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Let X, X5, --- be iid. random variables whose common distribution
function F is in the domain of attraction of a nonnormal stable distribution.
A simple, probabilistic proof of the convergence of the normalized partial
sums to the stable distribution is given. The proof makes use of an elementary
property of order statistics and clarifies the manner in which the largest few
summands determine the limiting distribution. The method is applied to
determine the limiting distribution of self-norming sums and deduce a repre-
sentation for the limiting distribution. The representation affords an expla-
nation of the infinite discontinuities of the limiting densities which occur in
some cases. Application of the technique to prove weak convergence in a
separable Hilbert space is explored.

1. Introduction. Let X denote a random variable; let F' denote its distribution
function; and let 1 — G denote the distribution function of Y = |X|, so that G(y) =
P{(Y > y} = F(-y =) + 1 — F(y), y > 0. It is well known that X is in the domain of
attraction of a stable law with index a, 0 < a < 2, if and only if there is a function L which
varies slowly at  and a p, 0 = p =< 1, for which

(1) G(y) = P{Y > y} = y°L(y), y>0,
and
(2) [1-F(»]/G(y)—>p and F(-y)/G(y)—>q, as y— oo,

where ¢ = 1 — p. That is, if X, Xi, Xo, --- are iid., then (1) and (2) are necessary and
sufficient for the existence of normalizing constants a, > 0, n = 1, and b,, n = 1, for which
the normalized partial sums

St=a;"Xi+ -+ +Xp) or Sr=a'Xi+---+X,—nb,)

converge in distribution to a stable law with index a. In this case, the normalizing constants
are determined by

3) nGlany) — y™°, as n—o o, y>0,
and ’
(4) bn = f xdF(x),

—a, n=1

Classical proofs of these assertions are analytical, using either semigroups of convolution
operators or characteristic functions. See, for example, Feller (1966, Sections 9.6 and 17.5).
Recently, Simon and Stout (1978) have given a probabilistic proof of sufficiency.
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Here we present an alternative proof of the sufficiency of (1) and (2). Our proof makes
extensive use of the following elementary property of order statistics: let Y1, Y3, --- be
ii.d., with common distribution function denoted by 1 — G, and let Y, = - - - = Y,, denote
the ordered values of Yi, .-, Y,; then there is a sequence E;, E., --- of exponential
random variables with unit mean for which

(5) (Ynl, Y Ynn) =z [G_I(FI/Fn+1)’ cty G—I(I‘n/I‘n+l)], n= 1’
where I'n=E + .-+ E,, k=1,
and G Nu) =inf{y: G(y) < u}, O<u<l,

and =, denotes equality in distribution. See, for example, Breiman (1968, Section 13.6).

Our approach applies (5) to the sequence Y. = | Xi |, £ = 1, where X;, X,, --- are iid.
with common distribution function F which satisfies (1) and (2). We illustrate it in the
special case that F'is symmetric and continuous. Then the partial sums S, = X; + -+ +
X, may be written in the form

(6) Sn = 27'=1 sannj;

where 6, is the sign of the variable X; for which i < n and Y; = Y,;. It is easily seen that
8n1, -+, Onn are iid. random variables taking the values +1 and —1 with probability %
each and that 8,;, .-+, 8, are independent of Y, -+, Ya.. Thus, S = a,'S, has the
same distribution as

S5 =318 - az'GN(I/Tan),

where 81, 8z, - - - are i.i.d. random variables taking the values +1 and —1 with probabilities
% each and 8, 8, - - - are independent of E,, E,, --.. By (3),

a7 G N(Ty/Thi) = T2 wplj=1,
S0
(7) St=S*=3%,8T;""

is strongly suggested. Here = denotes convergence in distribution.

In Section 2 we modify the above argument slightly to give a rigorous determination of
the limiting distribution of S; = (S, — nb,)/a., assuming (1) and (2). The limiting
distribution has a representation similar to that in (7), but including centering constants.
The representation provides insight into the limiting distribution of S}. That stable
distributions must admit such representations may also be deduced from Ferguson and
Klass’ (1972) general representation theorem for infinitely divisible processes without
Gaussian components.

