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STRUCTURE OF A CLASS OF OPERATOR-SELFDECOMPOSABLE
PROBABILITY MEASURES'

BY ZBIGNIEW J. JUREK

Wroclaw University

In 1972, K. Urbanik introduced the notion of operator-selfdecomposable
probability measures (originally they were called Lévy’s measures). These
measures are identified as limit distributions of partial sums of independent
Banach space-valued random vectors normed by linear bounded operators.
Recently, S. J. Wolfe has characterized the operator-selfdecomposable mea-
sures among the infinitely divisible ones. In this note we find examples of
measures whose finite convolutions are a dense subset in a class of all operator-
selfdecomposable ones.

1. Introduction. An important class of limit laws are those which serve as limiting
probability distributions of normed sums of independent random variables. It seems to be
quite natural that in multidimensional linear spaces the partial sums of sequence of random
elements should be normed by linear operators or by affine transformations. In this setting
we get the classes of operator-selfdecomposable and operator-stable probability measures.
Jurek (1981a) gives a bibliography for those problems on Euclidean and Banach spaces.
The aim of this note is to extend the results of Jurek (1980) and to give a structure
characterization of the class of operator-selfdecomposable measures. This class was intro-
duced by Urbanik (1978). His fundamental paper gives descriptions of operator-selfdecom-
posable p in terms of properties of its decomposability semigroup D(u) (cf. Section 3) and
its characteristic functional. This last one is proved via Choguet’s Theorem on extreme
points of compact convex sets. A more direct proof is given in Jurek (1981b). Recently,
Wolfe (1980) has found another characterization of operator-selfdecomposable measures
based on the Lévy spectral function associated with infinitely divisible measure. It seems
that in order to carry out Wolfe’s proof in detail we need the uniqueness of representation
of each vector by a one-parameter group of operators and a subset of the unit sphere (cf.
Proposition 2). The crucial step for our consideration is given in Proposition 5. Finally, we
emphasize that originally, by Urbanik, the operator-selfdecomposable measures were
called Lévy’s probability measures.

2. Preliminaries and notations. Let E be a real separable Banach space with the
dual E* and a norm || - ||. By (-, -) we denote the duality pairing between E* and E.
Further, B(E) is the algebra of all continuous linear operators on E with the norm
topology. For A € B(E) and a strictly positive real number ¢, i.e. ¢ € R*, by t* we mean
the operator Y5, (B log t)*/k! € B(E). By #(E) we denote the topological semigroup of
all Borel probability measures on E with the convolution * and weak convergence. Given
an operator A € B (E) and a measure u € Z(E), we write Ay for the probability measure
defined by (Ap) (F) := u(A7'F) for all Borel subsets F of E. It is easy to check that

A(p+v)=Ap+Av, ABp)=(AB), (Ap " (y) =iA*y)
where A, B € B(E), p, v € P(E), [i is the characteristic functional of u, A* is the adjoint
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operator for A and y € E*. Moreover the mapping 4: B(E) X #(E) — 2(E), defined by
h(A, p) = Ap, is continuous i.e. if A, > A in B(E) and p, = p in 2(E) then A,u, = Ap.
By 6. (x € E) we denote the probability measure concentrated at the point x. We say that
p € Z(E) is infinitely divisible if for each natural number n = 2 there exists a u, € Z(E)
such that u;" = u. The class ID(E) of all infinitely divisible probability measures on E is
a closed subsemigroup of Z(E). Moreover, it is known (see for example de Acosta, Araujo,
Gine, 1978) that A € ID (E) if and only if

2.1) X)) =50 exp[i (, %o) +J'

E

K(y, x)M(dx)] R y € E*,

Here p is a Gaussian measure on E (i.e. for all y € E *, the random variables yp is Gaussian),
X0 € E, K is the function on E* X E given by

(2.2) K(y,x)=exp(i{(y,x) —1—-i(yx) 1g(x))

