The Annals of Probability
1982, Vol. 10, No. 2, 289-302

THE TWO-PARAMETER BROWNIAN BRIDGE: KOLMOGOROV
INEQUALITIES AND UPPER AND LOWER BOUNDS FOR THE
DISTRIBUTION OF THE MAXIMUM

By ENRIQUE M. CABANA AND MARIO WSCHEBOR

Unuversidad Simon Bolivar; and Universidad Simon Bolivar and
Universidad Central de Venezuela

To Professor Rafael Laguardia (1906-1980)

In Memoriam

The aim of this paper is to give upper and lower bounds for the probability
density at (z — z) of the position at time (x, y) (x, y, 2, u € R*) of a standard
Wiener process with two-dimensional parameter (x, y) with the requirement
that it did not reach the barrier « in the “past” {(x’,y'):0<x'=x,0=<y' =<
y}. The fundamental tools are Kolmogorov forward inequalities for the density
and certain bounds for the behaviour of p near the border.

1. Introduction. The aim of this paper is to give upper and lower estimates for the
probability density

@ p(x, 5 2,u) =;;P{M(x,y)<u, B(x,y)=u— 2}

at the position u — z and epoch (x, y) (x, y, 2, u € R") of a standard Wiener process 8 with
two-dimensional parameter (x, y) with the requirement that

M(x, y) =sup{B(x’,y'): 0=x'<2x 0=y =y}

is smaller than the positive constant u, that is, 8 does not reach the barrier u in the past

{(x",y"):0=x"<=x,0=<y’ <y}. (Bis a Gaussian process with continuous paths 8(°, °) and

moments EB(x, y) =0, Cov(B(x,y), B(x",y')) = (x Ax')(y A\y'), x,y,x’,y' € R*. We refer
“to [1, 10] for the construction and applications of such a process.)

The “Kolmogorov inequation” given by Theorem 2 and its consequence — Theorem
3 — correct [3] and Theorem 2 of [5] respectively.

The analytical procedure employed to obtain the estimates of p, requires the knowledge
of a good upper bound of p near the border, and for this purpose we have adapted an
argument given by V. Goodman in [6] to get lower bounds for the probability of crossing
the barrier. Lower bounds for p lead naturally to upper bounds for the same probability.

Furthermore, from the densities one can compute the probability that the Brownian
bridge with a two dimensional parameter — and condition B(1, 1) = 0 — crosses a fixed
barrier, that appears in the two-dimensional generalization of the one-sided asymptotic
Kolmogorov-Smirnov test. Here, we refer only to the case of independent coordinates, and
our bounds permit estimates for the critical values of the test. This sort of application is
described, for example, in [2]. At the end we add some tables with some of these lower and
upper asymptotic critical values (see Table 2). '

The function p depends on its four arguments in a relatively simpler way, as described
in the following lemma:

LEMMA 1. (i) p depends on x, y only through the product xy. We shall denote by the
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same symbol p the function
p(xy, z,u) = p(x, y, 2, u).
(ii) furthermore, p(¢, z, u) = t*p(1, 2t ™2, ut™"?) for all t, z, u, € R*.

ProoF. The discrete approach

{(M(x,y) <u, B(x,y) = u— 2} =limu_0 NGy {u'BA2™"x, k27"y) < 1,
lu—z|7'B(x,y) = sgn(u — 2)}

to the event in the right-hand side of (1) (with the unimportant restriction z # u) only
involves at each step the finite set of Gaussian variables

lu—2z|7B(x ¥
and u'B(h27"x, B27"y), h k=1,2, ..., 2"

whose joint distribution is invariant under the transformation (x, y, z, u) — (1, 1, 2(xy) "2,
u(xy)~"?). This implies that P{M(x, y) < u, B(x, y) = u — z} is a function of z(xy) ™%,
u(xy)~"* only, and the remainder is plain.

REMARK. The preceding lemma shows that there is no loss of generality in restricting
the domain of p(¢, 2, u) to [0, 1] X R* X R™, and this will be done from Section 3 on.
Moreover, since we shall keep u fixed in most of the following, the abbreviation (¢, z) will
be used instead of (¢, 2, u) (for instance, p(¢, z) = p(¢, z, u)).

