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A GLOBAL INTRINSIC CHARACTERIZATION OF BROWNIAN
LOCAL TIME
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British Columbia

Let B(¢) be a Brownian motion with local time s(¢, x). Paul Lévy showed
that for each x, s(¢, x) is a.s. equal to the limit as 8 approaches zero of §?
times the number of excursions from x, exceeding 8 in length, that are
completed by B up to time ¢. The aim of the present paper is to show that the
exceptional null sets, which may depend on x, can be combined into a single
null set off which the above convergence is uniform in x. The proof uses
nonstandard analysis to construct a simple combinatorial representation for
the local time of a Brownian motion constructed by R. M. Anderson.

1. Introduction and statement of results. The local time s(¢, x) of a Brownian
motion B(¢) was first introduced by P. Lévy who showed that if n(¢, x, 8) is the number of
excursions of B away from x that are greater than § in length and are completed by time
t, then for each x in R

(1.1) lims_or 62n(t, x, 8) = 2(2/7)s(¢, x)  for all £ in [0, ) a.s.

(see It6 and McKean (1965, page 43)). In fact it is easy to see that the convergence is
uniform for ¢ in compact subsets of [0, ). This characterization of local time is intrinsic in
that s(z, x) is recovered from the random set Z(¢, x) = {s < t| B(s) = x}. In Trotter (1958)
the local time of B is obtained as a continuous sojourn density of the Brownian path. That
is, there exists a jointly continuous local time s(¢, x) such that

(1.2) s(t, x) = li f I(—w(B(s)) ds for all (¢, x) in [0, ©) X R a.s.
2dx |,

(Our definition of local time is the sojourn density with respect to the speed measure of a
diffusion, whence the factor '.) Hence s(¢, x) is defined for all (¢, x) simultaneously
(although the definition is clearly not intrinsic), yet (1.1), like the other intrinsic descrip-
tions given in It6 and McKean (1965), recovers the local time for only a single value of x,
for w outside an exceptional null set. It is the aim of this paper to show that the uncountably
many null sets that arise for different values of x in (1.1) may be combined into a single
null set and hence establish a global intrinsic characterization of local time. In fact our
main result states that the convergence in (1.1) is uniform in x a.s.

THEOREM 1.1. The following holds with probability one: For every t’' > 0,
lm0+sup(,,x)e[o,,r]x3 | 81/2n(t, X, 8) - 2(2/7)1/28(t, x) | = 0.

The above result is established by means of an intuitive nonstandard representation of
local time. In Anderson (1976) a Brownian motion B(t¢) is constructed by taking the
standard part of an infinitesimal random walk X that takes a step of size =(Az)"/% each
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with probability %, for every time interval of length A¢, where At is a positive infinitesimal.
How should we define the local time of X? To answer this question, consider the heuristic
formula

s(¢, x) ﬂ% f Tt x+a0(B(s)) ds(Ax) ™.
0

Replace B by X, [ by 3, ds by At, t by jAt, x by k(At)/%, and Ax by (A£)** to obtain the
following definition for the local time of X:

LA, k(A7) = % S8 Ty (X(iA)) (A8)2.

In Section 3 it is shown that the local time of B may be obtained from L via the standard
part map, just as B was constructed from X in Anderson (1976). In Section 4, Theorem 1.1
is proved after two other global intrinsic characterizations of local time are established.
More specifically, the characterizations of local time in terms of the limiting behavior (as
& approaches zero) of the Lebesgue measure of the set of excursions that are less than § in
length (see It6 and McKean (1965, page 43)), and of the Lebesgue measure of the set of
points within 8/2 of Z(¢, x) (see Kingman (1973)) are also shown to hold uniformly in x
with probability one. The proof of Theorem 1.1 then follows easily from these results. The
key idea in our approach is that the zero set of B may be analyzed by means of the zero set
of X, which is a discrete set of points in {i{At|i € *N,} and lends itself to combinatorial
methods. In particular, it is possible to list the zeros of X in increasing order, which clearly
cannot be done for a Brownian motion.

In Section 2 the probability space on which we will work is introduced and a brief
description of the nonstandard constructions of Brownian motion and Lebesgue measure
in Anderson (1976) is given.

The presentation assumes a basic knowledge of nonstandard analysis (see, for example,
Stroyan and Luxemburg (1976)) and a familiarity with the results in Loeb (1975) and
Anderson (1976). All the essential prerequisites may be found in Loeb (1979). It is
nonetheless hoped that much of this work be accessible, at least on an intuitive level, to a
reader with little or no knowledge of nonstandard analysis. In fact, after Theorem 4.7 is
established, the proof of the main results described above are totally standard.

2. Preliminaries. The nonstandard real numbers, *R, contains the real numbers R
and also contains infinitesimally small non-zero numbers which are less than every positive
real in absolute value. Since *R contains the reciprocals of these infinitesimals, it also
includes infinitely large numbers which are greater in absolute value than every positive
real. The latter statement is also true of *Z and *N,, the sets of nonstandard integers and
non-negative integers. Each element x of *R that is not infinitely great is infinitesimally
close to a unique real number called the standard part of x. For technical reasons we need
to assume that *R is contained in an w;-saturated enlargement. Although this assumption
is necessary for proofs, the foregoing description is sufficient for an intuitive understanding
of this paper.

The standard part map from *R" to R™ U {} is denoted by °, or occasionally by st,
and we write x; = x; if °(x; — x2) = 0. For any subset A of *R", the set of near-standard
pointsin A (i.e. {x EA|° || x | < «}) is denoted by ns(A). If U is an internal subset of *R"
and F'is an internal function from U to *R, then F'is S-continuous on U if whenever u; and
us are in ns(U) and satisfy °u; = °ug, then °F(u;) = °F(uz) € R. It is easy to see that
whenever F is S-continuous on U, we may define a continuous function f from °(ns(U)) to
R by f(°u) = °F(u).

Our probability space is almost identical to that used in Anderson (1976). More
specifically, consider the following setting:

(1) Let At be a positive infinitesimal and define T' = {iAt|i € *No} and S = {i(At)"?|i
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Y. We let ¥ (respectively 2) denote the internal algebra of all internal subsets of T
(respectively S), and let A (respectively y1) denote the internal measure defined on (7, %)
(respectively (S, 2)) by A(A) = | A| At (respectively u(4) = | A | (At)/?), where | A | is the
internal cardinality of A.

(2) Let Q be the set of internal mappings from T to {—1, 1} and & be the internal
product ¢-algebra. Sample points in Q are written as w = (wt)ter, and for each ¢ in T, the
internal sub-o-algebra of .o/ generated by the collection of coordinate mappings {w; | s < ¢}
is denoted by ;. An internal probability measure P is then defined on (2, <) by

P({w| (w0, +++, @) E Ao X + - X Ag}) = [[5-0 Q(4,),

where {A;|0 =< s <t} is an internal sequence of subsets of {—1, 1} and @ assigns probability
% to each element of {—1, 1}. Internal expectation with respect to P is denoted by E.

