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APPLICATIONS OF RAW TIME-CHANGES TO MARKOV PROCESSES

By JoseEPH GLOVER!

University of Rochester

The technique of raw time-change is applied to give another proof that
the Knight-Pittenger procedure of deleting excursions of a strong Markov
process from a set A which meet a disjoint set B yields a strong Markov
process. A natural filtration is associated with the new process, and general-
izations are given. Under natural hypotheses, the débuts of a class of nona-
dapted homogeneous sets are shown to be killing times of a strong Markov
process. These are generalized (i.e. raw) terminal times. Let A, be an increasing
nonadapted continuous process, and let T, be its right continuous inverse
satisfying a hypothesis which ensures that the collection of o-fields %r(, is
increasing. The optional times of %7, are characterized in terms of killing
operators and the points of increase of A, and it is shown that %7 = Fr¢4).

0. Introduction. Let X be a right continuous strong Markov process defined on the
canonical space of right continuous paths taking values in a Lusin topological space E
equipped with its Borel field &, and let A, be a raw (i.e. nonadapted) continuous additive
functional of X having the property

0.1) Au°kT(¢)=Au forall « in [0, Tz],

where T, denotes the right continuous inverse of A,, and where £, is the killing operator
associated to X,. We gave general sufficient conditions in [5] for the raw time-changed
process Xr(,) to be a strong Markov process. This paper is devoted to variations on that
theme: we present several applications of raw time-changes which are of independent
interest.

Let A and B be two Borel sets in E with disjoint closures. Perform the following surgical
operation: simply excise the excursions from A which meet B. This procedure (cleanly
done by a change of time) was used by Knight [6] in investigating certain local times, and
Knight and Pittenger [7] proved that the postoperative process is again a strong Markov
process. This procedure is one of the most interesting nonadapted transformations of a
Markov process produced so far, and we present herein another approach to proving that
the excised process is strong Markov based on the method of raw time-change. The proof
we present is perhaps a bit more technical than the one given by Knight and Pittenger,
but we feel that our approach brings the essential ingredients of the transformation into
clear view. The proof of this statement is, perhaps, that interesting generalizations of the
procedure become apparent (Section 2). In Section 1, we present the Knight and Pittenger
transformation. We first use a time-change by an increasing collection of optional times to
eliminate pieces of the excursions traveling from B to A. We follow this with a raw time-
change to remove the other half of the excursions traveling from A to B. A natural time-
changed filtration is associated with the process during this procedure.

In Section 3, we characterize in terms of killing operators the optional times of a
filtration (#r)+). An important corollary of this characterization settles a point left open
in [5]: the filtration (%7(,) is right continuous when constructed as in [5].
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In Section 4, we present a new class of killing times. Recall that if N is an optional
homogeneous set, then the debut D of N is a terminal time. That is, we may kill the
process X at D and the result is again a strong Markov process. If N is homogeneous, but
no longer adapted, this is not always true. However, if the raw continuous additive
functional supported by N° has property (0.1), then the following is true. Let R = inf {¢ >
0:t€ N} and let D = inf{¢ = 0: R-§, = 0}. Then X killed at D is a strong Markov process.
This result seems to be connected via heuristic time-reversal arguments to a recent result
of Pittenger [9] characterizing the regular birth times of a Markov process. However, it
seems difficult to make the connection precise, and we therefore simply indicate it to the
reader here. One additional point of interest is that the optional projection of the process
1(:<p) is an adapted multiplicative functional.

The remainder of this section is devoted to laying out the notation and hypotheses of
the paper. Let X = (2, % %, X,, 6, P*) be the canonical realization of a normal right
continuous strong Markov process with a Borel semigroup on a Lusin topological space E
together with its Borel field & on the space & of right continuous paths in E with lifetime
$. We assume #and % are the usual completions of the fields #° and %7 generated by the
coordinate maps [3]. Let #° = o{f(X,) : f is 1-excessive, s = 0}.

We make the conventions that X, = A and that F <8, = 0 for all F € #°. When we refer
to an optional process or to an optional time without specifying the filtration, we mean
relative to the filtration (%). :

We define a raw continuous additive functional (A;);>o0 to be an increasing process in
B(R") ® F° satisfying Ao =0; A,s = A, + Aso0; A, = A for all t > {; t— A, is continuous.
Usually, one requires A, to be only #(R*) ® #measurable, but we show in [5] that one
can choose a version in Z(R*) ® #° (subject to a mild integrability hypothesis which is
satisfied in all examples discussed herein).

