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JOINT CONTINUITY OF GAUSSIAN LOCAL TIMES

By JAck Cuzick AND JOHANNES P. DUPREEz

University of Oxford and Plymouth Polytechnic

Sufficient conditions in terms of interpolation variances are given for a
Gaussian process to have a jointly continuous local time. In the stationary
case these conditions can be verified in terms of the spectral density and are
seen to be within logarithmic factors of the best possible conditions. A bound
for the modulus of continuity in the space variable is also obtained.

Let X (¢) be a jointly measurable Gaussian process on an interval of the real line with
mean zero and bounded variance. When

(1) (T ds dt .
o Jo (E(X(t) — X(s))*}* )

Berman (1969) has established the existence of a square integrable density &(x, T') for the
occupation measure of X (¢) on [0, 7] by means of the Fourier representation

w T
(2) a(x, T) = f f eMXO=2gy gx.

Here the equals sign is to be interpreted as almost sure L,-equivalence. This paper is
concerned with the regularity in x of a natural version of this occupation density or local
time. In particular, joint continuity in (x, T') is established under conditions which are
essentially weaker than those given by Berman (1973). However, our conditions are not
strictly comparable to his because we use a different type of local nondeterminism which
requires conditioning on an infinite instead of only a finite number of values. See Cuzick
(1982) for more discussion of this point. Stationary Gaussian processes with spectral
densities proportional to (1 + A) ™ log?(e + A), 8 > 6 provide examples which can be shown
to have a jointly continuous local time by our methods, but not by those of Berman. The
reader is referred to the review by Geman and Horowitz (1980) for general background on
local times.
It is well known that
T

3) a(x, T) =lim, o inf(2e)'1 f I x0)-x 1 =e)dt,

0

where I, is the indicator function of the set A, defines a version of the local time when it
exists, and that the limit in (3) actually exists for a.e. x a.s. Cuzick (1982) has also shown
that when X is also stationary, the limit exists for any fixed x a.s. The version of the local
time which we shall consider is the right continuous modification (in 7') of (3).

Geman (1976) has shown that under (1), this version is continuous in T for a.e. x.
However, to establish joint continuity, or even continuity in the space variable, stronger
conditions are required. The best results to date are those of Berman (1973). He showed
that when X is locally nondeterministic, i.e. for all n > 0, there exists e > 0 and K,, > 0 such
thatforallt; < ... <t,,witht, —t1 <e

Var(X(¢,) | X (bn-1), -+, X (1)) = Kn Var(X () — X (tn-1)),
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a sufficient condition for joint continuity is that there exists &5(¢) such that b%(t) < A
EX(s+t) — X(s))?for all s and

J’E_____‘it.__ < 00
, (b))

for some ¢, § > 0. This method also yields a bound for the modulus of continuity in x in
terms of § (cf. Geman and Horowitz, 1980, page 46). We shall require the following
generalisation of local nondeterminism:

DEFINITION. Let ¢(x) be a continuous, non-decreasing function on [0, 1] with ¢ (0) =
0. A Gaussian process is said to be strongly locally ¢-nondeterministic (2-sided) or
SL¢ND (2) if there exists K > 0, ¢ > 0 such that for all s

Var(X (s)

Xu), t= |s—u|58) = K ¢(t).

This definition extends previous notions of local nondeterminism (Berman, 1973; Cuzick,
1978, 1982) to an interpolation set-up where information is available on both sides of the
point of interest. It appears to be difficult to establish conditions under which general

Gaussian processes possess the various forms of local nondeterminism. However, for
stationary processes, the results of Cuzick (1978) are easily extended to the 2-sided case:

LEmMA 1. Let X(t) be a stationary Gaussian process with spectral distribution
function F(\). Assume that the absolutely continuous part of F(\) is such that there
exists a function ¢(t) for which

dF(\/t)
o(2)

for all t < ty, where h(\) is non-increasing on [0, ©) and

J “ log(h(\))
0

=h(@A) dA

(4) d\ > —oo,

1+ A%

Then there exists a positive constant K such that

Var(X(O) .X(s), |s|= t) = Ko(t),
ie. X () is SLOND(2).

