s/p"s = b.

Also, pZ; = (B%3/B1) P(I1), so
9) B23/p"s < B; and similarly, B3/ps =< B.
Choose k& € N so large that
(10) k>2B/b+ 1.
For!{=0,1,2,..- and "' <n <k’ let

A" = (0, 1) 0 mod([Xi2 p¥s, Tz p%s + p2s)),

where mod x = x — greatest integer in x, x € R.

1 k K2
-3 \ Az, A%y

€ y: X ~)-

0 1

T

N

The motivation will follow. Note that P(A”;) = p”; for all n € N. Then define A} C (0, 1)
fori =3, %£2, 1,0, n € N so that {A?: i € S} is a partition of (0, 1) for each n, and
P(A}) =p?.
We are finally ready to define our mds (f;). Let
Q = [[%o (0, 1);, where (0, 1); = (0, 1) for all i,
and let u be product Lebesgue measure on £. For w € Q, we write w = (wo, w1, « ). Let

fr(w) = Yies F(@F (wa)) xar(wo), wEQ neEN.
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Illustration.
folw) = flp5(wn)) | A%
fulw) = f(92(wn)) | AZ

(0, 1)0 fr(w) = f(pT(wa)) | AT
falw) =0 AS
ﬂ(w) = f(qJ'iz(wn)) Al
fa(w) = f(@Z3(wn)) 23
0, 1),
Let

Fo={C X [[%n+1(0,1);:C  aBorel setin [ (0, 1).},

and Z be the Borel sets in £. So (%) is an increasing sequence of sub-¢-algebras of %
and f, is %,-measurable for all n.

LEMMA 5. [, has the same distribution as f for all n € N, and (f,) is an mds.

Proor. If Cis a Borel set in R,

xc(falw)) dw=j (j xc(fa(w)) dwn) dwo
0

0

u(ﬁ.EC)=I

Q

=ZiesP(A?)J xc(f(@! (wn)) dwn=2ies;j=1,2P(Ai)J xc(f(@7 (wn)) dwn
0 Ji

= Yim23e=21Pe[(1/pe) P({ f € C} 0 I&) + (1/p&)(BE/B-) P({fE C) n )]
+ pi[(1/p)(1-(B% + B3)/B-) P({fE€ C} n I_)
+ (1/p)(1—=(B% + BZ)/B) P({f€ C} n I)] + P({f€ C} n Lo
=YiesP{fEC} nI)=P(f€ ),

which verifies the first part. Next, let C = C x [I&- (0, 1); € %1, where C is a Borel set in
n—1
i=0 (0, 1)[. Then

1 1 1
J’ fn(w) dw = Zies J’ LR f R j Xc(wo, ey wn—l)XA."(wo)f((P?(wn)) dw, -+« dwo
¢ 0 0 0
=0, by (4) above.
So E,-1(f,) = 0 for all n.
LEMMA 6. The averages of the sequence E,—("**"f,) diverge almost surely.

'PROOF. Let A7 = {w€Q:w € AT}, i €S, nEN.
Let C = C X [[iZ. (0, 1); € %,- as above. Then by (5) and (6),

1 1
f%+nﬂ(W) dw = ELESJ‘ e j XC(Q)O, cey wn-l)XA,"(wo)m’+nf(q)?(Wn)) dﬁ’n e dwo
¢ 0 0
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1 1
= J’ oo J’ Xc(wo, e, wn—l)(2e=il(_€)(B?li/p?li)x‘q;‘a(wO)) dwp—1 + -+ dwo
0 0

= J’ Ye=x1(—€) (Be3/P ) X 4y, (w) doo.
¢

So
Eoi("fn) = Ye=21(—€) (B /D&)X dx,e
We assumed in (7) that f~ is not in L log L, so we have by Lemma 2 that
Y= (1/(no + n))BZ; = o,

and so

Yo B¥3 =

Yo o p¥s =0 also.
Observe that if w €A*;, then w EA”; for k™! < n < k'’ (recall p”s |), so using (8) and (9),

(1/F") Sher Ena(™*"f) (0) = (1/E)[(R' — k)b — k"B = ((k — 1)/k)b — (1/k)B.
But if w & A¥;'*!, then w & A" for k' <n < k', so
(1/R") $het Ener (o) (@) < (K*'/R")B = (1/k)B.

Since Y- p¥s = o, we have that for each w € Q, w €A*; occurs for infinitely many I
(just note that the intervals [Y/=3 p*s, Yi—o p¥s) are adjoining and cover all of R*, so
applying the mod function, we see that the A*; cover (0, 1) infinitely many times).
Similarly, for each w € , w & A*;"*" occurs for infinitely many / (note that if w€ A%3',
then w & A% if p*5' + p*;™" =< 1, which holds for large enough ). Hence we have lim
supn(1/N) S Eni(™"f,) (w) = ((k—1)/k)b—(1/k) B almost surely, and

lim infx(1/N) S35, Encq (7o) (W) < (1/R)B  as.
But ((k— 1)/k)b — (1/k)B > (1/k) B by our choice in (10) of %, so the proof of the lemma

is complete.

THEOREM 3. Iff € L' with Ef = 0 and f, € L log L, there is an id mds (f,) with f,
having the same distribution as f such that the averages of (f,) diverge almost surely.

ProoF. This follows from Lemmas 3 and 6.

5. Integrability of the maximal function.

LeEMMA 7. If (a,) is any sequence of real numbers, then
sup,(1/n)| ¥i-1 ar| = 2 sup, | i1 (l/k_)ak |

PROOF.
[(1/n) Tht ar| = | i1 (1/k)ar(1—(n — k)/n)|
= | i1 (1/k)ar —(1/n) Y5 S5 (1/k)ax|
=1+ (n = 1)/n) supn | Yi=: (1/k)ax],
for all n.
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REMARK. This is observed in Marcinkiewicz and Zygmund (1937).
THEOREM 4. If (f,) is an id mds with f, € L log L, then M € L.

Proor. Write
fo=dn+"fo = Exr(""fa),
as in Section 2. Then
M = sup,(1/n) | ¥i=1 fi|

=< supx(1/n) | Ti-1 di| + supa(1/n) Fia1|™*f — Er1("*f) |

< 2 sup, | Die1 (1/R)dx| + 2 sup, Yiei (1/k)| ™ — Exr(C*f)],
by Lemma 7. By an inequality of B. Davis (1970), there is a constant B < o such that

E (sup, | Yi-1 (1/k)dr|) = BE((Zi=1 (1/k%)d7)"?)
=< B(E (-1 (1/k%d})"* = B(KE(|f: )",
using Lemma 1 for the last step. And
E(supn Tie1 (1/R)| ™ = Exca(*f)|) < o0

since f1 € L log L, just as in the proof of Theorem 2.

ProrosITION. Iff€ L' and fis symmetric, then there is an id mds ( f,), with f, having
the same distribution as f, such that M € L*.

Proor. Let (r,) be a sequence of independent random variables on [0, 1] for which
m(r, = 1) = m(r, = —1) = %, where m is Lebesgue measure. Since f is symmetric, the
functions

fr=1f|®r,onQ x[0,1]

have the same distribution as f. And M (w, ¢) = sup, (1/n)|¥i-1 | f(w)|re(t)] = | f(w)], so
M € L' 1t is easy to see that (f,) is a mds with respect to the o-algebras # X 2, where
9, is the o-algebra generated in [0, 1] by {ri, - - -, r»}, since the r, are independent with
mean 0.

REMARK. A similar method works if f is not too asymmetric, but we don’t know a
method which will work for arbitrary f€ L.
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