(3) For each ¢t in T, a shift mapping 6; from Q to Q is defined by (f;w)s = ws+s. It is easy
to see that forall A in &/ and ¢in T,

(2.1) P(6;'(A) | ) = P(A).
(4) We define an infinitesimal random walk X : T X @ — S by
X(t, 0) = Y o<s=ews(AL) 2,

(5) Lebesgue measure on the line is denoted by m and % represents the Borel sets of R,
or of some measurable subset of R.

€ *Z}. Elements of T are denoted by s, £, and u, while elements of S are denoted by x and

DEFINITION 2.1.  If U is an internal subset of *R", an internal stochastic process on U
is an internal function Y from U X € to *R such that for each « in U and B in *&%,
{w|X(u, w) € B} € «.

The fundamental construction in Loeb (1975) allows us to extend °P to a unique
probability measure L(P) on o( /), the standard o-algebra generated by 7. We denote the
completion of (2, o( /), L(P)) by (Q, % P). Similarly we may construct standard measure
spaces (T, o( %), L())) and (S, o( 2), L(n)) with completions (T, L( %), L(\)) and (S, L( 2),
L(u)), respectively. (We have used Corollary 1 in Henson (1979) to obtain the uniqueness
of L(A) and L(p).)

DEFINITION 2.2.  An internal stochastic process Y on U is S-continuous if Y{(-, w) is S-
continuous on U(P—a.s.).

It follows immediately from our earlier remarks and Theorem 2 in Loeb (1975) that if
Y is an S-continuous stochastic process on U then we may define a (standard) stochastic
process on (2, % P) with continuous paths on its index set °(ns(U)) by

o _1°Y(u, w) if Y(-, w) is S-continuous on U
22) y(Cu, 0) = {O otherwise.

NoraTion 2.3. We write y = st(Y) for the process y defined by (2.2). This of course
includes the deterministic case.

In Anderson (1976) it is shown that X is an S-continuous process on T and that the
continuous stochastic process B = s¢(X) is a Brownian motion on (2, % P). The same
article has a nonstandard construction of Lebesgue measure which we now present in a
slightly modified form. Since ns(T') = Uz-; *[0, n] N T € L( %), we may consider L(\) as
a measure on L,;( %), the trace of L( ¢) on ns(T). If a similar convention is made for L( w,
then Theorem 14 in Anderson (1976) implies the following:

THEOREM 2.4. The mappings ° : (ns(T), L.( %), L(A)) = ([0, ©),8, m) and ° : (ns(S),
L.s(2), L(p)) — (R, B, m) are measurable and measure-preserving. [

We will also use the nonstandard representation of the It6 integral with respect to B
that is developed in [1].
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3. The Nonstandard Construction of Local Time.

DEFINITION 3.1. The *-local time of X is the internal stochastic process L on T' X S
defined by

L(t, x, w) =% Y428 Ii5) (X(s)) (A1),
A related internal stochastic process on 7' X S is defined by
J(t, % @) = T4 L300 (X(8))wsrar(A D).

Hence L(t, x, w) is just the number of times X visits x before £ Intuitively local time
measures the length of time X spends at x. The significance of L(¢, x, w) is that it captures
the intuitive idea exactly, whereas in the usual models one has to resort to less direct
methods (e.g. the Radon-Nikodym theorem).

Note that J(-, x, w) behaves exactly like X when X > x and is constant when X < x.

Our immediate objectives are first to show that L is an S-continuous process on T'X S
and then prove that st(L) is the local time of B. The first result is proved by means of the
following nonstandard version of a classical result of Kolmogorov.

LEMMA 3.2. Suppose b € (0, ), c € (1, ), and Y is an internal stochastic process on
T X S satisfying the folowing conditions:

(1) For each x in ns(S), Y(-, x) is an S-continuous process on T.

(2) For each t in ns(T), there exists a positive real constant c(t) such that whenever
x and x’ are infinitesimally close elements of ns(S), we have

E(maxg=| Y(s, x) — Y(s,2") |) s e(®) |x — x|

Then Y is an S-continuous processon T X S. 0O

The proof of the above result is virtually identical to the classical proof (see for example
[2, Th.4.1.8, page 164]) and may be found in [12, page 196]. Note that there is no need to
select a separable version of the process Y since the parameter set 7' X S is a *-countable
set of points.

LEMMA 3.3. There exist real constants ¢; and cs such that for all (t, x) in T X S:
(@) P(X(t) = x) < c1(A)*(t + A)™2
() E(L(t, %)°) < cat.

Proor. Part (a) is a trivial application of the Transfer Principle and Stirling’s Formula.
For (b) we note that

E(L(& %)) =% BB Iy X () (B02))
=% Y48 Y48 Bl (X (1)) ) (X(s2) — X(51))A¢)

= ci/2 THE TG (s + AT (s — s + At)TVA(AL)?
t rt

=c¥/2 J f sTY%(sp — 81)7V2 *ds, *ds,
0 Js,

= 2¢it.

(Here *ds denotes internal Lebesgue integration.) 0O

We are now ready to prove the S-continuity of L. Our approach is analogous to that in
McKean (1969, pages 68-71) in that Lemma 3.2 is used to establish the S-continuity of J
and then the nonstandard version of a well-known formula of Tanaka gives us the S-
continuity of L.
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THEOREM 3.4. (a) The internal stochastic process J is S-continuous on T X S and
for each x in ns(S) satisfies

(3.1) °J(t, x) = J’ _I(og,m)(B(s)) dB(s) for all tin ns(T) as.
0

(b) For almost all w we have
(3.2) (X(@) — 2)* — (—2)* = J(t, x) + L, x)

for all (¢, x) in ns(T X S).
(¢) The process L is S-continuous on T X S.

REMARK 3.5. Equation (3.2) may be rewritten as

¢

X -0 - (2" = f Iy (X(s)) dX(s) + L(¢, x)

(3.3) 0

for all ¢, x) in ns(T X S) as.,

which is somewhat more transparent than the standard form of Tanaka’s formula,
t

34 BE)—x)"—(-x)"= j L. (B(s)) dB(s) + s(t, x) for all ¢in [0, =) a.s., for all x.

0

Indeed, when X(¢) exceeds x, (X(¢£) — x)* behaves exactly like X, when X(¢) is less than £,
(X(¢) — x)* remains constant at zero, and when X(¢) equals x, (X(¢) — x)* will increase by
(At)'? if X(t) does, and will remain constant otherwise. This last contribution leads us to
add on the sum of the upcrossings of X from x to x + (A#)/* up to time £, which is
infinitesimally close to L(¢, x) since, starting from x, X is equally likely to go up or down.