Recall the canonical killing operators k;: Q2 —  defined by

Xo(kw) = Xo(w) if s<t
=A if s=t¢t
Finally, we introduce a bit of nonstandard notation. If I' C R™, define
sup' T'=supI’ if '#Q
=-1 if T=0
and
sup’I'=sup” if '#Q
=-2 if T'=0@.

1. The Surgery of Knight and Pittenger. Let A and B be two sets in & such that
AN B=@. Assume A € A. We first construct a time-change by an increasing collection of
optional times which deletes portions of the paths traveling from the set B to the set A
(plus portions of the paths spending time in B).

SetI's = {(¢, w) : Xi(w) €A} and ' = {(¢, w) : Xi(w) € B}. The two processes C; and D;
defined by C/(w) = sup'(T'a(w) N [0, ¢]) and D/(w) = sup’(T's(w) N [0, ¢]) are adapted

increasing processes, whence the right continuous processes C; = C;+ and D, = D;., are
optional processes. Let H, be the indicator of the set {C, = D,}, and let

t
A¢ =f Hg ds.
0

Then A, is an adapted, increasing and continuous process. Notice that the process H, is
right continuous. For if not, either H; oscillates as s decreases to ¢, or lim,, . H, # H,. In the
first case, we may find two positive sequences (r,) and (g.) decreasing to 0 so that X, )
€ A and X,.+,») € B. By right continuity, X, € A N B = @, so this case is ruled out.
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If lim,y;, H, = lim,;;; 1(c,=p,) = 1, then H, = 1 since C, and D, are right continuous. If
lim,;, Hy = 0 and H, = 1, we conclude (again by right continuity of C; and D;) that C, =
D,, which again implies that X, € A N B = &. Thus we conclude that H, is right continuous.

LEMMA 1.1. A, is additive on the set consisting of its points of right increase.

Proor. Let A = {(¢, w): Ai(w) < Ai+s(w) for all s > 0}, and let T be an optional time
with [TIC A. Set R(s,e) = {(u:T=su=s+T+e X, €EA}and S(s,e)={u:T=u<s
+ T + e, X, € B}. Then H,<6, is the indicator of the set {there exists n > 0 so that sup'R (s,
e) = sup®S(s, e) for all e < n™}.

By the right continuity of H;, Hr = 1. We need to show H,c0r = H,.r. If there is a
sequence (e,) decreasing to 0 so that R(s, e,) = &, then sup'R (s, e,) = —1. If in addition,
H,o07 = 1, the right continuity of H, forces sup®S(s, e,) = —2 for sufficiently large n. In
other words, S(s, e,) = @ for sufficiently large n. Therefore, H;.7 = Hr and since [T'] C
A, Hr = 1. So H,o0r = H,.r in this case. On the other hand, if H,°0r = 0, then S(s, e,) #
@ for all sufficiently large n, and we get H,.r = 0 from the definition of H,.

The other case to consider is when there is a sequence (e,) decreasing to 0 so that R (s,
e,) # @. If in addition, H,e07 = 1, then H,,7 = H,o07 = 1. If H,07 = 0, then there must be
a sequence (e,) decreasing to 0 so that sup'R (s, e,) < sup®S(s, e,). Therefore, H,.r = 0.
Therefore, we have shown that A,.r = Ar + A,o0r. ]

Define a strictly increasing right continuous collection of optional times by setting T}
= T(t) = inf{s > 0: A, > t}. The standard proof (Lemma (1.1) in [5]) shows that T}, = T,
+ Tso0r¢) on {T, < o} by making use of Lemma (1.1). It is easy to conclude the following
by a simple modification of the standard time-charige theorem ([3], page 212).

THEOREM. Let A; be an adapted continuous increasing process which is additive on
the set consisting of its points of right increase. Let T, denote the right continuous inverse
of A;. Then X7 = (R, & Fr«y, X1y, 01700y, P*) Is a right continuous strong Markov process.

5 In an attempt to avoid notational intricacies, we rename this process Y = (2, &, 4, Y.,
O,, P*). Notice that the appropriate killing operator for Y, is j; = kr¢):
Y:(Jsw) = Yilw) if t<s

=A if t=s.
LEMMA 1.2. P*(Y: € B for some t =0) = 0.