NoTATION. The standard Gaussian density will be denoted by

q)(t) — (2‘”)—1/Ze—t2/2

and the distribution function, by ®(¢) = [L. ¢(¢') dt’.
2. An upper estimate for p.

THEOREM 1. For every t, z, u >0, and
po(t, 2) =t ot 2 (u — 2)) — t V2tV (u + 2)),
the inequality
2) P, 2) < polt, 2) — 2uzt ™% (t™(u + 2))
holds.
Proor. Because of Lemma 1, it suffices to prove (2) for ¢ = 1. Let Cy be the Banach
space of real valued continuous functions on [0, 1] vanishing at 0. The real valued process

B with parameter in [0, 1] X [0, 1] can be viewed as a Co-valued process 8 with parameter
in [0, 1], using the correspondence

B(»)(x) = B(x, y).

If U, is the Borel subset of C; of functions bounded by u > 0, let us consider the
defective probability measure g(-, u) defined on any Borel subset A of C; by

q(A, u) =P{B(y) €U, forevery yel[0,1], 1) € A)}.

In what follows, we shall denote by w any standard one-dimensional Wiener process,
and by W the Wiener measure of A:

W) =P{weEA).

Since ,[72 (1) is itself a standard Wiener process, g(A4, u) is not greater than W(A4), so that
g(-, u) is absolutely continuous with respect to W.
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Goodman ([6], proof of Theorem 3) has shown that the Radon-Nikodym derivative

_dq(n, u)
g, u) —W

satisfies the inequality
(3) g(n’ u) <1- e—Zuinf(Iu—n(r)|/r:0<rsl}

for n € U,; the absolute value in (3), unnecessary when n € U,, is introduced in order that
the inequality remains valid even when n & U,,.

We indicate in the following a proof of (3), adapting Goodman’s formulation to our
simpler requirements. Let us first notice that {8(r, y) — yB(r, 1): 0 =y =1} and {B(x, 1):
0 =< x =1} are independent for each fixed r, as the direct computation of covariances show.
Hence, for fixed r € [0, 1], the conditional distribution of

Br,y)=(B(r,y) —yB(r, 1)) +yB(r,1), O0=y=1
given ,é (1) is the same as the one given 8(r, 1). In particular, for any n € U,,,
P{B(r,y)<u forevery ye€][0,1]1/8(1) =n}

) =P{B(r,y) <u forevery y€]|[0,1]/8(r,1) =7(1)}

=1- e—2u(u—q(r))/r,
the last equality been obtained from well known properties of Brownian bridge (see for
instance [7]).
On the other hand, since 3(y) € U, implies trivially 8(r, y) < u, (4) is an upper bound
of g(n, p), and then (3) follows by taking the infimum in .
We proceed now to complete the proof of the theorem. Given any Borel set B in
(0, +), we compute

f p(, 2, u)dz=P{M(x,y) <u,u—B(1,1) € B}
B
= f g, u) dWn) = ESu—wnen 8w, u)
(n:u—n(DEB)
= E(Su-vwen E(EWw, u)/w(l)))
= f ou—2)E(gw, u)/w(l) =u—2)dz
B

(where # denotes the indicator function and w is again a generic Wiener process), and
apply (3) to obtain:

p,2) =@ —2EQ — e 2nfo==ile=wO/r| (1) = y — 2)

=@p(u—2) f (1 — e ) (—dP{infyc,<1|u — w(r) | /r> x|w(l) = u — 2})
)

=op(u—2) j e dP{w(r) <u—rx forevery re[0,1}jw() =u— 2z}
0 .

+ @(u — 2)P{infoc,<1|u — w(r)| /r>0|w() = u — z}.

Now we apply again well known formulae about the barrier problem for Brownian
bridge, for the computation of both probabilities and get

plLLzu)=pu—2) j e d(l—e ) +ou—2) —ou+ 2);
0
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hence the evaluation of the integral provides the required conclusion.
A Taylor expansion of the right hand-term in (3) leads readily to the following corollary.