Proof. (a) It suffices to show that the conditions of Lemma 3.2 are satisfied by J
with b = 4 and ¢ = 2. Since P(°X(s) = °x) = 0 for each (s, x) in ns(T X S) with °s > 0, it
follows that I, «)(X(s)) is a 2-lifting of I (=, (B(s)) in the sense of Anderson (1976, Definition
30). Therefore by Anderson (1976, Theorems 33 and 35), for each x in ns(S), J(-, x) is an
S-continuous process on T and satisfies (3.1). To verify condition (2) of Lemma 3.2, we fix
tin ns(T') and x < x’ in ns(S) such that x = x’. Since {(J(¢, x) — J(t, x’), &) |t € T} isan
internal martingale, a well-known square function inequality for martingales (Burkholder
(1973, Theorem 15.1)) and the Transfer Principle imply that for some real constant ¢

E(max,<; (J(s, ¥) — J(s, ¥'))*)
< cE((TE Ii5,51(X(5)) (ws+ar)*At)?)
< 2eE(T428 YEAL T o )(X(80))  i5.51(X(52)) (A 1))
=< 2cE (Y526 TEAL T (X (s1)  g-v5-5(X(52) — X(51))(A2)?)
= deci(x’ — x)X(TH26 THAL, (1 + A V(s — &1 + AE)TV2(A)?),

where we have used Lemma 3.3 (a) to obtain the last line. The *-finite sum in the above
expression is bounded above (and is infinitesimally close to) the integral [% [& (si(s: —
§1)) Y2 *ds, *ds;, which is less than 4¢. Condition (2) of Lemma 3.2 now follows from the
above bounds and the proof of (a) is complete.

(b) If Y(¢, x) = (X(2) — x)* — (—x)*, then a brief examination of the different possible
cases shows that

Y(t + At, x) = Y(, %) + L5 0)(X(0))wpnr(B8) + Ty (X(2)) ) (Wprar) (AE)2,
By induction one obtains

Y2, %) = T4 L3 (X(8)) w048 A8) 7 + T4 Ty (X ()T 1y (wseae) (AE)
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= J(t, ¥) + L(t, 1) + TED Iy (X(9)) Uy (wseae) — %) (B8)*
= J(t, x) + L(t, 1) + % T Ty (X(8))wsrar(82)
= J(t, x) + Lt x) + %It x — B)"*) — J(¢, x)).

The S-continuity of / established in (a) now gives us (3.2).
Part (c) follows immediately from (a), (b) and the S-continuity of X. [

At this point we could use Tanaka’s formula (3.4), (3.1) and (3.2) to immediately
conclude that st(L) is the local time of B. With only a little more effort, however, we can
prove directly that st(L) is a continuous sojourn density for B and obtain Tanaka’s formula
as a corollary.

THEOREM 3.6. The process st(L)(t, x) is the jointly continuous local time s(t, x) of B,
that is, it satisfies st(L)(t, x) = % (d/dx) [ I—x(B(s)) ds for all (t, x) in [0, ©) X R as.

ProOOF. This is an immediate consequence of Theorem 3.4(c) and the following lemma.

LeEMMA 3.7. Let G : T — S be internal and S-continuous. Assume that F(t, x) =
% ¥ o<t 1153(G(8)) (A8)'7? is S-continuous on T X S. Then

st(F)(t, x) = § (—1;(3- J I(—eo,x](st(G)(s)) ds.
o

Proor. Let f= st(F), g = st(G) and D be a countable dense subset of R such that
[8 I3 (&(s)) ds = 0 for all x in D. (The existence of D is clear since a o-finite measure can
assign positive mass to at most countably many singletons.) Fix (¢, x) in [0, ®) X D and (¢,
x) in T X S such that °(¢, x) = (¢, x). Theorem 2.4 implies that

J’ I (8(s)) ds = f To,0(8) (-, (°G(s)) dL(A)
0

T

= J Tjo,0(8) (-, 1(G(s)) AL(A)
T

= J Tio,0)(8) (0, 1(° G(5)) dL(A)
T

t
= f I(—oo,x](g(s)) ds.
0
Since x is in D, the left and right-hand sides are equal, and therefore

J Iw(8(s)) ds = J Tjo,0)(9)I(—=,51(G(s)) dL(A)
0

T

= ° Yo<t I(-o,51(G(5)) AL (by Loeb (1975, Theorem 3))
= ° Yot Y y=s I (Gls)) (A1) *(At)'
=2° Zzsx F(, .}')(At)l/z

=2 J I (°y)°F(t, y) dL(w) (by Loeb (1975, Theorem 3))
ns(S)

=2 J Icwn(°Y)f(2, °y) dL(p).
ns(S)
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By applying Theorem 2.4 on the right-hand side, we obtain

(3.5) j I (g(s)) ds =2 j ft,y) dy
0 —o0

for all (¢, x) in [0, ©) X D. Since both sides of (3.5) are right-continuous in x, (3.5) holds for
all (¢, x) in [0, ) X R and the result follows by differentiating (3.5) with respect to x. 0

REMARK 3.8. Tanaka’s formula (3.4) now follows immediately from the above result
and (3.1) by applying the standard part map to (3.2).

Although we have only proven Tanaka’s formula and the existence of a jointly contin-
uous local time for the particular Brownian motion B = st(X), these results now follow
easily for every continuous Brownian motion. Indeed, it is easy to see that Tanaka’s
formula and the existence and joint continuity of s(¢, x) is a property of Wiener measure
on the space of continuous function on [0, »), and not the particular Brownian motion
under consideration.

4. The global intrinsic characterization. In order to study the relationship be-
tween the local time s(¢, x) and the random set Z(¢, x) = {s < ¢| B(s) = x}, we will compare
the *-local time L (¢, x) with certain functions of the random set {s < ¢| X(s) = x} for (¢, x)
= (t, x). In studying Z(t, x) the following notation is used.

NorarTion 4.1.

(1) I(t, x) = {IC [0, t]]| I is a connected component of Z(wx, x)°}

(2) a(t, x,8) = {s € R||s — u| < 8/2 for some u in Z(¢, x)}

3) a'(t, x,8) =U {I|I €It x), m(I) = §)

(4) n(t, x, 8) = card{I € I(¢, x) |m(I) > 8}.

It follows easily from the characterization of s(¢, x) as the “mesure du voisinage” of B
(i.e. (1.1)) that for each x in R

4.1) lims o+m(a’(¢, x, 8))87% = 2(2/m)?s(t, x) for all = 0 a.s.

(see Lévy (1948, page 224)). Since the existence of a sojourn density for B implies that for
almost all w, Z(¢, x) has Lebesgue measure zero for all (¢, x), Theorem 1 of Kingman (1973)
implies that with probability one,

m(a(ty X, 8)) = SI(Z(t,x);‘)U) + sn(ty X, 8) + m(d(t, X, 8 ))’
(4.2)
for all (¢, x) in [0, ) X R.

Combining (1.1), (4.1) and (4.2), we obtain the intrinsic description of local time in Kingman
(1973) (in the special case of a Brownian motion), that is, for each x

4.3) lims_o+m(a(t, x, 8))8% = 4(2/7)"/%s(t, x) for all = 0 a.s.