(15 denoting the indicator function of the unit ball B= {x € E: || x| < 1}), and M is o-finite
measure on E which is finite on the complement of every neighbourhood of 0 and
M ({0}) = 0. For a symmetric Gaussian measure p

(2.3) p(y) = exp(—% (y, Ry)), y€E*

where R is called the covariance operator. R is a compact operator from E* into E with
the properties: ( y1, Ry:) = ( y2, Ry1) for y1, y» € E* (symmetry) and (y, Ry) = 0 (non-
negativity). Since the representation (2.1) is unique we write A = [xo, R, M], if \is of the
form (2.1) with (2.3). The measure M in (2.1) is called generalized Poisson measure (or
Lévy measure) of A (cf. de Acosta, Araujo, Gine, 1978, Theorem 1.6). Let us note that if A
€ B(E) and A =[xo, R, M] € ID(E) then A\ =[%,, ARA*, AM] € ID(E), where %, = Axo
+ [Bx(AM)(dx) — A [ xM(dx).

Let f and g be real-valued functions defined on an interval [a, b] such that the right
f+, &% and the left derivatives f_, g_ exist at every point of [a, b) and (a, b] respectively.
In the sequel /" and g’ denote either the right or left derivative possibly different one at
different points.

ProposiTiON 1. If g’ > 0 and the function h (h(x) = fi(x)/g%(x) or h(x) =
- (x)/g"(x)) does not increase in [a, b] then for every a < ¢ < b such that g(c) # g(a)
and g(b) # g(c) we have

[f(c) — f(a)]/[&(c) — &(a)] = [F(b) — f(c)]/[&(b) — g(c)].
Proor. For functions f and g having only the left and right derivatives the Cauchy

mean value theorem has the following form (cf. Kubik, 1962); if g(c) # g(a) then there
exists a < d < ¢ such that

(g4 (d)[f(c) = fla)]/[&(c) — gla)] = [+ (d)}
-{&-(d)[flc) — f(a)]/[&(c) — gla)] = f-(d)} = 0.

The analogous inequality is obtained for the interval [¢, d] and some point e € (c, d).
Since g’ > 0 and 4 is not increasing we get

[f(c) —fla)]l/[g(c) —gla)l= h(d) = h(e) = [f(b) — f(c)]/[g(b) — glc)]
which completes the proof of the Proposition.
3. Operator-selfdecomposable measures. Let ¢, &, - - be a sequence of indepen-

dent E-valued random elements and let A;, A,, - -- be a sequence of operators from B(E)
such that

(i) A, isinvertible (n =1,2, -..),
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(ii) the closed multiplicative semigroup in B (E) generated by {4,A,":n=1,2, .-+, m;
m=1,2, ...} is compact in the norm topology,

(iii) the triangular array A,&,(j = 1,2, ..., n; n = 1, 2, -..) of random elements is
infinitesimal (null array).

A limit probability distribution u of the sequence
(3.1) A+ &+ o + &) + xn,

where {x,} C E, is called operator-selfdecomposable measure (in Urbanik, 1978, these
measures are called Lévy probability measure). Further, let us note that for full u (i.e. the
support of p is not contained in any proper hyperplane of E) on finite dimensional spaces
and on Banach spaces when A, are multiples of identity operator I, the compactness
condition (ii) can be omitted (cf. Urbanik, 1978). In the study of limit probability
distribution of (3.1), Urbanik introduced the concept of decomposability semigroup D (u)
of linear bounded operators associated with u € 2(E). Namely,

D) =={AEBE):3(v € AE)) = Ap+v}.

It is clear that D(p) is a semigroup under multiplication of operators and D(p) always
contains the operators O and I.

THEOREM 1. (K. Urbanik, 1978). A full measure p € ? (E) is operator-selfdecompos-
able if and only if there exists @ € B(E) with the property lim, o t® = 0 such that
semigroup {t9:0 <t < 1} is contained in D ().