CoROLLARY 1. For any fixed u, Z > 0, and a suitable constant C (depending on u, Z),
the inequality
P, 2) < 222%™ (t 7 %u) + C2°% o (t7*(u — 2))
holds for (¢, z) € (0,1) X (0, Z).

3. Two “Kolmogorov forward inequations” for p. In what follows, D denotes the
differential heat operator

THEOREM 2. The density p satisfies the inequalities
() Dp=0

and
(ii) DtDp = 0,

as a distribution.
For the proof, we shall use the following lemma.

LemMA 2. Ify is a C* function with compact support on (0, 1) X (0, 1) X (0, +o) (or
(0, 1) X (0, +)) then the integral

J plxy, 2)¥(x, y, 2) dz (orj p(t, 20 (¢, 2) dz)
0 0 .

is a continuous function of (x, y) (respectively, t).

PRrOOF OF THE LEMMA. Because of its regularity, ¥ may be uniformly approximated
by finite combinations of the indicator functions of generalized intervals. Hence it suffices
to prove that for each 21, 22(0 < 21 < 2 < ), [2 p(+, 2) dz is continuous on (0, 1). Given
any fixed 7>0and ¢, t + dsuchthat r=¢t<t+d=1,

j pit+8,2)dz=PMit+81)<u,u—2<p+81)<u-—z}

1
=PMt,l)<u,u—2<B@t+461)<u-—2z}
<P(Mit,)<uwu—z2—-Y<BE1) <u-—z+46)
+P{[B(t+38,1) - B(t, 1| >s)
22+Q/§ 29
SJ p(t, 2) dz+%/§=J p(t, 2) dz + o(1), 8§10
4 245 -\
uniformly in £, because p is uniformly bounded (by the supremum of p, on [, 1] X (0, ),
for instance). A reversed inequality may be obtained in very much the same way.
ProoF oF THEOREM 2. Given any non-negative C* function y with compact support
on (0, 1) X (0, x), we define
S =FE SAM Y
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where
I = Fmi-nz <
and
APY=y9@E2™ u— G627 1) — (i — 127 u—B(E— 127, 1)).
It is clear that S is reduced for each w to the value
YX™, u - BEX", 1))
where
X" =X"(w) =max{i2: M(G{-12"1)<u, i=12-...,2"}.
On the other hand, after the Taylor expansion
A = Y8 — YA + F(Wud® T 2000 + ez (AiB)?) + -+
with §=27" AB=pBGE27"1) - B(E—-1)27"1),

the partial derivatives explicitly appearing computed in (( — 1)27", u — B(( — 1)27%, 1))
and the ones in the remainder, of the third order, computed in an intermediate point, we
notice that the expectation of this remainder is 0(§8), since the derivatives are uniformly
bounded and they appear multiplying 8/(A;8)*~ (j =0, - - -, 3) whose absolute expectations
are all o(8).

We call &/, the o-field generated by {B(x’, '): 0 = x’ < x, 0 =<y’ <y} and compute
ES" using E(-) = E(E(- /%;—1)2-,1)) for the ith term (i =1, .- ., 2"). This leads to

ES™ = Zf:{&Ef}"’(Ja + % \[/zz) + 0(8)]

=¥ BJ’ p((E—1)27", 2)D* Y ((i — 1)27", 2) dz + o(1)
0

with
_1a2+a
2dz% at’

*

in fact, a Riemann sum which tends to the integral in (0, 1) of
(5) J' p(1, 2)D* (-, 2) dz
o

as n goes to infinity, because of the continuity (Lemma 2) and boundedness of (5).
Therefore

© J'f p(t, 2)D* Y(t, 2) dt dz = lim,_,, ES™ =0
0,1)XR*

(since 8™ = 0) for any non-negative i, which ends the proof of (i) because D* is the

adjoint operator of D.
A completely analogous proof could have been made starting from

P = p(Y™, u — B(L, ¥)
with
Y™ = Y"(0) = max{j2™ M(1, (j— )27")<u, j=12---,2").
In order to prove (ii), we introduce the new sums

(™ S =¥ S0 Oy
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with
V(x, y, 2) = Y (xy, 2),
I = Fi-n2nj-n2-<u)s

and Oy equal to the double increment of

Y(x,y,u—Bx,y)on R = (- 127, 27"] X ((j— D27, j27"].