As was the case for (1.1), both (4.2) and (4.3) are valid for w outside an exceptional null set
that may depend on x. In order to prove Theorem 1.1 we will first show that the
convergence in (4.3) holds uniformly in x a.s., then establish the same result for (4.1), and
finally obtain Theorem 1.1 from these results by means of (4.2). The first step is to define
internal stochastic processes that represent

m(a(t, x, 8) U a(t, x’,8))0 Y2  and m(a’(t, x,8) U a’(, x’,8))6 /2.

NoraTioN 4.2. Ifx,xX €S, t, 8 € T, and § > 0, then
(a) T(0) = min{z > 0| X(t) = 0},
T(x, x’) = min{t > 0| X(¢) = x or '},
(b) Ulx, 8) = (T(0, x) A 8872, U'(x, §) = T(0, x) 8 *Lron=s)>
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(c) M(t, x, ¥, 8 ) §1%‘ (I(lc} XU — 1, 9)°4) + Iy (X())(Ulx — 1/, §)bs)),
(d) Mt 7, 1", 0) = Ti0" Uy XU’ (3" — 1, 8)°0;) + Ipy X(&))U'(x — %7, 9)°4,)),
(&) M"(¢, x, 8) = Xi%" Iy X()NU'(O, 9)<6,),

where 6, is the shift mapping defined at the beginning of Section 2.

LEMMA 4.3. For each (¢, x, X', 8) in [0, ©) X R* X (0, ), there exists a null set A such
thatif w & A and (¢, x, ¥, 8) € T X 8% X T and satisfies °(t, x, x', 8) = (¢, x, x’, 8) and x
# x’, then

(@) |°M(¢, x, &', 8) — m(a(t, x, 8) U a(t, x’, 8))87/*| < §'%,
(b) | °M” (¢, x, 8) — m(a'(t x,a))8_1/2|< 812
(c) m(a’(t, x,8) Ua'lt, x’, 8)67 2 < °M'(t, x, x', 9).

Proor. If (¢, x, x/, 8) is fixed, let A° be the set of probability one for which the following
conditions are satisfied:

(C1) There are no local extrema of B in Z(o, x) U Z(wx, x’).

(Cs) There is no I in I(w, x) U I(, x’) such that m(I) = 6.

(Cs) Both x and x’ are distinct from B(¢).

(C4) lim sups.«B(s) = + 0, and lim inf,_,.B(s) = — .

(Cs) The local time (in the sense of (1.2)) exists and is jointly continuous, and Xis S-

continuous on 7.

That (C,) and (C,) are satisfied by almost all Brownian paths are well-known properties of
Brownian motion. If (C,) is false, then there exists a rational r such that the length of the
excursion away from x containing r is 8. Since the length of the excursion containing r has
a density (Lévy (1948, Theorem 44.4)), (Cs) holds a.s. That (C;) holds a.s., is left for the
reader to check.

Choose w in A° and (¢, x, x’, 8) as in the statement of the lemma. We may assume
without loss of generality that § = 2yAt for some y in *N since °y = « and

(2y/2y + 1)V2M(¢t, x, ', 2yAt) = M(¢, x, &, (2y + 1)A?)
= (2y + 2/2y + 1)V°M(L, x, %/, (2y + 2)AY),

would then give (a) for every § = 8, and similarly for (b) and (c).
(a) Let {s <t|X(s) =xorx’} = {to, ..., tn-1}, where £; < £;+; and define ¢ty = min{s
= t| X(s) = x or &} (by (Cy)°ty < ). If

A=UNg"((t;, t: + 8/2] U (tir1 — /2, tii]) N (& L] N T,
then
(4.4) AMA)SV2 = TG ((tier — &) A BV = M(t, %, X, D).

Ifu€e A — (tv — 8/2, tn], then |u — t;| < §/2 for some i = N — 1. Therefore °t; < t, B(°t)
= °X(%) € {x, x’} and | °u — °t;| =< §/2, which together imply that °u € a(t, x, &) U a(¢, x/,
&) for all & > 8. Hence, for all § > &

45) °M(t, x, ¥, 8) = °(\(A)07?) = §'2/2 + LA\ (st (a(t, x,8") U a(t, x',8")))57/*
=§"%/2 + m(a(t, x, &) U al(t, x’, 8"))67/2
(the last by Theorem 2.4). The existence of a sojourn density for B implies that
m({s||s — u|=8/2 for some u in Z(t, x) U Z(t, x')}) = 0
and therefore we may let 8 approach & in (4.5) to obtain
(4.6) °M(¢, x, x', 8) < 87%/2 + m(a(t, x,8) U a(t, x’,8))67 2

To obtain an inequality in the opposite direction, suppose °s € a(t, x, 8) U a(¢, x', 8§) and
t> °s > °ty = inf{s| B(s) € {x, x'}}. The last equality holds by (C;) and implies that we are
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excluding a subset of a(t, x, §) U a(¢, x’, §) of Lebesgue measure no more than 8. There
exists u in Z(t, x) U Z(t, x’) such that |u — °s| < /2 and (C;) implies that u < ¢. By (C,)
there exists ¥ = u such that X(u) = x or x’, since otherwise X(z) > x (or x’)or X(u) < x
(or x’) for all ¥ = u, hence for all u within n™* of u (for some n in N), and therefore B would
have a local extremum in Z(o, x) U Z(, x’). Since u < ¢, lu—s|<d/2andth<s<tit
follows that s € A and therefore

m(a(t, x, 8) U a(t, x, 8))87/%2 = LA) (st (a(t, x,8) U a(t, x’,8)))8 /2

(by Theorem 2.4)
=82+ L(\)(A)87
= 81/2 + OM(ty -ZC, 25/, ‘5) (by (4'4))'

Combining (4.6) and (4.7), we obtain (a).
(b) Let

A”(t, x, 8) = {s € T|there exist y, < ¢ and u, € T such that

(4.7)

U1 =5<Uz, X(ui) =xfori=1,2 and u, — u, = 8).
It follows from the definition of M” that
M"(¢, x,8) = MA”(¢, x, §))672

Suppose that °s € @/(t, x, ), so that there exist u; < u, < ¢ such that u; < °s < uz, B (u;)
=x(=1,2), and u; — u; < 8. By (C:), we see that u; — u; < 8, and since u; cannot be a
local extrema of B(-), there exist u; = u; such that X (u;) = x(i = 1, 2). Since u: — u; < §,
U1 = s < up, and u; < ¢, it follows that s € A”(¢, x, 8) and therefore, we have shown

4.8) st (@(¢, %, 8)) C A”(¢t, 3, ).

Lets € A”(¢, x, 8) — st™(Z(t, x) U (¢t — 8, t]), and let u;, u be as in the definition of A” (¢,
x, 9). Clearly °u; = °s =< °u,, B(°w;) = x(i = 1, 2), and °u; — °u; < 8. Since B(°s) # x, and
°us < °s + 8 = ¢, it follows that °s € a’(¢, x, 8). Therefore we have shown

(4.9) A”(t, %, 8) — st™HZ(t, x) U (¢ — 8, t]) C st (a'(¢, x,0)).
By combining (4.8) and (4.9), and using Theorem 2.4, one may conclude that
M (L, x, 8) = °(A(A"(Z, %, §))677)

=LA (st™(a'(t, x,8)))87 2 (by (4.8))

=m(a'(t, x, 8))6 12 (by theorem 2.4)

= °A(A"(, %, 0))872 = 8% (by (4.9))

=°M"(t, x, 8) — 8",
where we have used the fact that L(\) (st '(Z (¢, x))) = m(Z(¢, x)) = 0 (by (Cs)). Hence (b)
follows immediately.