Let us note that for each one-parameter group {¢*:¢ € R*} satisfying the condition
lim,_o t* = 0, the orbits r(x) = {t*x:¢ € R*} for x 5 0 intersect the unit sphere in E at
least once, but not necessarily exactly once.

ExampPLE. Let E = R? be the Euclidean space with the norm |- || and let A =

(1) ;k for some 2 € R. Then, for ¢t > 0, t* = ¢ é _k(tt_ 1 and for x = (a, b) € E;

fxll = 1, we get | t*x||* = t2((a — bk(t — 1))*> + b**). Further, for f. defined by f:(¢) :=
| #*x]|* — 1 we obtain f.(¢) = (¢ — 1)[6%(k* + 1)¢* + (b* — 2abk — b%k?)t* + t + 1]. Hence,
in the particular case, taking xo = («/1_5- /4,1/4) and k = J15 , we infer that f (1) = £, (2)
=0, i.e. for £ = 1 and ¢ = 2 the orbit r(x,) intersects the unit sphere in E.

PROPOSITION 2. Let {t*:t € R")} be a one-parameter group in B(E) with the property
lim,,ot* =0, and let Sy := {x EE: (]| x|| = 1) AV(t>1)| t*x|| > 1}. Then the function
®:S4 X R* — E\{0} defined by ®(u, t) = t*u is a Borel isomorphism between Sy X R
and E\{0}.

Proor. By some simple arguments we get that S4 is a Borel subset of the unit sphere
in E. Further, each orbit r(x) intersects S4 exactly once (x # 0). Thus ®is 1 — 1, onto and
continuous mapping. By Kuratowski’s Theorem (see [6], Corollary 3.3, page 22) we get
that @ is a Borel isomorphism betwen the sets S4 X R* and E\ {0}, which completes the
proof.

The existence of the set Sa, for which the statement in Proposition 2 holds true, in
Euclidean spaces was proved in Jurek (1979). The above construction of S, is essentially
due to Hudson and Mason (1981). It is worth noticing that there is an analogue of
Proposition 2 for strongly continuous one-parameter group as well, but with S4 replaced
by a Borel subset of E\ {0}, cf. Jurek (1981b), Proposition 2.1.

For multiplicative semigroup {¢*:0 < ¢ < 1} in B(E) satisfying the condition lim,_, #*
= 0 there exist positive numbers 8 and y such that

(3.2) |¢4]| =< Bt? for each0 <t =<1,
(cf. Yosida, 1965, page 232). Hence, for x € E and ¢ € [a, b] C R™ we have
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/
Itz = B/b)Ib*x | and B(¢/@)"| atx] = || ¢x]),
and consequently for x # 0 we get
(3.3) &la, b; x) 1= supiciasl| x|l /infieranll ¢ x|
= B x|/ a’x | = B7(b/a).

Let be given the one-parameter group {¢*:¢ € R*} and the measure p = [x,, R, M] €
ID(E). For a Borel subset F of S4 and a Borel subset I of R* we put [F, I]:= ®(F x I) i.e.

[F,I]={t"x€ E:xEF,teI}.

It is easy to check that s*([F, I]) = [F, sI]. Finally, A-Lévy spectral function L*(F, r) of
u we define by

(3.4) LAF, r) := —M(®(F X (r, »))), reRrR".

In view of Proposition 2 we have that — L“(., r) is finite Borel measure on S, LAF, ) is
non-decreasing function, right-continuous with lim, ... L*(F, r) = 0. Now we can formulate
Wolfe’s result as follows.

THEOREM 2. (Wolfe, 1980). A full measure p € ?(E) is operator-selfdecomposable if
and only if p = [x0, R, M] and there is a @ € B(E) with the property lim,_.o t9 = 0 such
that Q-Lévy spectral function L9(F, r) of u, for each Borel subset F of Sq, has right and
left derivatives at each value r € R™, the function r[dL°(F, r)/ar] is non-increasing on
R™ for each F and in addition QR + RQ* is non-negative linear operator on E*. [Here
dL®(E, r)/or denotes the right or left derivatives, possible different ones at different
points.]