In Section 3 we use (5) and (6) to give an alternative derivation of the limiting
distribution of self-norming sums, which were introduced by Darling (1952) and have been
studied by Logan, Mallows, Rice, and Shepp (1973) and Darling (1975); and we obtain a
representation for the limiting distribution in terms of the random variables I', = E; +
«++ + Ej, k=1, and random signs. The representation allows us to explain the apparent
infinite discontinuities of limiting densities at *1.

In Section 4 we extend our technique to more general spaces. We show that if 8, 8,
... are 1.i.d. random vectors, of possibly infinite dimension, then any series of the form (7)
must have a strictly stable distribution, provided only that it is convergent w.p.1; and we
explore the use of (6) and (7) to prove weak convergence of normalized partial sums of
symmetric ii.d. random vectors in a separable Hilbert space.

2. Stable distributions. In this section we let X, X;, X;, ... denote i.i.d. random
variables whose common distribution function F satisfies (1) and (2). Further, we let Y,
=|X.|, £ = 1, and we define the random element Z, by

zZ" = a;I(Ynl, ey Ynn, 0; 0; ”')
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where Y,; = ... = Y., denote the ordered values of Y1, - .-, Y, and a,, n = 1, satisfy (3).
Thus, Z" takes values in the subspace Z of R consisting of all z = (21, 22, --+) € R for
which z; = 2z = - - - = 0. Observe that Z is a topologically complete separable metric space
when endowed with the relative topology which it inherits from the product topology on
R~

We continue to let E}, E, . - - denote i.i.d. standard exponential random variables with
partial sums I'y = E1 + -+ - + E, k= 1. Our first lemma then follows directly from (3) and
(5), since convergence in distribution in Z is equivalent to the convergence of finite
dimensional distributions.

LEMMA 1. Z" converges in distribution to Z = (Z1, Zs, - -), where Z, = TV, k= 1.

The analysis of the signs is more complicated. First, there are random permutations o
= (On1, **+, Onn) Of the integers 1, 2, - - ., n for which

Y=Y, 1=k=n.
Let Ont = sign(X,,, ), 1sk=n,
and o = (Snl, Ty 8nn» ]-’ ]-) "’)) nzl

Thus, 6" is a random element taking values in the space {—1, +1}~.

LEMMA 2. 8" converges in distribution to 8 = (8, &2, - - -), where 8, 82, +- - are iid.
random variables taking the values *+1 with probabilities p and q. Moreover, 8" is
asymptotically independent of Z".

ProoF. Let X* and X~ denote the positive and negative parts of X; and let
H:{A} = nP{a;'X* € A}, A € %(0, ).

Next, let 2 = 1, let B be a compact subset of (0, ®)*, andlet C= {x EB: x> +-- > x1}.
Then

P{(an, ey, Znh) € C) an >an+ly snl F €1, v, snk = Gk}
8)
=n"*(n) f (1 — &) anze-)H {d2} -+ - H} {dz}
(o}

for €1, -+, & € {—1, +1}*, where (n)y =n(n —1) --- (n — k + 1) and 1 — G denotes the
distribution function of Y = | X|. As n — , the distributions H; and H; converge weakly
to H* and H™, where

H*{dz} =apz'dz and H {dz} =agz™'dz

by a simple application of (3). It then follows easily that the integral on the right side of
(8) converges to

peq*® j exp{—zr*}a*zz*! ... 21V d2y o - d2i = pg* T p{(Z1, - -+, Zp) € C},
c

where S is the number of positive €1, - - +, €. The lemma follows directly.

In our first theorem, Z1, Z,, - - - and 681, 82, - - - denote independent sequences of random
yariables with distributions as described in Lemmas 1 and 2: that is, 8;, 8z, - - - are ii.d.
random variables taking the values +1 and —1 with probabilities p and q; and Z, = (E: +
.+« + E;)"V* where Ei, Es, --- are ii.d. standard exponential random variables. We let
a,,n=1, and b,, n =1, be as in (3) and (4). And, if A is a Borel set, we let

XA = xIs(x)

where I4 denotes the indicator of the set A.