Proor. Suppose Y w) = X7¢(w) € B. Since T, is a point of right increase of A,,
sup' (T4 N [0, T, + e]) > sup*Ts N [0, T: + e]) for all sufficiently small positive e. By the
right continuity of X7, this would imply that Xr, € A N B = 2. O

What we have left to do, roughly speaking, is to remove portions of the path traveling
from A to B. Let T4 = inf{¢ > 0: X, € A}, and let Ts = inf{¢ > 0: X, € B}. Let J be the
indicator of the set { T4 < T}, and let J; = J(s) = J o 8,. Define a raw continuous additive
functional of the process Y by setting

13
B, = j J(s) ds.
0
Note that B, is a raw additive functional of (Y, .%L 5,) (not (Y;, 0(Ys:8<t),0,)). If welet
S; = S(t) = inf{u: B, > t}, then S;4s = S; + S;°Os(,). The reader may wish to convince
himself of the truth of the following result with a picture before confronting the proof.

LEMMA 1.3. B,°jsu = By for all uin [0, S;] for each t = 0.
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Proor. Let V = sup{s = T'(S:):X, € B}. Suppose T, € [0, V). We need to show
Joojsiy =Jo I J =1, Ta°O, < Tg°B,. Since T, + Tz>8, < T(S,), T, + T4, < T(S,),
50 Ta°8,0jsy = Ta°O, and T 8,5 = Ts°O,. Thus J,°js. = 1.

On the other hand, if J, = 0, we have T4°8, > Tgo0,. Therefore (since A € A),
Ta°8,554) = TaoO, A (T(S,) — T,). Notice that T, + Tz, < T(S:). For if T, + T5°0,
= T'(S;) either Ys() € B (which is impossible by Lemma (1.2) ) or TBOQS(,, =0=<Tyo ésm
(which cannot happen by definition of S, and the fact that ¢/, is right continuous).
Therefore, T 0, ojswy = Tso0, < TaoO, A (T(S,) — T,), whence oJ, °Jsty = J, whenever
T, [0, V).

Now suppose T, € (V, T(S;)). Since S; is a point of right increase of B,, T Os+e <
T B+ for all sufficiently small positive e. Since X, & B for all ¢ € (V, T(S,) ], it follows
that Tao8, < Tpo0,: ie., J, = 1. But TaoD,°js¢ < T(S;) (since A € A) and T, s
= o, 50 J,°Js) = 1 whenever T, € (V, T(S;)). 0

Define a collection of o-algebras as follows. A random variable F € #is in % if and
only if there is a ( %,)-optional process Z so that F = Zs(,, on { S, < «}. The condition in the
statement of Lemma (1.3) is exactly the condition needed to guarantee that the collection
(1) =0 is a filtration: see Proposition (1.3) in [5]. (Note: In [5], we assumed that (%;) is the
canonical filtration of a Markov process. The proof requires only minor changes to extend
to this situation since (%) is an adapted time-change of the canonical filtration).

We now show that the process ( Ys(), #+) is a strong Markov process. Since B, has a
homogeneous density, we may simplify the discussion in [5] a bit as follows. Recall J is the
indicator function of { T4 < Tg}. for F € #°*, define a kernel as follows.

K(x, F) = E*[FJ]/P*(J) if P*(J) > 0.
=0 if P*(J) = 0.
Let Z, be a positive (%;)-optional process. Then

(14) E* J ZsiFoOBs, dt = E* j Z,F8,J(t) dt = E* J Z,K(Y,, F)J(t) dt

(1.5) =E~ f ZsiK(Ysq, F) dt.

Let F be of the form f(Ys(») with f a bounded continuous function on E. Take Z to be the
product of two (%,)-optional processes V and W so that Vs 1is(y<e) = € *“1(s(:)<w) (€€
Lemma (1.4) in [5] for the existence of such a process) and so that W is bounded, positive
and right continuous. Substituting in (1.4) and (1.5) and applying Fubini’s theorem we find

(1.6) j e E* [Wswf(Ysir)°Osw] dt = f e “E*[Wsy K(Ysw), f(Ysrn))] dt.

LEmMMA 1.7 ¢t — K(Ys«), f(Ys»)) is a.s. right continuous whenever f is a bounded
continuous function.