4. Generators of a set #g. Let @ € B(E) with the property lim,.o ¢% = 0 be fixed. We
define the following class of measures

Ho:={nE€ PE):s?€ D(u) foreach 0<s<1},

where D(pu) denotes the decomposability semigroup of p. For the set #p we have the
following.

ProPOSITION 3. (i) If AQ = QA, u € Hg and x € E then Ap + 6. € Aq.

(i) Foreach a >0, X = Hag.
(ill) Ao is closed subsemigroup of ID(E).

Proor. The properties (i), (ii) and semigroup structure of # are simple consequences
of the definition of #%. Lemma 4.4 in Urbanik (1978) implies that #, C ID(E). Finally, if
tn = §%, * vy, for every 0 < s < 1 and pi, = p then the sequence {v,.}5-1is conditionally
compact (cf. Parthasarathy, 1967, page 58) and lim ,_,« 7., (y) exists. Hence u = sy * v, for
some », € 2 (E), which proves the closedness of ¥, and Proposition 3 is completely
proved.

Let m be a finite Borel measure on Sq (cf. Proposition 2), and A,(a € R") be a Borel
measure on R™ with density 1(, (¢£)¢”". By M,,» we denote the Borel measure on E\ {0}
defined as follows:

(4.1) MS, :=®(m X A,) ie. ME.(F)= f f 17(s%x) st dsm(dx).
S J0

Further, by Proposition 2 and the inequality (3.2) we get
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a1
f A A x|)Me, m(dx) = Mam (|| x]| > 1) + J' f | s9x||s™" dsm(dx)
E 5o J0

=S M.(|x]| > 1) + m(Se)y 'BlaA 1) <o,

where a A b denotes the minimum of real numbers. Therefore Araujo and Gine (1978)
implies that M., . is generalized Poisson exponent, i.e. [x, 0, M,,»] € ID(E). Let us note
that if we replace the operator @ by @, = a@(a € R*) then Sg, = Sg and

(4.2) M8, = M§ ., where a;=a° m:=a'm.
Hence the general shape of the measures M 9. is invariant under the transformation

— aQ(a € R").

PROPOSITION 4. The infinitely divisible measures p = [x, 0, M., m], where M, is of
the form (4.1), and p = [x, R, 0] such that the operator @R + RQ* is non-negative, belong
to the class Kq.

Proor. Of course, it is sufficient to verify that in the first case
4.3) M,n=5°M,,, foreach 0<s<1,
and in the second case that
(4.4) R —s°RS?¥ =0 foreach 0<s<l

Taking into account (4.1) we have

s°Mou([F, A)) = m(F) J Losa ()t dt = Mo ([F, A)),
A
i.e. (4.3) is fulfilled on the sets [F, A], and by Proposition 2 we infer that (4.3) is true for
arbitrary Borel subset of E\{0}.
Given y € E*, we put
£,(s) :i=(y, (R —s°Rs¥)y) for 0<s=1.
By a simple computation we get
dfy(s)/ds = —s7(s¥y, (QR + RQ*)s¥ y)

which implies df(s)/ds < 0. On the other hand, f,(1) = 0 and lim,0 f,(s) = (¥, Ry) = 0.
Thus the operator R — s°Rs? is non-negative for each 0 < s < 1, which completes the
proof of Proposition 4.