For each w, the union of the squares appearing in S, that is, U{R{?:#{? =1}, has a
border composed by {(x,y): xy =0,0=<x=<1,0=<y= 1} and a polygonal curve with edges
in the directions of the coordinate axes, whose vertices are

X", 1), 1, Y™)
and the points in
V= Vi) = {2 j2"): i, j<2", N =150 ;=5",=0}

and

V =Viw={E-12" (G-127")ij=2" S0 =0, sP;=5"1=1}.

Therefore, (7) may be written as
8™ =8+ 8" + Tnev V(% 3, u = B(x,3) — Lwev ¥ (x5, u — B(x, ¥)).

Now let us prove
(8) lim,w E ¥ @pev- ¥(x, y, u — B(x, y)) =0,
which implies
9 lim inf, .. E(S®™ — 8% — 8{”) =0

by Fatou Lemma applied to the nonnegative sum on V*, For the proof of (8), let us notice
that the points (x, y) in V™ verify the conditions

M(x,y)zu, M(x-0,y)<u, M(x,y—38)<u(d=27"),
hence there exist 8., §, such that
0<8,., <8, 0<6,<6, B(x—20d,y—8)=u,

and therefore the point (x — 8;, y — 8,, u — B(x — 8, y — §,)) lies outside the support of
1%

This last observation implies that the Taylor expansion of order a — 1 of ¢ around (x
— 8.,y — 8, 0) reduces to the complementary term

_ a! Y i o k
Y(x, y, u—B(x,y) = Ei+j+k=ammsx8§(ﬁ(x, y) —u)

where the partial derivatives are computed in a point of (x — 8, x) X (y — &y, y). Then, if
M, is a uniform absolute bound of all derivatives of order a, and p is the absolute moment
of order % of the standard normal djstribution,

! -
E Y enev-¥(a 3, — B 7)) < Tiepev-Sivshma 5oy MadE | B(x, ) — ul*
(10) l.].k.

n M, 8" a!
= Y=t Yitj+h=a ST 8 8%,

because of the inequality

(11) E supo<s.<s0<s,<s| B(x, y) = B(x = 85,y = 8)|* = 88"
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which we prove later. The observation that (10) tends to zero as n goes to infinity, for a
= 5, leads to (8), and hence (9).
It remains to prove (11) (for x, y = §). In order to do that, we write

Bx,y) — B(x—8:,y—8) = (B(x,y) — B(x —b:,¥)) + (B(x,y) — B(x,y —8))
—(B(x,y) = B(x—8:,y) = Blx,y—8,) + B(x —8:, ¥y — &),

and use (for any A > 0) the bounds given by the Reflection Principle and the trivial
inequality P{M (1, 1) > u} < 4¢(— u) (see [4], for instance):

P {supo<s.<s0<s,<s| B(x, ¥) — B(x — 8, ¥ — &) > A}
= 2P {supo<s.<s(B(x,y) — B(x — 8:,¥)) > A}
+ 2P {supo<s,<s(B(x, y) — B(x,y — §,)) > A}
+ 2P {supo<s,<s,0<s,<s(B(x, y) — B(x — 8, )
—B(x,y—8) +B(x—08:,y—95))>A}
=4P{B(8,y) >A} +4P{B(x,8) >A} + 8P{B(3,8) > A}
=8P{B(8,1) > A} + 8P{B(8,8) >N} <8P{|B(5,1)|>A}
(because & < 1). This implies for each positive &
E supo<s,<s,0<s,<s| B(x,¥) — B(x — 8:,y — 8,)|* < 8E|B(5, 1)|*

and (11) follows.
The next step of the proof followsthe same lines as the proof of (i). We expand 007,

omitting the index (n) and introducing the abbreviations
:Iijﬁ = Xz'sﬂu,& r‘u’ﬁ = ZJ’SJDu‘,Ba ~]ij= :li;ﬁ + I—]Uﬂ - Dijﬂ

as follows:
O = — .08 + %[208” — 248048 — 21,67 1,8 + ¢..10:,(89)]