ProOF. Let F = f(Ys(»). It is simple to check that E*EY*™[FJ] converges to
E*EY™[FJ] whenever (R (n)) is a sequence of (%)-optional times decreasing to R, and
therefore ¢t — E Y[ FJ] is a.s. right continuous. It is just as easy to check that t — PY(J)
is right continuous. Let N = {x: P*(J) = 0}. It follows that K(Ys,, F) is right continuous
if P*(Ys(,) € N for some t =0) = 0. Let M = {s: Y, € N}, and let Z, be the optional process
s-1x(s). Any optional process is optionally separable. That is, we may find a sequence
(R.) of (%,)-optional times so that the graph of the trajectory ¢ — Z, is contained in the
closure of the graph n — Zg(, (see [2]). Moreover, [R,] C M for each n. Therefore, 0 =
E*[PYR(J)] = P*[Ta°BOr(w < Ts°Ogr, ]. Therefore Jr(, = 0 for all n a.s. (P*). We may
eliminate the exceptional set. So if ¢ € M is a limit point from the right of M, then JJ, = 0
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by the right continuity of J, and the fact that U, [ R.] must be dense in M. If ¢ is an
isolated point of M, then there is an n so that R, = ¢, and again J, = 0. The last case to
consider is when ¢ € M is only a limit point from the left of points in M. That is, t € M is
a left endpoint of an interval of M°.

Solet M =Ueo {t EM:t+sE MV s € (0, e)}). We show M is empty. Since M is
(%.)-progressive, its debut D is a (%)-optional time and D € M. Thus 0 = E*PY)(J)
implies T4°8p > T5°Op a.s. But then T4, > Ty, for all ¢ in [D, V), where V =
inf{t>D:Y,€ A} > D. It follows that P¥“(J) = 0 for all ¢t € [ D, V), whence we conclude
that M is, in fact, empty. 0

Therefore both‘~ integrands in (1.6) are right continuous, and we conclude that
E*[Wsf(Ystn) °Os] = E*[ Wsy K(Ys, f(Ys(r))] for every bounded continuous func-
tion f and for every bounded right continuous (%;)-optional process W. It follows that

(1.8) E* [ f(Ys)°Bsi | #]1 = K(Ysw, f(Ysn)) as.

Since t — K(Ys), f(Ys(n)) is right continuous, an application of the standard argument
([5], Theorem (1.5); [3], page 42) shows that Ys, is strong Markov with respect to the
filtration (5. ). (See Corollary (3.4)).

Finally, the reader may wish to check that the net effect of the adapted time-change
followed by the raw time-change has been to delete the excursions of X from A which meet
B.

2. More in the same vein. The purpose of this section is to abstract the essential
points of the procedure in Section 1 in order to present several examples in a general
framework. We first discuss the source of the adapted process A, in Section 1.

The following discussion is intended to be motivation (until further notice): we assume
{ < « (so that we may reverse time easily), and we ignore all questions of measurability
(although all operations can be justified: see the appendix of [5]).

One of the interesting facets of the Knight-Pittenger procedure is its symmetry in time.
That is, if one removes the excursions from A which intersect B, it makes no difference if
time is running forward or if it is running backwards during the procedure: the end result
is the same. In fact, instead of using the two time-changes in Section 1, one might wish to
try the following procedure, which makes the symmetry apparent.

STEP 1. Reverse X to get a process Y, and remove from Y (via a raw time-change_)
pieces of path traveling from A to B to get a new process Y. Reverse Y to get a process X.

SteP 2. With the same raw time-change, remove pieces of path of X traveling from A
to B to get the desired process Z.

This approach is fraught with technical difficulties, due to all of the reversing (i.e. it is
difficult to verify that the end result is a strong Markov process). Fortunately, Step 1 can
be accomplished (and was accomplished in Section 1) by leaving out all reversals and using
an adapted time-change of the process X, which we now construct. Let C; be the raw
additive functional of Y whose left continuous inverse S; has the desired effect in Step 1.
That is, starting with X,, we reverse to get Y,, then we time-change to get Y5, = ¥;; and
we finally obtain X, upon reversing one last time. We may obtain X; in another manner as
follows. Let A; = C; — C(;—)+, and let T; denote the right continuous inverse of A,. Then X,
and X7, are identical. Now what are the relationships between A, and X,? Azéma’s work
[1] on the duality of shift operators and killing operators indicates the following properties
of At.