PROPOSITION 5. For each ju=[0,0, M] € X4 there exist subsequences {k.} of positive
integers, positive real numbers a,, and positive finite Borel measures m,, on Sq(j =1, 2,
e kyy;n=1,2, ...) such that

(a) N,:=3k M,

g My

=M,

outside every neighbourhood of zero in E. Moreover, if for some p >0, [(1 A\ | x||”)M(dx)
< o then

(b) lim,,o lim sup,— j [[2]|”N» (dx) = 0.

llxll=«

ProoF. Let L9 be Q-Lévy spectral function of pu (cf. (3.4)). By Proposition 2,
— L9(., ¢) is a finite Borel measure on S for each ¢ > 0. For Borel subset F of Sg let us put
bnk(F) = LQ(F3 k/2")(k = 1, 2» M) n) and
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(4.5) e (F) = [bni (F) = bue-1(F)]/log(k/(k — 1)), for k=23, ..., n2",

and @,:(F) = an2(F), @nn2041(F) = by nons1 (F) = 0 for all Borel subset F of Sg. Taking into
account Theorem 2 and applying Proposition 1 for the function ra L9(F, r)/ar we infer
that

anp+1(F) < anp(F), for k=1,2, ..., n2"
Hence
(4.6) Mpp = Quk — Qup+1, for k=1,2, ..., 02"
are non-negative finite Borel measures on Sg. Further, let us put
4.7) an =k/2" for R=1,2,...,n2" and k,=n2".

We start by proving the condition (a). It is enough to verify it for the sets of the form
[F, (¢, )]. Let HY be the @-Lévy spectral function of [0, 0, N, ] i.e. HE(F, r) = —N,([F,
(r, )]). Taking into account (4.1), (4.5) through (4.7), we infer that if (i — 1)/2" < r < i/2"
for somei € {2,383, .-, k,} then

HR(F, 1) = ¥ims (ane(F) — anre1(F))log(1 A (2"r) /)
= ni(F)10g(2"r/i) — Y3e; [ank (F) — @np+1(F)]log
= an (F)log(2"r/i) + bpi(F) — bnr, (F).
For fixed i = 2, we define the functions L,;(F, r) as follows
Lni(F, 1) := @ni(F)log(2"r/1) + bui(F), for (i—1)/2"=<r=i/2".
Hence we get
| Lni(F, r) — LO(F, r)| < L(F, i/2") — L9(F, (i — 1)/2"),

because of L,;(F, i/2") = L9(F, i/2") and L,;(F, (i — 1)/2,) = L2(F, (i — 1)/2"). Since for
e > 0 there exists a positive integer no such that forn = noand & = [2"] + 1, -- -, k, we
have

LO(F, k/2") — LO(F, (k — 1)/2") <&, —L®(F,n) <e,

therefore lim ,_,.. H(F, t) = L9(F, t), which proves the condition (a).

Now we proceed to a proof of the condition (b). At first, note that for every & > 0 there
exists a Borel subset A. of R* such that {x € E:0 < || x| < ¢} = [S,, A.] (cf. Proposition
2), and 1 := sup A, — 0 if e — 0. In view of the formulae (4.5) through (4.7) and summing
by parts, we get

nha,,
J' | x| N, (dx) < 3k, J' j |89 ||7¢ ™" dt My (dix)
llel=e S Jo

k/2"

2—!!
4.8) = f J |9 |76 dt @ns (dx) + XD J' |89 |76 dt ane (dx)
Sq Jo Se

(k= T1)/2n

7
+Jr f " % "pt_l dt an o+ (dx),
S Jrzm/2

where [x] denotes the integral part of a real number x. Further, by the First Mean Value
Theorem and the inequality (3.3), for x € Sp and the interval L., := ((k — 1)/2", £/2"], in
R*(k=2,3, ..., [2™]), there exists t,. € I.» U {(k — 1)/2"} such that
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f |1 t9x||”d log ¢ = ||t ||” log(k/k — 1)
I,

nk

= g”((k — 1)/2", k/2"; x)log(k/k — 1)|| % |”

= Clog(k/k — 1[|s°x|)%, (C = C(B, v, p) = B¥2"),
for arbitrary s € I,,.. This, together with (4.5), gives us

f f | £9x (|7t dt an (dx) = f f | t8x|”M(@ (dx, ds))
SQ I, SQ I,

= Cf || 8% ||”M (@ (dx, ds)) = CJ’ I z|17M (dz).
SQ I,

[S@:Tnr]