(c) If
A'(t, x, ¥, 8) = {s € T| there exist u; < ¢ and u; € T such that

U1 <§<u, X(w;) =xory (fori=1,2),and up — u; < 8},
then, by the definition of M’(¢, x, x/, §),
M (tx%,8) =NA'(@ %, ¥, 8)072
Since A”(¢, x, 0) UA" (¢, ¥/, §) C A'(¢, x, &, 8), (4.8) implies that
m(a'(t, x,8) U a'(t, 2/, 8))87/* = LA\) (st ™ (a/(t, x,8) U a'(t, x/,8)))5 /2

=°NMA"({ %, ) UA"(L, &, 8))872
=°NMA'(L, %, ¥, §)672
=°M'(t x, ¥, 9), as required. [0
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The limiting behavior of m(a(t, x, 8) U a(t, x, §))6 /% and m(a'(¢, x, §))87/* as §
approaches zero is now determined by the corresponding behavior of °M (¢, x, ¥/, §) and
°M”(t, x, §). In order to study the latter two processes we use some elementary combina-
torial probability theory to examine the internal distributions of U(y, §) and U’(y, 9).

NorAaTION 4.4. If § > 0isin T and n is a natural number, let
Pa(8) = E(((T(0) A 8)/8)")(8/A¢)'"72,
and pr(d) = E(T (0 (ro=s) /8)")(8/A¢)">.
If in addition x € S, then define

_[EUx, 8) B2 ifx#0
(s 0) = {1/21»1(@) fx=0,

and

v o [E(U 5 8)B0)™ ifx#0
q(x’é)_{‘/zpi@) ifx = 0.

LEMMA 4.5. (a) If § = YAt for some y in *N — N then for all n in N,
°pn(8) = @m)Vn = Yo) T + (2/m)?
and °pr(®) = (2m)(n — %)\
(b) Ifx€Sand §>0isin T, then
pi(/2=q(x 8 =p:d)/2 + |x|/20"*
and pi0/2 = q'(x, 8) = pi(®)/2 + | x| /28

PrOOF. (a) As in the proof of Lemma 4.3 we may assume without loss of generality
that § = 2yAt for some y in *N — N. If j € *N, then

P(T(0) = 2jAt) = 2/j<23.j__11))2‘2'

by an elementary counting argument (see Feller (1968, II1.3, Lemma 2)). An easy appli-
cation of the “reflection principle” implies that

P(T(0) > 2yAt) = P(X(2yAt) = 0) = ( 77)2—21.
Therefore if n € N, then

P (8) = Tt (2;At/2yAt)"(2y)l/2(2/;)(2(1 1’)2-2f+(2y)1/2<2yy)2—27

= 245(2%1 (Vi v”‘”z)(z(j’__ll))z-ﬁ) +(2y) "2<2Y7)2-2*.
By Stirling’s Formula and the Transfer Principle if ¢ € *N, then
2‘2‘(21) = (1 + &)(m)™2

where §; = 0if i € *N — N. Therefore

(4.10)

(4.11) 2y) 1/2<2Y7)2-21 = (2/mY¥1 + §,) = (2/m)*2

Since the first term in (4.10) is p7 (8), we have
pr@d) = 22 Sk (7YY G2 - DYA + 8) ()2

(4.12)
= @2m) V2 i G/ + 8) 7
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where §; = 0if j € *N — N and °(supjesn 8;) < ». We note that

1

(4.13) Yo (G/y) Ny = f "2 dt = (n — %)~

(]

and therefore
Lo /7" P8jy ™ S O(B3 8)y™%) + © (@maxyunsymy 8) Tmr (/7)™ ™)

1
(4.14) = °((maxi<)=y4 67) 7_1/4) + °(max,iiz)=<y 87) j 2 dt
o

=0.
By substituting (4.13) and (4.14) into (4.12), we see that
°pr(®) = 2m) (n — %),
and therefore by (4.10) and (4.11),
°pn(8) = 2m) V2 (n — %) + (2/m) 2

(b) We prove the result only for g (x, §), as the argument for ¢’(x, 9) is identical. Since
the inequality is obvious for x = 0 and ¢ (%, §) = ¢ (—x, §) by symmetry, we may assume x
> 0. Then

q(x,08) = E(T(0, x) A §)(@At)™?
= j (At + T(—(At)% x — (At)/?)o0hc) A § dP(8AL)™?
{war=1}

+ f T(0) A § dP(8AE) 2,
{war=—1}

By symmetry the second term is %p1(8). The first term is bounded above by
BLE AL+ T(—(At)Y2 x — (A)V2))(0AL) V2 = x/28'2,
and the result follows. [

If °x = °x’, x # 1’ and °§ > 0, then the pre\;ious two results show that

|m(a(°t, °x, °8))(°8) ™% — °M(¢, x, &', 8) | = (°§)* as.
and °(2q(x — x, (Lt ») + Lt ¥))) = 4(2/m)'s(°t, °x).

Hence the original problem of comparing m(a(t, x, 8))6 /% and 4(2/m)"/?s(¢, x) has been
translated into the nonstandard problem of comparing M (¢, x, ¥, §) and 2q(x’ — %, J)
«(L(2 x) + L(t, x')). Similarly a comparison of m(a'(¢, x, 8)) and 2(2/7)"/*s(¢, x) is equivalent
to a comparison of M” (¢, x, 8) and 2p1(d)L(¢, x).

The following lemma uses a square function inequality in Burkholder (1973, Theorem
21.1) that implies, among other things, that for each p > 0 there exists a real constant C,
such that for every martingale {(f., %) |n € N}, if (£, f)n = X1 E((f: = fi-1)?| Fi-1) (fo
= 0 and % is the trivial o-field), then

(4.15) E (maxi.|f;|?) = CE({f, )2 + maXi<n|f: — fi-1|P)-

LEMMA 4.6. There exists a real constant cs such that whenever x and x’ are distinct
elements of S, and t and § = YAt <1 are elements of T with y € *N — N, then
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(a) E((M(t, % %, 0) —2q(x" — x, (L x) + L, &))*) = es(t v 1)§,
(b) E((M” (¢ x, 8) — 2p1(9)L(¢, x)*) s st v 1)9,
(c) E(M'(t, x, ¥, 8) — 2¢'(¥' — x, O)(L(t, x) + L(t, ¥)))*) < cs(t v 1)8.
Proor. (a) Choose ¢, x, 2" and § as in the statement of the theorem, and define
Y(t)=M(t, x, &, 8) — 29" — x,8)(L(t, ) + L(£, x'))
= Yid U» X)) A2 (V(x — x, 0)°%;) + Iixy (X (5))(A 82 (Vix — x,8)%;)),

where V(y, 0) = Uly, 0)(At)™2 — q(y, §).