If X has shift operator 6, and killing operator k., then Y has shift operator 6, = ki—o)+
and killing operator & = 6_,)s, respectively. So Aok, = Ao f¢_y)s = (C¢ = Cimpr) ©binys
= A, since C, is a raw additive functional of Y. This shows that A, is adapted to the
filtration of X. Recall that C, satisfies C, © ks() = C, on [0, S,]. Let T be an #*-measurable
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random variable contained in the points of right increase of A,. Then for each ¢,
A;o0r = (C; — Cii—py+) °]g§—§oo., = Cy—teop+ — C-r-0)+ = A — Ar.

Thus, A, is additive on its points of right increase. As mentioned in Section 1, these two
properties (adaptedness and additivity on points of right increase) are sufficient to
guarantee that the process Xr = (2, & Zr«), Xrw), Orw), P*) is a strong Markov process.
One may also check that if one starts with C, as described above and forms A,, then the
process A, obtained here is exactly the process we called A, in Section 1. Therefore, using
Steps 1 and 2 makes apparent the symmetry in time, but to actually obtain Xr(,, it is
much easier to use A..

The discussion above is general in the following sense. Let X and Y be as above, and let
C, be a raw continuous additive functional of Y with left continuous inverse S; satisfying
C. OES(,) = C,on [0, S.]. Set A; = C; — C(;—s)+. Then A, is adapted to the filtration of X and
is homogeneous on its points of increase. This observation has been used implicitly below
to give other examples of transformations which are symmetric with respect to time-
reversal.

ExaMPLE 1. Let A be a set in & We produce a transformation by deleting parts of the
path of X. Roughly speaking, X;(w) is deleted if X;(w) visits A for some sin [t — 1, £ + 1).
Let I'a = {(¢, w): X:(w) € A}, and set D,(w) = sup'(Ta(w) N [0, ¢]). Let H, be the indicator
of the set {¢ — D,. = 1}, and set A, = [§ H, ds. Time-change X, by the inverse of A;, T}, to
get a process Y with shift operator 6, = 0r). Define a raw continuous additive functional
B, for Y as follows: let JJ be the indicator of {T4 = 1}, and set B, = [§ J of, ds. Time-change
Y by the inverse of B,, and the result is a strong Markov process.

ExaMpPLE 2. This example generalizes Section 1 a bit. We shall not attempt to describe
in prose the effect of the transformation; the reader is encouraged to indulge in drawing a
few pictures to see the effect. Let A, B, and C be sets in & with mutually disjoint closures.
Define an adapted process A;, homogeneous on its points of right increase, as follows: Let

TFa(w) = {(t, w): X,(w) € A}, Tp={(t,w):X(w) € B}, and T¢= {(t,w):X:(w) E C},
and define F, C; and D; by setting
Fi=sup'TaN[0,¢]), Ci=sup’TzN[0,¢]), and D;=sup?’TcN [0, t]).
Set
F,=F;,, C,=Ci, and D,=Dj,,

and let H; be the indicator of the set {F; = C;} U {F, = D;}. Then A, = [§ H, ds is the
desired process. Time-change X, by the inverse of A, to get a process Y,. Define a raw
continuous additive functional of Y as follows: let J be the indicator of {T4 < T} U {Ta
< T¢}, and define B, = [§ Job, ds. Time-change Y by the inverse of B, to get a strong
Markov process.

In each example above, it is easy to check that A, is adapted and additive on its points
of increase. If we let T, denote the right continuous inverse of A, then Y, = X, is a strong
Markov process with shift operator §;, = 6r(, and killing operatorZ = kr¢,. One should
then check that if S, denotes the right continuous inverse of B, thenBMOEs(,) = B, on
[0, S¢] for each t = 0. One may then follow the argument in Section 1 to observe that in
each example the strong Markov property is obtained. We consider one final example
which does not yield a strong Markov process in general. Let A, B, and C be sets with
disjoint closures, and suppose we try to remove all excursions from A which hit B before
hitting C. Consider the process Y in Step 1. What is the additive functional to use to delete
portions of the path of Y traveling from A to B without hitting C? A moment’s thought
will convince the reader that there is no raw additive functional which will do that.
Additive functionals are adapted to the future, while here you need to know something
about the past. For example, let [S, T'] be the time-interval of an excursion from A which
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first hits B at time R. One cannot decide whether or not to keep each time ¢ € [S, R] by
looking at events after ¢. For if Y, & C for all u in [S, R], you want to keep ¢, and if Y, €
C for some u € [S, T), you want to delete £ Since we cannot find an additive functional,
the preceding discussion does not apply.