CONVERGENCE TO A STABLE DISTRIBUTION 627

THEOREM 1. Asn — =, the normalized partial sums S¥ = a;'(S, — nb,) converge in
distribution to

9) S* =¥k {0eZk — (p — q)E[Zx(0, 1]]1}.

PROOF. For0 <e<A =, we let
K, .=sup{j:Z,;>¢€}
and
Sn(€, A) = Y51 8sj + Znjle, \] = YK, r<i<K, OnjZns;

and we define K, and S(e, A) by the same formulas, with Z,; replaced by Z; for all j = 1.
Then S(e,A) is well-defined for all € > 0, since Z; — 0 w.p.1 as j — . Observe that

S = 8,(0, ®) — E[S,(0, 1)] = Su(0, €] — E[S,(0, €]]
+ Sn(e, ) — E[S,(e, 1)], €>0,

and

Var[S.(0, €]] = Var[a,' Y1 X;[—€an, €a,]} < na;? f x2 dF(x),

which tends to zero as n — « and then € — 0. See, for example, Feller (1966, Section 8.9).
Thus, it suffices to show: for € > 0,

(10) Sn(€, ) — E[Sn(e, 1)] = S(e, ©) — E[S(¢, 1)], as n— oo
and
(11) S(e, @) — E[S(e, 1)] = S* as e€— 0.

where => denotes convergence in distribution. See Billingsley (1968, page 25).

Relation (10) follows easily from Lemmas 1 and 2. To see this, define a function ¢ on
Zx{—1, +1]° by
(12) #(z, d) =F7u1 d; « 2i(e, )

for d = (di, d, -++)e{~1, +1}* and 2z = (21, 22, - --)eZ for which z; —» 0 as j — ®, and
¢(2, d) = 0 for other values of z. Then ¢ is continuous, in the product topology of Zx{—1,
+1}* at a.e. (2, d) with respect to the distribution of Z and 8. Thus,

Snle, ©) = ¢(Z", §") = ¢(Z, §) = S(e, )

as n — o for € > 0. A similar argument shows that S, (¢, 1) = S(e, 1) as n — o for € > 0, so
(10) would follow from the uniform integrability of S.(e, 1). This uniform integrability
follows from the inequality,

|Snle, 1) | = X521 1 < Ko,
and the fact that K., has the binomial distribution with parameters n and p.(e) = P{| X |

> €a,} ~ 1/ne
To establish (11) we first observe that the series defining S* is convergent w.p.1, since

§* =351 [0 — (p— @12 + (p = @) T7-1 {Z — E[Z,(0, 1]]}.

In fact, the first of these series converges by the three series theorem, applied conditionally
given Z,, Z, - - +, since Z; ~ 1/j/* w.p.1 as j — ; and a simple Taylor series expansion and
the law of the integrated logarithm show that

Z; — E[Z;(0, 1]] = O[(1/7***"/*)V(log log /)]
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w.p.1 as j — =, so the second series converges absolutely w.p.1. The convergence of
S,(€, ©) — E[Sx(¢, 1)] to S* now follows easily, since

S* — {S(e, ) — E[S(e, 1)]} = fs7-1 {8 - Z;(0,€] — E[9; - Z;(0,€]]};
for the latter series has expectation 0, and its variance is at most
51 E[Z;(0, €]*] = X7~ min{€’, E(Z)},

which tends to zero as € — 0.

REMARKS 1. As a corollary, we see that any stable distribution is the distribution of
a linear function of a random variable of the form (9). This fact may also be deduced, with
some effort, from Ferguson and Klass’ (1972) representation theorem for infinitely divisible
processes.

2. It is known that the limiting distribution of sums of independent, uniformly asymp-
totically negligible random variables is normal if and only if the largest summand (in
absolute value) contributes negligibly to the sum. The proof of Theorem 1 and the
representation (9) clarify the manner in which the largest summands affect the limiting
distribution in the case of convergence to a stable distribution.

3. The centering constants may be eliminated in some cases. For example, if F is
symmetric, then b, = 0 for all » and p = g, so Si = a,'S, converges in distribution to $*
=821+ 8:Zs+ -+, as in (7). Similarly, if 0 < a < 1, then the series defining S converges
w.p.1, without centering, and a.'nb, converges to a finite limit, so S7 converges in
distribution to S™ in this case too. Finally, if 1 < a < 2 and E(X) = 0, then a,'nb, — 0, so
S?# converses in distribution to S*.