Hence the second component in (4.8) is not greater than C [is, o.m [| 2| °M (dz), therefore
it converges to zero if n — o and then ¢ — 0. By the same arguments we obtain that the
third component converges to zero too. Since for the first component in (4.8) we have

2-n+l1

oo
f J' [|£%||P¢ " dt ape (dx) = f j | (&= 27")%||”(¢ = 27") " dt ane (dx)
S, Jo So J2n

2—n+1

=p f (¢ =27 /"% ||”t™" dt ane (dx)
Se

2-n

= CB"J’ | z[1”M (dx),
[SgTs)

it converges to zero as n — oo, In the last inequality we could assume that yp = 1 because
of (4.2) or Proposition 3 (ii). Thus Proposition 5 is completely proved.

Let us denote by % the class of all measures of the form [xo, 0, M, ] or [xo, R, 0],
where xo € E, the operator QR + RQ* is non-negative and M, ,, is defined by (4.1). By
Proposition 4 we have %, C ¥,. Further, let ., denotes those measures [x,, R, M] in
Hq for which [z (1 A || x|)M (dx) < o. Note that %o C # and Fg is a proper subset of
Hg.

As a simple consequence of Proposition 5 with p = 2 and Theorem 5.5, Chapter VI in
Parthasarathy (1967), we get the following structural characterization of the class #%.

THEOREM 3. Let E be a real separable Hilbert space. The class A is the smallest
closed subsemigroup in ID(E) generated by the set 9g.

For an arbitrary Banach space we are able to prove only the following partial charac-
terization.

THEOREM 4. Each measure from Hq is a weak limit of finite convolutions of measures
from the set %q.

Proor. Let [0, 0, M] € jQ and M be symmetric generalized Poisson exponent. The
Proposition 5 with p = 1 and Theorem V.10.5 in Woyczynski (1978) gives us that [0, 0, N, ]
= [0, 0, M], where [0, 0, N, ] is the finite convolution of elements from %g,. If M is not a
symmetric measure then we may take its symmetrization i.e. M + M~ (M~ (F) := M(-F),
F an arbitrary Borel subset of E'\ {0}). Therefore

[0,0, N, ] * [0,0, N, ]=>[0,0, M + M"].
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Hence and by Acosta, Araujo, Gine (1978) (Corollary 1.5 and Theorem 1.10) we get
[0, 0, N,]=> [0, 0, M], which completes the proof of Theorem 4.

5. A structure of operator-selfdecomposable measures. In this section we shall
summarize our information about the structure of the class of all operator-selfdecompos-
able measures. Namely, combining Theorem 1 with Theorem 3 and 4 we obtain the
following.

COROLLARY 1. Let H be a real separable Hilbert space. A full probability measure
u is operator-selfdecomposable if and only if there exists @ € B(H) with the property
lim,_,o t° = 0, such that u is a weak limit of finite convolutions of measures from the set
Yo.

COROLLARY 2. Let E be a real separable Banach space. If an infinitely divisible
measure u =[x, R, M] satisfying the condition [r (1 A\ || x||)M (dx) < o, is a full operator-
selfdecomposable measure then there exists @ € B(E) with the property lim, .o t? =0,
such that u is a weak limit of finite convolutions of measures from the set %q. Conversely,
each weak limit of finite convolutions of elements from Yg is operator-selfdecomposable.

In case @ is the identity operator, the above statements characterize the set % of all
self-decomposable probability measures (cf. Jurek, 1980). Moreover, it seems to be true
that in Corollary 2 (or in Theorem 4) the integrability conditions may be omitted, i.e. %q
generates the whole class of operator-selfdecomposable measures on arbitrary Banach
space.

Acknowledgements. The author wishes to thank Prof. A. A. Balkema and the
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