While the symmetry in time of the transformations of X heretofore discussed is
attractive, it is not at all necessary. We now outline a general strategy for combining
adapted and nonadapted time-changes. Let A, be an increasing adapted continuous process
which is additive on its points of increase, and let T, be its inverse. Then X, = Xr(, is a
strong Markov process with shift operator ¢ 6, = 67, and killing operatork = kr(,. Let B,
be a continuous raw additive functional of X,. That is, B, is a continuous increasing process
satisfying B+, = B, + B,°0,. Let S, denote the right continuous inverse of B, and assume
that Byoks«) = B. on [0, S/] for each ¢ = 0. An application of Motoo’s theorem and a kernel
argument (see Section 1 of [5]) shows that

E* f ZswFobsq dt = E* J’ ZswK Xsw, F) dt,

where K (x, dw) is a kernel from @ to E, Z is (%7 «)-optional, and F € Ft If t — K Xsw),
f (Xsw)) is right continuous a.s. for every u and for every bounded continuous function f,
then Xs, is a strong Markov process with associated filtration s obtained in the same
manner as the filtration 5. in Section 1. If B, has a density of the form J 00,, the kernel is
given by

K(x, F) = E*[FJ]/P*(J) if P*J)>0
=0 if PXJ) =
3. A Characterization of Splitting Times. Let X = (2, % %, X,, 6, P*) be either
the canonical realization of a right continuous strong Markov process as described in the

introduction, or an adapted time-change of such a canonically defined process. In both
cases, X has an associated killing operator &, satisfying

X(kew) = Xi(w) if t>s
=A if t<s.

Let B, € #(R*) ® #° be an increasing continuous process satisfying B, = 0, B, = B for all
t> ¢ and B, < t. Let S, = inf {u: B, > t}, and assume

3.1) B,oksqy =B, forall u€l[0,S;] foreach ¢.

Define a collection of o-algebras (#;) as follows. A random variable F € % is in # if there
is an (%)-optional process Z, so that F = Zs, on {S; < ®}. The proof of Proposition (1.3)
in [5] applies here with no change to give the result:

PROPOSITION 3.2. (3#):=0 IS a filtration.

Let .% = #,., and let { = sup{t: Xs( € E}. We now characterize the collection of times
A = {Sr: T € #° is an (#)-optional time with [T'] C [0, .

Notice that if B, is a raw additive functional so that (Xs), %) is a strong Markov process,
then each Sk € A is a splitting time for the original process X,. That is, for each F € bF°,

E*[Folsx | #r] = KXsr), F) as.

for some kernel K. Such splitting times have received considerable attention recently [4,
8,9, 10].

Let S, = sup{u < {:B, = t}. Notice that S,=S,on[o0{). A random variable F € # is
in J if there is an (%)- optional process Z, so that F =Z5, on {t < {}. We leave it to the
reader to check that in fact 7 = . Before stating the characterization of A, we introduce
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two more classes of times. We abuse notation somewhat by letting [B] denote {({, w):
Bi(w) < B+s(w) ¥V s > 0}. Let

I'={Te%°[T]C[B);, Tks=T whenever s€[B] and s=T;
Toks = whenever s€[B] and s<T}.

and A = {Sr: T < {is an (#)-optional time, T € #°}. One might think of T" as a class of
“predictable times relative to [B].” Recall Azéma’s characterization of a predictable time
V(1)

Voks=V whenever s=V

Voks = whenever s< V.
THEOREM 3.3. A=T=A,

ProofF. Let T €T, and let JJ be the indicator of {7 < t}. Then Z; = J°k, is an (%)-
optional process. Therefore Zs) = {(Toksyy <t} € #;. But {Toksy <t} ={T =<t} N {S:
=T}and (Tt} ={T=t} N {S,=T)},since {S,< T} = {t<Br} C {t < T} because
B, < u. We point out that the last equality in the preceding line holds since S, is a point
of right increase of B,. Therefore Zs) = {T' <t} € 4, and T'is an (3)- optional time. Now
let R = inf{¢:S, = T). Since [T'] C [B] C [0, {), Sk = T. We show that R is also an (#))-
optional time. Since {R <t} = {S, = T'}, we need to show {S; = T'} € # for each t. Let
J be the indicator of {§, = T'}. Define an (%)-optional process Z; = Jok,. Then Zs(,) =
{Siokswy = Toksw} = {S,= T} N {S;= T} = {S, = T}, the last equality holding since T
< ¢{. Therefore R is an (5#)-optional time and I" C A. Since A is clearly contained in A, we
have left to show only that A C T'.