+ Y[ 3(Yrry + Yyy) 8% — 3xz 87058 — 61ye8 71158
= 88218 + 3284, (B%) + 3uaadl 1:(B%) — ¥a20(B7)]
(12) + Vou[ (4rzry + 6Wrryy + 4ayy) 8% — 400ee0° 1158 — 129021y8° 158
— 12 Y0218 — 410y 8°T 158 + 632ee071ij(B2) + 124y2287(1:58%)
+ 628715, (B?) — 428 01(B%) — 4287 155(B%)
+ Yoo Oy (BH] + - -

The derivatives appearing explicitly in (12) are computed in ((i — 1)27", (j — 1)277,
u—B((i—1)2™", (j — 1)27")) and the omitted ones, in the complementary term, correspond
to the fifth order and the expectation of this term is 0(8?) as is easily verified. As in the
proof of (i), we compute expectations in (7), now applying

E() = E(E(- /sl -z j-n2))
in each term .#{(1{")y, and obtain,
‘ ES™ = Y 8 E {5 ay + Yooz + (i — D2 Wiz + % (J — D2 ez
+ V(i = 1) = D27uezz)} + 0(1)

O L IV (2L AN AY A
21]8 J; p((l 1)(.] 1)2 ,Z)(2 622+6y)(2 622+&x

Y@ —-1)27" (j— 127", 2) dz + o(1).
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We use again Lemma 2 to obtain from the continuity of the integral that the limit of
the sums is

lim ES™ = J: dx J: dyJ:p(xy, 2) (%-&az—zz +£’->(%%22 +a—‘l)¢(x, y, 2) dz
= J’l dt Jm (—log t)p(t, 2) D*tD*y (¢, 2) dz,
0 0
and from (6) and (9) we conclude
ffp(t, 2)((—log t)D*tD* — 2D*)y(t, z) dt dz= 0.

We finally notice that
(—log t)D*tD* — 2D* = D*tD*(— log t),

and, since any nonnegative C* function with compact support on (0, 1) X (0, «) can be
written in the form (— log ¢)y/(¢, z), with ¢ of the same class of functions, (ii) follows.

4. A Lower Bound for p. Theorem 2 shows that in fact, the distributions
h=DtDp=0
and
w=tDp=0
are formal densities of Borel measures.
A lower bound p of p will be obtained as a solution of the equation

W
Dp=—-
P t

where p satisfies initial and border conditions that are not greater than those corresponding
to p, and the cooling term i/t is greater than or equal to w/¢ in the interior of (0, 1) X R*.
We shall find such a function @ as a solution of the homogeneous heat equation

Dw =0,

with the same initial and border conditions as w. Hence, &0 = w will follow from Dw = h
=0.

So, our next task is to get initial and border conditions for @ and p. For that purpose,
let ¥ and x be fixed, non-negative, C*-functions of one real variable, support contained in
(=1, 0) and

0 l 0
j V() dt =j x(z)dz=1;
-1 -1

¥ and x will be chosen afterward.
For each £ > 0, denote:

V. (t) ='W (t/e);  x.(2) = e 'x(2/e).
If g(t, 2) is a formal density, we shall denote by
q.(¢, 2) = JJ Y. (t—t)x.(z—2")q(t',2") dt’ dz’
its convolution with the kernel ¥.(¢)x.(z). The C*-function ¢, is defined for (¢, z) €

(0,1 —e) X R* and q.(¢, z) dt dz converges weakly (as a measure) to q(t, z) dt dz as
e— 0.
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LEMMA 3. (Initial conditions).

+00

(i) lim sup@f [po(t, 2) — p(t, 2)]dz=0

0
+oo

(i) lim,jolim supyo f w(t, z) dz = 0.
0

Proor. The standard reflection principle for the (one-dimensional) Wiener process
says that:

J’ polt,z) dz=1—2®(— u-t?).
0

This, plus the trivial bound

+oo

PM1,1)>u)=1 —J' pt,z)dz=4®(— u-t™'?)

0

(see for example [4]), implies:
(12) f [po(t, 2) = p(t, 2)1dz<2®(— u-t7?),
0

and (i) follows.