An easy computation using (2.1) shows that {(Y (s), #) | s € T} is an internal martingale.
Therefore the Transfer Principle and (4.15) imply that

E(Y(t)') = CE((BE Iy X(DALE(V(x = 5, 8)%6, | 4,)

=0
+ Ity X ()AtE ((V(x — &/, 8)°0.) | 6))?)
+CE(TEY (I (X (8))(A) V(¥ — x, 8)°6,)*

+ Iy (X () (A V(x = ¥/, 8)°0,)*).

Denote the first term of the above expression by E1, and the second term by E.. We note
that

E(V(E -, 8)°0,)* | o) = Var(U (@' — x,8))A¢)™
= E((T(0) A §/8)*)3(at)™
= p2(8)(8/A¢t)".
Therefore E; is bounded by
Cip2(9)*(8/A)ALE((TEE Iy (X () (ML) + Iy (X(s))(A2)%)?)

=0

= Cup2()°88E (L(t, x)* + L(t, ¥')*) < Cap2(8)’816c2t

(the last by Lemma 3.3). Since °p(9) is finite, E, is bounded by ;28 for some real a;. In
order to bound E;, we use (2.1) to see that

E((V(¥ — 5 00°6,) | ) = E(V(x' — x,8)")
= :E((T(0) A §/8)*)8°(At)* = axpa(3) (8 /A )2,
where a; is real. Hence E; is bounded by
Cizps(8)(8/At)*(At)*°E (2L(t, x) + 2L(¢, ') < Caoa ps (8)0¥24V 2Vt

(the last by Lemma 3.3). Since § < 1 and °p4(9) is finite, it follows that E; < a38(¢ v 1) for
some real as, and the result is now immediate from this, and the above bound on E;.
The proofs of (b) and (c) are identical to the above and are therefore omitted. O

The above result is now “standardized” by means of Lemmas 4.3 and 4.5.

THEOREM 4.7. There exist functions c:R X (0, 1] — [0, ) and ¢’:R X (0, 1] — [0,
), and a real constant ¢4 such that for all § in (0, 1], x, x’ in R, and t = 0, the following
conditions hold:

(i) 2@/mY*=<c(x,8) < 22/m" + |x|672 and
(2/m)2 < ¢'(x, 8) < @/m)"”* + | 2|87,
i) E((m(a(t, x,8) U alt, ¥, 867/ — c(x’ — x,8)(s(t, ) + s(t, ) )= e (v 15,
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(i) E((m(a'(¢, x,8))87% — 2(2/m)/2s(t, x))*) < eu(t v 1)8,
(iv) E(((m(a’(2, x,8) U a'(t, &/, 8))8 % — ¢'(x' — x,8)(s(t, x) + s(t, X)) )
=<c4(t v 1)8.

Proor. If (x,8) € R X (0, 1] and (x, §) € S X T satisfy x € [x — (A)2 x) and 6 €
[d — At, §), then define c(x, §) = 2°¢(x, §) and ¢'(x, 8) = 2°¢(x, §). Condition (i) now
follows by taking standard parts in Lemma 4.5(b).

Fix §, ¢, x and x’ as in the statement of the theorem and choose (3, ¢, x, 1) in T2 X S?

such that °(¢, x, x') = (¢, x, x'), 6 E[§ — At, §) and ¥’ — x € [¢' — x — (A8)V% &' — 1) (in
particular x # x’). Since ¢(x’ — x, §) = 2°q (x’ — x, §) we see that

E((m(a(t, x,8) U a(t, /,8))872 — c(x’ — x,8)(s(t, x) + s(¢, ')))*)
= 8E((m(a(t, X, 8) U a(t’ x,, 8))8_1/2 - OM(_t’ X, 3«/, 5))4)
+8E(°(M(¢ x, &', 8) — 2q(x’ — x,8)(L(¢t, x) + L(¢, 2))*).

The first term is bounded by 85* by Lemma 4.3(a), and since E (°| W|) < °E (]| W|) for any
internal «/-measurable random variable W, Lemma 4.6(a) bounds the second term by 8cs(¢
v 1)é. Since § < 1, (ii) follows.

The proof of (iii) is similar to the above argument.

Since ¢’(x’ — x, §) =2°¢’(x’ — %, §), Lemma 4.3(c) implies that
E(((m(a'(8, x,8) U a'(8, &, 8))872 — ¢'(x' — x,8)(s(t, x) + s(¢, &))" )*)

SEC(M'(t, %, ¥ 8) —29'(x' — x,8)(L(t, x) + L(t, x'))*)*).

As in the proof of (ii) we may use Lemma 4.6(c) to bound the above by c3(f v 1)8.0

REMARK 4.8. If § and | x — x'|8 "2 are both small, then (i) implies that c(x’ — x, 8) is
close to 2(2/7)'/? and therefore c(x’ — x, 8)(s(t, x) + s(t, x')) is close to 4(2/7)?s(¢, x).
Hence from (ii) we see that both m(a(¢, x, 8))6 /% and m(a(t, x, 8) U a(¢, x', 8))6™Y2 are
close to 4(2/m)?s(¢, x), and in particular, there is almost a “complete overlap” between
a(t, x, 8) and a(t, x', ).

We will need the following rather crude result on the escape rate of a Brownian motion.

It follows immediately from Taylor (1974, Theorem 8), but since no proof is given there,
we give an elementary justification of the particular result that is required.

LEMMA 4.9. Assume that {a.|n € N} and {B.|n € N} are sequences of real numbers
converging to zero such that ¥ w_, B2 a, ™" < o for some m in N. If t = 0 is fixed and

An = {w I inf,,s; Supse(o,a,) IB(u + S) - B(u) I = Bn}ﬁ
then P (A, occurs infinitely often) = 0.

Proor. Fix t = 0 and define W, = {ja,/2|j € N, j < 2t/a, + 1} and V(8) = inf(t |
| B(¢)| = B}. Then
P(A;) = P(minsew, Supseio,a,/2| B(u + s) — B(u)| < 28,)
= 2t/an + )P (V(3B,) = . /2)
(4.16) = (2t/an + 1)(2/0x)"E(V(38:)™)
= C(m)(3B.)*"az ™ E (V(1)™),

where C(m) is a real constant and we have used the fact that V(8) and 82V (1) have the
same distributions. Since (4.16) is summable over n for an appropriate choice of m, the
result follows from the Borel-Cantelli Lemma. 0

In order to prove that (4.1) and (4.3) hold uniformly in x, we first show that they hold
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uniformly for x in a sequence of lattices {S,} that increase in size as 8 = 8, decreases to
zero.