Let T be an (%)-optional time so that Sy € A. Then [S7] C [B]. Since T'< § Sr=25r.
Then Syok, = S, whenever s € [B], s = Sr. Now suppose s € [B], s < Sr. Then B, < Bj..
for all e > 0. Therefore B,ok, < T for all u = 0, so Srok, = o, and we conclude Sr=Sre
T. O

From this result we conclude the following important corollary which decides a point
left open in [5].

COROLLARY 34. M = .

ProoF. Let T < {be an (5#.)-optional time. There is an (#)-optional time R so that
Sr = Sk. Since 8 is strictly increasing, T = R, and T is an (5£)-optional time. Therefore
H = Hi+. 0

There are two important points in this section. The first is contained in the statement
of Corollary (3.4) (it is always useful to know that the filtration in hand is right continuous).
Second, given an (%)-optional time T € % ° with [T] C [0, {), Sris a splitting time for X,.
Theorem (3.3) provides a more algebraic means of characterizing these splitting times in
terms of [ B]. This may provide some means of understanding the filtrations produced in
Section 1.

4. A Class of Killing Times. Let X be a Markov process as described in the
introduction, and let M € #(R™*) X %€ be a random set which is homogeneous on (0, ).
That is, 1a.4(s) = 1u(s + ¢t) for all s >0, ¢ = 0. We assume:

4.1) if t€E€M(w), then M(w)NI[O0,¢t)=Mkw)N[O,¢).
Let R =inf{¢t > 0:t € M} and let D = inf{¢t = 0: R0, = 0}. We shall prove the following

result.

THEOREM 4.2. The process X, killed at D is a strong Markov process.
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Define a raw continuous additive functional by setting

t
Az =J' 1(}20020) ds,
(1)

and let 7\ denote the right continuous inverse of A,. Now {R¢f,k, > 0} = {inf{u > 0:u
+ s & Mok,} > 0}. If we let s < ¢ and use (4.1), this is {inf{u > 0:u + s € M} > 0}, so that
A, has the (by now) familiar property:

Auokr = A, forall u in [0, T¢].

Let Z be a positive optional process, and let F € #°*. As in (1.4) and (1.5), a simple
computation shows that

(4.3) E* J ZroFoOr dt = EF J Zr K (Xte, F) dt,

where

K(x,F) = EX[F; R>0]/P*(R>0) if P*(R>0>0
=0 if P*R>0)=0.

Now if it is the case that K(Xr), F) is a.s. right continuous for an appropriately large
collection of random variables F, then Xr(, is once again a strong Markov process ([5]).
This is not always true, however, and so we shall show that K(Xr(), F) is as. right
continuous on [0, D), for an appropriately large collection of functions F, and that we can
always extract the section of the process on [0, D) to obtain Theorem (4.2). We give some
examples at the end of the section.

We now examine the continuity properties of the kernel K. For the remainder of this
discussion, we set

F =11, f e—a(mfl(thH) e fn(Xt,,+t) dt,
0

where each function f; is bounded, positive continuous on E, each a(i) is positive, and 0
SHh< - eoo < t,. Note that random variables of this form generate % °. Let (T,) be a
sequence of optional times decreasing to T, and look at

EFE*T™[F; R>0]] = E*[Fe0ru; Rofre, > 0].

It is easy to check from the definitions of F and R that as n increases to infinity, this
expression converges to

E*[Fofr, Re67 > 0] = EX{EX'[F; R > 0]].