To prove (ii) compute:
j w(t, z) dz = J’ dz jf[?g(t —t)x(z—-2") + % V. (t—t)x!(z—2")
0 (1]
=ttt )x(z — z’)] Ap(t, 2') —po(t’, 2')] dt’ dz’

where we have used the fact that w = ¢t Dp = ¢t D(p — po). We separate the right hand
member into two terms, and use (12):

J' dz JJ’ [V (t =t )x(z2—2') — "Vt — t')x.(2 — 2')]|
o

(13) “(po(t’, 2') = p(t', 2")) dt’ dz’
= f [Pt —t') —t"FU(t—t')]-20(— u-t""'/%) dt’

=1+ eV lo)2®(— u(t + €)',

and

+0oo t/
f dz Jf E“I’g(t - t')lxg/(z _ Z’)I(po(t/, Z/) ——p(t’, 2’)) dt' de’
[

+

(14) S%J\I’E(t—t’) dt’ || x” ||mf (po(t’,2') — p(t', 2')) dz’

0
=% e 3| x" |- 2®(— u(t + &)~?).

Letting £ | 0 and & | 0 in (13) and (14), we obtain part (ii) of the Lemma.

LEmMMA 4. (Border conditions). Put w.(t, 0) = lim sup.jow.(¢, z). Then, for each
positive number 8, the functions ¥, x above can be chosen in such a way that if ¢ > 0 is
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small enough, one has
wlt,0) < G(t,u) +8 forall te (0,1—e),
where the function G (¢, u) is defiﬁed by:
G(t, u) = 20t (u- ™).
Proor. From Corollary 1, if z is small encugh (say 0 < z < ©/2), one has:
(15) p(t, 2) < 2X(G(t, u)/t) + CZ

uniformly on ¢, where C is a constant. So:

w(t, 2) = ff

-Vt - t)x(z—2)

t
Yot - t)x(z = 2) + 5 Vet = )xd (2 = 2)

p(t,2')dt' dz’

= J’j | Y(—7)x(—§ + %s_z(t +er)¥(—1)x"(— %)

—e(t+en) V(- 1)x(— 9

[+ er)'G(t + e, u)(z + e)? + C(z + €£)®] dr d¢.
Let A be a bound of t'G(¢, u) for t € (0, 1). Then:

w(t, 0) = ff

J(t+er)'G(t + er, u) + Ce L] dr d¢
= (A+eC)(E + el + &) V)

E¥(—1)x(- ) + % (t+en)¥(—T)X"(—= 8 —et+en)¥' (= 1)x(— )

1

1
+ l:j V(- 1)(G(t + eT; u) + Ce(t + e1)) dv'] f % Elx" (- 4| ds.
o

0

Now (ii) follows easily if the function x can be chosen with the additional requirement
that

1
1
f S EIX"(= Dl dE<1+86,
0
and this can be shown by means of an elementary computation.

THEOREM 3.
(i) The function

Wit z, u) = f 2(t — 8) ™ (z2-(t — s)"'*)G(s, u) ds
0

is the density of a measure that is greater than or equal to the measure with formal
density w(t, z, u).
(ii) The function

Pt 2, u) = polt, 2, u) — f (log t —log s)(¢t — 8)™ 2@ (2(t — 8)"*) G(s, u) ds
0

is a lower bound for p(t, z, u).

ProOF. The solution of the equation Dg = 0 (in (¢, 2) € (0, 1) X R*) with zero initial
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condition and border condition ¢(¢, 0) = @(¢) is given by
t
q(t, 2) =f 2(t — 8)p(2(t — 5)"*) Q(s) ds;
0

see for example [11]. So, the function i satisfies Div = 0, with zero initial condition and
border value G (¢, u).
Let now 8 > 0 be given. Using Lemma 3(ii), for ¢ small enough, one has
+00

(16) lim sup,yo f [W(t, 2) — we(t, 2)]dz>— 4.

0
The functions ¥, x can be chosen according to Lemma 4 so that
w(t,0) =< G(¢t, u) +6/2
for € small enough, and as a consequence, for z small enough:
(17) [@(t, 2) —we(t,2)]=—0

uniformly on ¢ (c.f. the proof of Lemma 4).
Observe also that D(& — w,) = — h. =< 0.