LEMMA 4.10. Let S, = {kn"°|k € Z, | k| = n®} and if t = 0 is fixed, define

B, = {w|supses, |m(a(t, x, n™8))n"* — 4(2/7)"?s(t, x) | = n”/°}
U {w|supses,|m(a(t, x,n®) U a(t, x + n™°, n8)) /n"*
—c(n™®, n78)(s(t, x) + s(t, x + %)) | = V"),

and

Cr = {w|supses, |m(a'(¢, x, n"8))n~* — 2(2/7)"?s(t, x) | = n”V/°}
U {w|supxes, m(a’(t, x, n®) U &'(¢, x + n™%, n°®))/n"*
—c'(n™°, n8)(s(¢, x) + s(t, x + n~%)) = %},

Then P (B, U C, occurs infinitely often) = 0.

ProoF. Theorem 4.7 (ii) implies that
P(B,) = card(S,)n**(max.cs,E (m(a(t, x, n™%))/n"* — 4(2/m)"2s(t, x))*)
+ maxes E ((m(a(t, x, ") U a(t, x + n™°, n"®))/n"*
—c(n™®, n78)(s(t, x) + s(t, x + n™°)))*))
=3n%n*%(cs(t v Dn 8 + st v 1)n™®)
=6 cy(t v 1)n™%5,
Theorem 4.7 (iii) and (iv) lead to the same upper bound for P(C,), and hence the result
follows by the Borel-Cantelli Lemma. [J
We are finally ready to show that (4.3) holds uniformly in x.

THEOREM 4.11. The following holds with probability one:
For every t’ > 0, lims_,o+ sup(,»eqo,e1xz| m(a(t, x, 8))8 72 — 4(2/7)"2s(¢, x) | = 0.

Proor. Since s(-, x)|o,~1s a.s. uniformly continuous in ¢ uniformly in x (since |0,/ 1xr
is a.s. uniformly continuous), and m(a(-, x, 8§))8 /% is non-decreasing, it suffices to show
that for each ¢t > 0

lim; o+ sup.er| m(a(t, x, 8))8 72 — 4(2/m)?s(t, x) | =0 as.
In fact it suffices to show that
(4.17) lim, .. supzer|m(a(t, x, 8,))8:"% — 4(2/m)*s(t, x)| =0 as.

for some sequence {8.} decreasing to zero such that lim, . 8,+18," = 1. Indeed, if 8.+, <
8 < §,, then

(8n+1/8:)"’m(a(t, x, 8,41))8:37 < m(a(t, x, 8))8~V/*
=< (8n/8n+1)’m(alt, x, 8,))8,"2.

Therefore, if (4.17) holds, both the extreme left-hand and right-hand sides of (4.18)
converge to 4(2/7)"?s(t, x) uniformly in x a.s., and hence so does m(a(¢, x, §))8 /%

Let ¢t = 0 be fixed, define S, and B, as in Lemma 4.10 and define A, as in Lemma 4.9
with a, = n"? and 8, = n"°. Lemmas 4.9 and 4.10 imply that

(4.18)

N = {w| A, U B, occurs inﬁnitely often, or B( -, w) or s(-, -)(w) is not continuous}
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is a null set. Now fix w in N° and choose M (w) in N such that for all n = M the following
conditions hold:

(a) w& A, U B,

®) m—1)"+n%2=<(@m-1)7%72

(c) sups=¢| B(s) | <M.

It suffices to prove the existence of a sequence {e,|n > M} converging to zero such that

(4.19) supzer|m(a(t, x, n78))/n™* — 4(2/m)*s(t, x) | < €n.

If | x| = M then (c) implies s(¢, x) = 0 = m(a(¢, x, n7%)).

Suppose now that | x| < M, and for n > M let x, = sup{y € S, |y < x}. (Note that x,
exists and x, + ™ € S, since | x| <M =n — 1.) Fix n > M. If v € a(t, x, n™%), there exists
u in [0, ¢] such that B(u) = x and |u — v| < n™®/2. If s’ = inf{s = u| B(S) = Xn—1 OF Xn—1
+(n—1)°},thens’ —u<(n—1)"since w & A,_; and x,_; < B(s) < xn_, + (n — 1)7° for
all s in [u, s’]. In particular,

[v—¢§|=s|lv—ul+|u—-§|<n®2+n-1)T°<(n-1)%2
and s’ <t + (n — 1)~°, Therefore,
vEat+(n— 1) %, = D)) Ualt+(n— 1) xei+ (n — 1)7°, (n — 1)78),
and we have proven

at, x,n®)Ca(t+ (n—1)° x_1, (n — 1)7®)

(4.20) Uat+ (=1 201+ (n— 1), (n = 1)),

If v € a(t, x., %) N a(t, x, + n~°, n~8), then there exists u:, ux < ¢ such that B(u;) = xn,
B(uz) = x,+ n? and |u, — v| < n™%/2 for i = 1, 2. By the Intermediate Value Theorem,
there is a u in the closed interval with end points u; and u, such that B(u,) = x and | uo
—v| < n®/2. Hence, v € a(t, x, n®) and we have proven

(4.21) a(t, x,, %) N alt, x, + n°, n"%) C a(t, x, n°%).
From (4.20) we obtain
m(a(t, x, n"®))/n™*
=m@it+m -1 21, n -1 Ualt+ m—1)° %, + (n — 1),
(n=1)7")/(n - )™ xn*/(n-1)*
= (ma(t, o1, = DN U alt, oer + (= 1), (n = 1)) /(n - 1)*
+ (=17 + (= 1)) /(n=1)n*/(n - 1.
Since w & B, the above bound implies that
m(a(t, x,n™®)/n* < (c((n — 1)°, (n — 1)™8)(s(¢, Xn—1) + $(t, Xn1 + (n — 1)7°))
+(n=1)"+2(n-1)""n'/(n-1)*
= ((2/MV2+ (n — 1)) (s(8, Xno1) + 8(E X1 + (n — 1))
+(n—=1)"""+20n-1)"*n'/(n - 1)*

(the last by Theorem 4.7(1)). Since s(¢, -) is uniformly continuous and bounded, the above
estimate allows us to define a sequence {€;.|n > M} decreasing to zero and independent
of x such that

(4.22) m(a(t, x, n”%))/n~* < 4(2/7)?s(¢, x) + €.,

for all real x and n > M. To obtain a bound in the opposite direction we use (4.21) to see
that

m(a(t, x, n"%))/n"* = m(a(t, x,, n°°) N a(t, % + n°, n %)) /n*
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= (m(a(t, x,, n”%)) + m(a(t, %, + n°°, n8))
—m(a(t, x.,, n"®) U a(t, x, + n™° n8)))/n*
Since w & B,, it follows that
m(a(t, x, n78))/n~* = 4(2/m)2(s(t, x,) + s(t, %, + %))
—c(n®, n8)(s(¢, x.) + s(t, %, + n7°)) — 307

= (2(2/m)% — n7Y)(s(t, x,) + s(t, x, + %)) — 307V
(by Theorem 4.7(i)).