If t > EXY[F; R > 0] is an optional process, this is enough to imply that EX“’[F; R > 0]
is right continuous. But it is easy to check that G (b, x) = E*[F exp(—bR)] is (b + Za(i))-
excessive, E*[F']is (Za(i))-excessive, and that lim, .G (b, x) = E*[F; R = 0], so EXY[F;
R > 0] is optional. Therefore, K (X;, F') is right continuous on A = {(¢{, 0): X, &€ {x: P*(R
> 0) = 0}). Note that if A = @ a.s., one may follow the discussion in Section 1 of [5] to
show that X7, is a strong Markov process. In general, however, let T be an optional time
with [T] C {(t, w):PX“*(R > 0) = 0}. Then 0 = E*[P*(R > 0)] = P*(R°f7 > 0).
Therefore, Ro6r = 0, so T = D a.s. Thus we conclude that K(X,, F)1.<p, is a.s. right
continuous.

LEMMA 4.4. There is an optional process W so that Wrq, = 1if Te< D and Wr() =
0if T,> D.

Proor. We first show that D can be chosen to be #‘-measurable. Let C = inf{t > 0:
Ro8, = 0}; C satisfies Cof, = C — s on {s < C}. Let F denote a random variable of the form
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given above. It is easy to check that E*[exp(—C)F]is (1 + Za(i))-excessive. Thus if we
define @*(F') = E*[exp(—C)F], we have @* < P~ for each x. Since #° is generated by
random variables of the form F given above, Q*(G) € &¢ for all G € #°. Since P*(G) €
&° for all G € #°, Doob’s lemma yields the existence of a density p (x, w) € £° X #° so that
Q*(G) = E[p(x, w)G] = E*[p(Xo(w), w)G] for all G € #°. Thus p (Xo(w), w) = exp(—C)
a.s. and p (Xo(w), w) € F*. A similar procedure yields a version of R € #°. Since D =
C1{r>0), we have shown that D can be chosen in #°. Now let Z, = Dok, this is optional
since D € #°. It is easy to check that Zr) = o if T, < D and Zr = Dif T, > D (by using
(4.1)). Finally, we let W, = 1(z—). 0

Let V, = exp(—aA,°k,) so that Vr(), = e if T, < «. Note that V is optional. We replace
Z in (4.3) with W.V.Z, where Z is a bounded right continuous optional process. Applying
Fubini’s theorem, (4.3) becomes

J e “EWruwZroFo0ry) dt = f e “EWroZrowK Xrw, F)] dt.
Taking into account Wr,, this may be rewritten as
f e “E*[Z,F-0,; t < D] dt = f e “E*[ZK(X,, F); t= D] dt.
It follows that
J e “E*[Z,F-0,;t < D] dt= J’ e “E*[ZK (X, F), t < D] dt.

Since both integrands are right continuous, we conclude that
E*[Z,F-6;t< D] = E*[ZK(X, F), t< D].
This implies that
Ef[Fo6.1u<p)| %] = E*[K(X,, F)lu<p) | %] = K(X,, F)1y<p),

where ¥, = 6{Z,:Z is an optional process} \/ 6 {1.<p;}. Therefore, the process X, killed at
D is Markov, and the strong Markov property follows from the right continuity of K (X,,
F)1¢<p) by applying the standard argument ([5], Theorem (1.5); [3], page 42). This
concludes the proof of Theorem (4.2).

Before discussing examples, we make one more observation.

PrOPOSITION 4.5.  The optional projection of Z, = 1,<p, is a multiplicative functional.

Proor. The process X killed at D is clearly subordinate to X. Therefore, there is a
multiplicative functional m, so thatif , <t, < ... <t, = ¢,

ETAX@) ««--- hXew)Z] = E ilXew) ++--- o Xiy)m]. O

ExXAMPLE. Here is a familiar one. Let L be a cooptional time, and let M = {(¢, w):¢ <
L}. Assumption (4.1) as written does not apply to this set M, but by adding an extra death
point to the state space, one can adjust £ and the killing operators slightly so that (4.1)
holds: see Section 3 of [5]. Then the process X killed at D is exactly X killed at L.

ExXAMPLE. Let A, be the difference of two adapted continuous additive functionals of
X, and set M = {(t, w):A;°0,(w) > 0 for all s > 0} = {(¢, w):As+:(w) > Asw) for all s >
0}. It is easy to check that (4.1) holds, so that X killed at D is strong Markov. It does not
seem to be the case that (X7); 0 < ¢ < ») is always strong Markov.

Acknowledgement. I would like to thank the referees for their comments and
helpful suggestions.
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