Combining now the maximum principle for the heat operator with the fact that the
solution of Dg = 0 with zero border condition and initial total mass bounded by @ is
bounded by

q(t, 2) =02 wt)™,
it follows from (16) and (17) that
W(t, z) —wlt,z) >—0—02nt)y
in the distributions sense. Since 8 > 0 is arbitrary, we get (i). Consider now the function

0(t, 2) = po(t, 2) — p(t, 2) — (log t)i(¢, 2)

t
= f 2(t — 5) " p(2(t — s) /%) (— log 5) G (s, u) ds
0

which is the solution of Di = 0 with zero initial condition and border condition #(¢, 0) =
(— log t)G(t, u).
Clearly,

D(¢, 2) = po(t, 2) — 0(t, 2) — (log ¢)i(t, 2)

satisfies Dp = i/t and (po — p) has zero initial and border values. But D(p — p) = (w —
W)/t = 0 and by Corollary 1, and Lemma 3 (i), p — p = (po — p) — (po — p) has zero initial
and border values. A new application of the maximum principle for the heat operator
implies that p — p = 0, and finishes the proof.

5. Numerical results. The computation of tables for the function p can be done
from Theorem 3 (ii). The same helds for P(¢, u), the upper bound of P(M(x, y) > u)
where xy = t, given by:

) +oo
(18) Bituy=1- f Bt 2, u) dz.
0
Lemma 1 shows that it is sufficient to make the computations for ¢ = 1.

Moreover, the bound is obviously improved if 5 is replaced by p \/ 0 in the integrand in

(18).



300 ENRIQUE M. CABANA AND MARIO WSCHEBOR

The conditional probability

P(M(1,1) >u/B(1,1)=0)=1—

p(l,u,u)
o(0)

is bounded above by 1 — (5 (1, u, u))/¢(0), and appears in the two-dimensional one-sided
asymptotic Kolmogorov-Smirnov test in the case of independent coordinates.

Similar lower bounds are obtained from p¢. The following tables contain some results
as well as some other known ones for comparison purposes.

TABLE 1.
Bounds for P(M(1,1) > u)
Lower bound:

Pg(u)=1- f pe(l, z,u) dz
{J

Upper bounds:

Bu)=(1- f [0vAQ, zuldz AL
0

Pr(u) = 1A {4 ®(—u)}.

u P(; P P T
1 991 1. 1.
2 .964 1. 1.
3 924 1. 1.
4 874 993 1.
b 812 .961 1.
.6 751 901 1.
7 .684 .825 .968
8 616 740 847
9 .549 655 .736
1.0 484 573 635
1.1 422 495 .543
1.2 .365 424 460
13 312 .360 .387
14 .264 .302 .323
1.5 222 251 267
1.6 .184 207 219
1.7 151 .169 .178
1.8 123 137 144
1.9 .0994 .1099 1149
2.0 0795 .0873 .0910
2.1 .0629 .0688 .0714
2.2 .0493 0537 .0556
2.3 .0383 © 0415 .0429
24 .0295 .0318 .0328
2.5 .0224 .0241 0248
2.6 .0169 .0181 .0186
2.7 0127 0135 .0139
2.8 .0094 .0100 .0109
2.9 .0069 .0072 .0075
3.0 .0050 .0053 .0054

TABLE 2.

Bounds for the critical values for the
two-dimensional asymptotic Kolmo-
gorov-Smirnov test in the indepen-
dence case.

Lower bound: Ug; Upper bound: U

a=1- (2m"pe(1, Ug, Us)
=1-@n"?pqa, T, 0)

Level
[+ 4 UG ﬁ
.10 1.39 1.47
.05 1.54 1.60
025 1.67 1.73
.01 1.82 1.87
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TABLE 3