Again the uniform continuity and boundedness of s(z, -) leads to the existence of a
sequence {e€, | n > M} decreasing to zero and independent of x such that

(4.23) m(a(t, x, n8)/n"* = 4(2/7)"?s(t, x) — €/

for all real x and n > M. Clearly (4.22) and (4.23) imply (4.19) and the theorem is proved.
a

The proof that the convergence in (4.1) is uniform in x is similar to the above argument
in that we must show that the limiting behavior of m(a’(¢, x, 8.))6,*/* can be controlled by
the limiting behavior of the same expression evaluated at nearby points in S,. The
justification of this fact is slightly more delicate than the above proof and in fact uses the
previous result.

THEOREM 4.12. The following holds with probability one:

For every t' > 0, lims_.o+ Supg,»epo.rixr| m(a@'(t, x, 8))8 72 — 2(2/7)"* s(t, x) | = 0.

PROOF. As in the previous argument it suffices to fix ¢ = 0 and show that
(4.24) lim,,_, Sup:er| m(a’(t, x, 8,))8,"* — 2(2/m)?s(t, x) | =0 as.,

where {8,} decreases to zero and satisfies lim, ,8,+:8," = 1. Define S,, A, and C, as in
Lemmas 4.9 and 4.10, where «, = n"?/2 and 8, = n™" in the definition of A,. If

€n(w) = sup.er| m(a(t, x, n™°))/n~% — 4(2/7)*s(t, x) |,
then Lemmas 4.9 and 4.10 and Theorem 4.11 imply that
N = {w| A, U C, occurs infinitely often}
U {w|B(-, w) or s(-, -)(w) is not continuous}
U {w|lim supr—« € (w) > 0}

is a null set. Choose w in N° and M (w) in N such that sups=.| B(s) | <M and w € A, U C,
foralln = M.

If | x| = M, then clearly s(¢, x) = 0 = m(a’(t, x, n™%))/n~*.

Assume | x| < M, and for n > M let x, = max{y € S,|y < x}. Fix n > M and suppose
v E a'(t, x, %) — a(t, x, n°). Therefore there exist u; < u; < ¢ such that B(u;) = B(u:)
=x,us— w1 =n"2 B(s) # x for all sin (u1, us) and v € (u1, u2). Since w & A,, there exists
s1in [u1, ui+ n~°/2) such that B(s;) = x, or x, + n™°. If s, = sup{u < uz| B(u) = B(s1)},
then B (u) is between B (s;)(= x, or x, + n~°) and B (uz) = x for all u in [s,, uz]. Since w
& A, and SUpue(s,u,1| B(#) — B(sz) | = n7°, it follows that u, — s» < n°/2. Moreover, since
v & al(t x,n”®) we see that s; < v < s, where B(s;) = B(s;) € {xn, x, + n°} and s, — 51
= n"% Therefore either B(v) = x, or x, + n° or v € &’(¢, 2, %) U @’ (¢, x, + n~°, n~%) and
we have shown that

a'(t,x,n 8 —a(t,x,n®) Ca'(t, x,,n ) U, x, +n°n?

U Z(¢ x,) UZ(¢E x, +n75).



816 EDWIN PERKINS

The above inclusion and the fact that w & C, imply that
m(a'(t, x, n" %)) /n"* < m(a(t, x,n %)) /n"*
+m(a'(t, %, n ) U a'(t, x, + n°°, n8))/ n™*
= n""2(4(2/m) s (¢, x) + €)
+c(n° n8)(s(t, %) + s(t, %0 +07°)) + 07V
= n""%(4(2/m)"? suprers(t, ') + €,)
+ ((2/m)'2 + n)(s(t, x0) + s(t, % + 07°)) + 07

(the last by theorem 4.7(i)). Hence there exists a sequence {e;,|n > M} decreasing to zero
and independent of x such that for all x

(4.25) m(d'(t, x, n”%))/n~* = 2(2/7)?s(¢, x) + €.
To obtain a converse inequality, suppose
VE a'(t, x,, n8) N & (t, x, + 1% n78).
Therefore, there exist intervals (u:, u2) and (u1, u3), contained in [0, ¢], such that:

(i) B(w1) = B(uz2) = x» and B(u}) = B(us) = x, + n™°,
(i) uo—ur=n®anduj —ui=n%

(i) v € (w1, u2) N (ui, us).
If u; < ul < up < ub, then there exist s; € [uy, u1], sz € [ut, u2], and s; € [u2, us] such that
B(s,) = xfori =1, 2, 3. Note that v € (u1, uz) C [s1, s3]. If v € [s1, s2] C [u1, u2], then
either B(v) = x or v € a’(¢, x, n™®), since s, — 81 < uy — u; <8 If v € [s2, s3] C [ul, ub]
then again, either B(v) = x or v € a’(¢, x, n™%). Hence, we have shown

a'(t, %, n ) Na(t,x, +n° n® Caltx n® UZ{ x),

and similar arguments lead to the same result for the other possible orderings of {u;, u1,
us, us}. The above inclusion implies that

m(a' (¢, x,n" ) /n* = m(ad't, x.,, ) N &' (¢, %, + n°, %)) /"
= (m(a'(t, xn, n° %)) + m(a(¢, x, + n°, n%))
—m(a'(t, %, N ) U &'(t, x, + 0%, n78)))/n*
= ((2/m)% —=n"")(s(t, x,) + s(t, x. + n7°)) — 3n~°,

where we have used Theorem 4.7(i) and the fact that w & C, in the last line. Hence, there
exists a sequence {e,} decreasing to zero and independent of x such that

(4.26) m(a'(t, x, n” %) /n~* = 2(2/m)* s(t, x) — €.
Clearly (4.25) and (4.26) imply (4.24) with 8, = n™®, and hence the result. 0

Finally Theorem 1.1 now follows as an immediate corollary to Theorems 4.11 and 4.12,
and (4.2).

REMARK 4.13. Although Theorems 1.1, 4.11 and 4.12 were proven for the particular
Brownian motion B = st(X), these results now follow for an arbitrary continuous Brownian
motion. Indeed, the nonstandard setting was only used to obtain Theorem 4.7, and from
that point on the arguments were totally standard. Since m(a(¢, x, 8§) U a(t, x’, 8)), m(a’ (¢,
x, 8) U a'(¢, x/, §)) and s(¢, x) are all measurable functions of the Brownian path
(considered as an element of C([0, )) with the Borel sets for the compact-open topology),
Theorem 4.7 is a statement about Wiener measure and not the particular Brownian motion
B. Hence Theorem 4.7 holds for any given Brownian motion, and therefore the same is
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true for the global intrinsic characterizations of local time established in Theorems 1.1,
4.11 and 4.12.

The only use of an “advanced” probabilistic method in any of the above arguments was
in Theorem 3.4 and Lemma 4.6 where some square function inequalities for martingales
were used. It is possible to avoid the use of these martingale inequalities by means of a
direct “internal computation” and some easy applications of Holder’s inequality. The
proofs would of course become longer, although more in the combinatorial spirit of the
nonstandard approach.

Acknowledgement. I would like to thank Professor Frank Knight for many very
helpful discussions.
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