4. The series representation (7) affords a simple derivation of a result of Cressie (1975).
If W, denotes a stable random variable with index a, 0 < a < 1, so normalized that

W, = ¢ Y51 §; T, 0<a<l,
then
| W, |*= max;=; I = 1/E;,

the reciprocal of a standard exponential random variable, as a — 0. The convergence in
distribution is uniform in p, 0 < p < 1, and uniform in ¢ for which c¢* — 1.
In the next section we require a minor extension of Theorem 1. Let

8%, = & (X311 X1 1=r<oo,
St = (371 Z}” a<r<oo,
Sto=az' max{| Xi|, - -+, | Xul}, and S%=27.

Thus, S%,= S asn — o for all , a < r < ©, by Remark 3, applied to | X|" for r < «, and
Lemma 1 when r = co.

THEOREM 1. Asn— oo, (Z", S}, S%.) = (Z,S*, S¥) forallr,a <r =< .

ProoF. The proof of Theorem 1’ is essentially the same as that of Theorem 1. The
major change is that the function ¢.of (12) is replaced by a vector valued function. When
a< r < «, ¢ is replaced by (z, ¢, ¥), where

Uz, d) = {¥3-1 zi(e, @) }"

if 2 — 0 as j — o and Y(z, d) = 0 otherwise; and when r = o, ¢ is replaced by (z, ¢). In
either case the vector valued function is continuous a.e. with respect to the distribution of
Z and 8.
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3. Self norming sums. In this section we study random variables of the form

(13) Tor = (X5-1 X)) /{Z5=1 | X517}, r>0, nx=1,
where X, X;, --- are iid. with common distribution function F satisfying (1) and (2).
When r = o, the denominator is to be interpreted as max{| X1, ---, | Xx|}.

The random variable T, .. describes the influence of the maximal term Y,; on the sum
S,.. The characteristic function of its asymptotic distribution was found by Darling (1952),
under the assumption that X is attracted to a positive stable distribution (that is, g = 0
and 0 < a < 1). More recently, Logan, Mallows, Rice, and Shepp (1973) have found the
characteristic function of the asymptotic distribution of T, ,, when one exists, for 1 < r <
o, assuming only (1) and (2); and Darling (1975) has given an alternative proof which is
valid when r =1 and 0 < a < 1. Logan et al. (1973) also inverted the limiting characteristic
functions, exactly when r = 1 and numerically when r = 2, and presented graphs of the
limiting densities. The case r = 2 is especially interesting, since T, has the same limiting
distribution, if any, as the ¢-statistic; so the asymptotic distribution of T2 provides insight
into the properties of the ¢-statistic when sampling from a population with an infinite
variance.

Logan et al. (1973) remark that Darling’s (1952) methods fail when 1 < r < w, and that
their methods fail when r = «. By contrast Theorem 1’ offers a unified approach and
provides a simple representation of the limiting distribution in terms of the random
variables Z;, Z;, --- and 8y, &, - - -

CoroLLARY 1. Ifeither 0 <a <1 or F is symmetric, then T, , converges in distribution
to

(14) T = (Tk=1 86 Zb) /(T ZRY”

asn— o forallr,a<r=ow. Ifl1<a<2and E(X) =0, then T, converges in distribution
to

Tr = {51 [8Zs — (p — QE[Z:(0, DI}/ {Z5-1 ZRY'"

asn— o forallr,a<r=<o,

The Corollary follows directly from Theorem 1/, since T,, = S%/S%. and division is
continuous a.e. with respect to the limiting distribution of S7 and S%,. See also Remark 3.

The simple representation (14) allows us to explain the apparent infinite discontinuities
at +1 in the graphs of Logan et al. (1973). We show that they arise from the influence of
the maximal term Z;. In the proof we use the following easily verified facts: the distribution
of

_ 1+ YT Sy + Ty) e
{1 + yr/a 2;:=1 (y + Fk)—r/a}l/r
is a version of the conditional distribution of T, given E; = y and 8, = 1, when a < r <
o0; and
(16) R(y) =y [T(y) = 1] > 8" = Y51 82

w.p.1as y— 0, when 1 <r < o, When r = , the denominator in (15) should be interpreted
as 1, and (16) is valid; but if r = 1 > a, (16) fails and R(y) - S* — S¥<=0w.p.1 as y — 0.