Values of p(1, z, u), pc(1, 2, u), po(1, 2, u)
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u = 0,75 u=15
Lower Upper Lower Upper
bound bounds bound bounds

z D Dc Po z b Pa Do
0.2 0.0000 0.0127 0.0889 0.2 0.0086 0.0209 0.0773
04 0.0000 0.0457 0.1693 0.4 0.0527 0.0735 0.1522
0.6 0.0000 0.0898 0.2341 0.6 0.1185 0.1429 0.2221
0.8 0.0332 0.1344 0.2784 0.8 0.1921 0.2159 0.2839
1.0 0.0732 0.1710 0.3004 1.0 0.2614 0.2820 0.3345
1.2 0.1073 0.1937 0.3009 1.2 0.3174 0.3335 0.3710
14 0.1296 0.2004 0.2834 14 0.3544 0.3660 0.3910
1.6 0.1380 0.1922 0.2528 1.6 0.3702 0.3780 0.3937
1.8 0.1335 0.1727 0.2144 1.8 0.3654 0.3704 0.3797
2.0 0.1195 0.1463 0.1736 2.0 0.3430 0.3460 0.3512
2.2 0.1000 0.1173 0.1343 2.2 0.3073 0.3090 0.3138
24 0.0788 0.0894 0.0995 2.4 0.2636 0.2645 0.2659
2.6 0.0587 0.0649 0.0706 2.6 0.2166 0.2171 0.2178
2.8 0.0415 0.0450 0.0481 2.8 0.1708 0.1710 0.1713
3.0 0.0280 0.0298 0.0314 3.0 0.1293 0.1294 0.1295

u=1 u=175
0.2 0.0000 0.0178 0.0955 0.2 0.0114 0.0187 0.0604
04 0.0124 0.0637 0.1835 0.4 0.0534 0.0655 0.1208
0.6 0.0601 0.1242 0.2573 0.6 0.1141 0.1278 0.1807
0.8 0.1186 0.1858 0.3121 0.8 0.1825 0.1954 0.2386
1.0 0.1743 0.2370 0.3450 1.0 0.2496 0.2602 0.2920
1.2 0.2172 0.2704 0.3556 1.2 0.3081 0.3162 0.3378
14 0.2412 0.2832 0.3459 14 0.3532 0.3588 0.3724
1.6 0.2453 0.2762 0.3196 1.6 0.3813 0.3849 0.3930
1.8 0.2319 0.2533 0.2818 1.8 0.3909 0.3931 0.3977
2.0 0.2058 0.2198 0.2375 2.0 0.3826 0.3838 0.3863
2.2 0.1727 0.1813 0.1918 2.2 0.3584 0.3891 0.3604
24 0.1375 0.1426 0.1485 24 0.3220 0.3223 0.3229
2.6 0.1043 0.1071 0.1103 2.6 0.2775 0.2777 0.2780
2.8 0.0766 0.0770 0.0787 2.8 0.2297 0.2297 0.2299
3.0 0.0523 0.0531 0.0539 3.0 0.1826 0.1826 0.1826

u=125 u=2
0.2 0.0013 0.0207 0.0905. 0.2 0.0110 0.0151 0.0435
0.4 0.0398 0.0735 0.1757 0.4 0.0461 0.0527 0.0885
0.6 0.1020 0.1428 0.2509 0.6 0.0963 0.1035 0.1361
0.8 0.1728 0.2142 0.3117 0.8 0.1544 0.1609 0.1863
1.0 0.2385 0.2756 0.3549 1.0 0.2147 0.2198 0.2375
1.2 0.2888 0.3191 0.3786 1.2 0.2722 0.2759 0.2873
14 0.3180 0.3409 0.3826 14 0.3226 0.3251 0.3320
1.6 0.3247 0.3409 0.3684 1.6 0.3622 0.3637 0.3677
1.8 0.3113 0.3220 0.3391 1.8 0.3878 0.3886 0.3908
2,0 0.2823 0.2890 0.2991 2.0 0.3973 0.3977 0.3988
2.2 0.2433 0.2473 0.2530 2.2 0.3902 0.3905 0.3910
24 0.2001 0.2024 0.2054 24 0.3679 0.3680 0.3682
2.6 0.1574 0.1586 0.1601 2.6 0.3331 0.3331 0.3332
2.8 0.1185 0.1191 0.1199 2.8 0.2896 0.2896 0.2897
3.0 0.0856 0.0859 0.0862 3.0 0.2419 0.2420 0.2420
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