(15) Ty

COROLLARY 2. Suppose 0 <a <1and0<p <1;andlet K, = K,(- |a, p) denote the
distribution function of T,. If 1 < r < o, then K/(+1) = «; and K{(1 — ) = o = K{(—1+),
where ' denotes differentiation.

Proor. Suppose first that 1 < r < «. By conditioning on E; and §;, we find that
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0

P{1<T<1+h}zéf P(1<T<14+h|E,=y,6=1}edy

0

=%h“J PO<T—1<h|E =hy,6 =1} dy
0

= A" j P{0 < R(A%y) <y *}e™* dy,
0

so

00

lim inf,o A™*[K(1 + k) — K(1)] = } f P{0<S* <y} dy,

0

which is positive, if p > 0. Similarly, one may show that lim inf,o A™*[K(1) — K(1 —h)] is
positive, if ¢ > 0. This shows that K'(1) = o, if 0 < p < 1; and K’(—1) = « may be
established by a similar argument.

The case r = 1 may also be handled similarly.

4. Higher dimensions. Let % denote a separable Banach space, and let X, X;, X;,
.++ denote ii.d. random elements in Z. Then the distribution of X is said to be strictly
stable, with index a, 0 < @ < 2,ifand only if X; + -+ - + X, =,n"*X foralln = 1.

THEOREM 2. Let Vi, Va; ... be iid. random elements in %; let E., E,, ... denote
ii.d. standard exponential random variables which are independent of V1, Vs, ---; and
let Zy={E1+ -+ + E;} 'V k= 1. If0 < a < 2, and if the series
17) S§* = Y51 ViZe

converges w.p.1, then the distribution of S* is strictly stable with index a.

Proor. We show that if ST, ..., S7 are i.i.d. as S* then S¥ + ... + 8% =,n*S* We
may suppose that each S7 is of the form (17) with V, and Z, replaced by Vi and Z;,, where
~ the sequences Vi1, Vig, +-- and Zj, Z;, - are mutually independent with the same

distributions as Vi, V,, ... and Z,, Z,, - -- of (17). Then 'y, =Z3*, k=1,i=1, - -+, n, may
be regarded as the arrival times of events in n independent Poisson processes, each with
unit arrival rate. Let I'{, Iz, - - - denote 'z, k= 1,i =1, - . ., n arranged in increasing order.
Then I, I, ... are the arrival times of a Poisson process with arrival rate n, so that Z;
= (T'}/n)~"=, k = 1, have the same distribution as Z;, Z;, - - - of (17). Next, let VI, V3, ...
denote Vi, k=1,i=1, ..., n arranged in the same order as Z;, k=1,i=1, ..., n. Then
Vi, Vs, ... areiid. as Vi, Vo, ... V{, V4, ... are independent of Z{, Z;, - - .. Next, let K,
=sup{k:Z,=n""*} and K;. =sup{k:Zs =€} fori=1, ..., n and € > 0. Then

(18) SE ViZi= n V(R VyZi 4 e+ DR Vi Zog)

fore>0.Ase— 0, K.— o and K;.— o w.p.1forall i =1, ..., n, so the right side of (18)
converges to n”Y%(S? + . .. + S%); and the left side of (18) converges to a random element
having the same distribution as S*, The theorem follows.

It is also possible to prove limit theorems for sums of i.i.d. random vectors. We illustrate
this in the special case that % is a separable Hilbert space. Let X denote a random element
in a separable Hilbert space Z;let Y = || X||, where || - || denotes the norm in % and let
U = X/Y denote the unit vector, when Y > 0. By analogy with (1) and (2) we require the
existence of an a, 0 < a < 2, and a slowly varying function L for which

19) G(y) = P{Y >y} = y°L(y), y>0,
and
(20) H(y, A)=P{U€EA|Y>y}= H(A), as y— o,
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where H is a proper probability distribution on the unit sphere of Z.

Now let Xi, X5, - .- be ii.d. as X, where X satisfies (19) and (20), and let a,, n = 1, be
as in (3)—that is, nG(a,y) > y“asn— oo, for y > 0. Let Y, = | X ||, k= 1; let Y, =
««+ = Y,, denote the order statistics; and let

Zn=0,"Ye and Xp= VY, 1=k=n,
for n = 1. Then Z" = (Zu1, +++, Zun, 0, 0, -+ ) converges in distribution to Z = (Z, Z,,
+++), as in Lemma 1. Observe that V* = (V,4, +++, Vs, 0, 0, - .) is a random element

taking values in 2.

LEMMA 3. Asn — o, V" converges in distribution to V= (Vi, Vs, -+ .), where Vy, Vs,
. are iid. random elements with common distribution H, where H is as in (20).
Moreover, V" and Z" are asymptotically independent.

ProoF. The proof is similar to that of Lemma 2. Let

K.(y,A)=nP{UEA, Y > y}

for y > 0, Borel sets A of the unit sphere of %, and n = 1; and observe that K,(y, A) —
y “H(A), whenever A is a continuity set of H. If k = 1, A,, .. ., A; are continuity sets of H,
B is a compact subset of (0, ©)*, and C = {2 €EB:z > -+ > 2}, then

P{(V..€Ay, -, Ve €Ay, (Zp1, +++, Zmp) E C}

=n"*n) j (1 — G)" ™ (an21)Kn(dzr, Ar) -+ Ku(dz1, A1) + 0(1)
c
— H(A,) --- H(A:) f exp(—zz¥)a’ 2z oo 21N dzy - dzy
c

= H(A,) --- HAYP{(Zy, ---,Z:) € C}.

In our final theorem, we let Vi, V3, -.. and Zi, Z,, - - - denote independent sequences
of random elements with distributions as described in Lemmas 1 and 3. Observe that if
either a < 1 or V; has a symmetric distribution, then

S* =51 ViZs

is norm convergent w.p.1, by the three series theorem applied conditionally given Z,, Z,,
. ... See Kahane (1968, page 27).

THEOREM 3. Let X satisfy (19) and (20) and let X;, Xz, --- be iid. as X. If either X
is symmetric or a < 1, then the normalized partial sums S} = a;'S,. converge in
distribution to S* as n — .

PrROOF. Let k£ =1 and write
(21) S% = Yt VijZnj + Yimts1 Vi Zn.

Clearly, the first summation in (21) converges in distribution to V1Z; + ... + V,Z, as n
— o for each fixed k; and V1Z, + ... + V,Z, — S* w.p.1 as k — . Thus it suffices to
show that the second summation in (21) converges to zero as n — « and then & — oo,
When 0 < a < 1, the norm of the second term is at most Z,+1 + - - - + Z,,, which converges
in distribution to Z.; + Zz+2 + -+ - as n — o, by Theorem 1’; and Z;; + Zpr2 + -+ = 0
w.p.1 as k — o. When X has a symmetric distribution, the conditional distributions of Vi,
eoey Von, given Z,1, « -+, Zy,, are symmetric; and, since Vi, ..., V,, are conditionally
independent, in any case, we have

(22) E{|| Z3-k+1 VniZnj || 2"} = T3ars1 Z3;.
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The right side of (22) tends to zero as n — o and then k£ — o, by the argument just given.
The theorem then follows from Markov’s inequality, applied conditionally.

Kuelbs and Mandrekar (1974) have shown that the conditions (19) and (20) are
necessary and sufficient for a random element X to be in the domain of attraction of a
stable distribution, when 0 < a < 2. From this result and the observation that a stable
random element is in its own domain of attraction, we easily deduce the following corollary.

COROLLARY 3. Suppose that X has a stable distribution and that either X is symmetric
or 0 < a < 1. Then there are a > 0, b € %, and i.i.d. random elements V, V1, Vs, --- in
& for which || V|| = 1 with probability one and

X=aS*+ b,

where S* is as in (17).

We note that Kuelbs and Mandrekar make extensive use of characteristic functionals,
so the proof of the final corollary is not as elementary as that of the theorem.
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