ProoF. Let Z7(dF) be the span of the exponentials {e?, | ¢| = T} in the Hilbert space
of complex functions with inner product (f, &) =[¢ f MN)g) dF(\). Then

Var(X(0) | X(s), | s| = ) = infyezar) f [1-g\)|2dFQ)
0

which after the change of variables A — A/t equals

) ® dF(\/t)
¢ (#) infe 7 ar) fo [1-gM) | 30
which, for ¢ < #,, is greater than or equal to
(5) ¢ (t) inf e f [1—gM\)|PRQA) dX
0

since Z'(dF) C Z'\(h).
Now since A ()\) satisfies (4) and is non-increasing it follows that the infinimum in (5) is
positive (Dym-McKean, 1976, page 138).
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With the aid of this concept, we can now state the main result:

THEOREM. Let X(t) be a mean zero Gaussian process on an interval of the real line
whose variance is bounded on compact sets. If X is SLoND with &(t) = ¢ log? (e/t) for
some 3 > 6, then the version of the local time given by (3) exists and is jointly continuous
in (x, T). Furthermore if 0 < § < Y4(8 — 6), there exists an a.s. finite (random) constant
C depending only on 8 (and the sample path), such that with probability one

la(x+y, T) — a(x, T)|< Clog™ <ﬁ>
forallx,all|y|<e ' and all T < Ty < oo.

REMARK. When a(x, T') is continuous in x, the limit in (3) exists for all x. This can be
seen by using the relation (Berman, 1969, page 270)

T o0
(2e)! f I x@)—x s9dt = (2¢) 7 J’ It )y-—x=9a(y, T) dy
(6) 0 —o
= (2)7! f a(y, T) dy
|y—x|=e

and noting that the limit in (3) defining « (y, T') exists for a.e. y so that when a is continuous
in y, the limit as ¢ | 0 of (6) must exist for all x.

The proof of the theorem is based -on the following basic result of Garsia:

LEmMMA (Garsia, 1971). Assume that p(u) and Y(u) are symmetric, pw) | 0 as
|u] 0, ¢(u) is convex and y(u) 1 © as | u| 1 . Let I, denote the open unit hypercube in
R and for every open hypercube I, let e(I) denote the common length of its edges. If f (x)
is measurable in I, and

fx) —f(y)
Jj ( p( n) )dXdysB, forall I1C I,

then for almost every x,y € I,

|x—yl B
[f(x) —f(y)| =8 J' 11/“(@) dP (u).

0
If in addition
f(x) = lim, o (2¢) J, f(y) dy

yEX+I,

for all x € I, where 1, is the hypercube (—¢, €)%, then the result holds for all x, y € L.

The basic estimates and relations required to prove the main theorem are contained in
the following series of lemmas.

LEMMA 2. Let X, -+, Xy be the mean zero Gaussian variables which are linearly
independent and assume that [“., g(v)e™" dv < o for all e > 0. Then

J g(v) exp{—% Var(YX, v.X,)} dv, --- doy
Ry

(7)
= (2m) V" V2(det Cov(Xy, - -, Xn)) V2 J' g(—v-)e_”z/2 dv
— o
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where 0% = Var(X; | Xz, - -+, Xn) is the conditional variance of X, given X, - -+, Xn and
det Cov(Xy, - .-, Xn) is the determinant of the covariance matrix of (Xi, - -+, Xn).

Proor. For any N X N positive definite matrix = = (£,))

anf - Lotz
B8 f Loy - i )
(2,”)1\7/2 . p 2 v Vg +++ doy = 2_ 77(2‘1)11

where v = (v1, - -+, vn)’. When Y, = EX,X,, then ¢° = (¥ 7')1; = Var(X; | X, - - -, Xn), and
the lemma follows by applying this relation to (7) and then making the change of variables
U1 = Uo.

N-1

LeEmMMA 3. Assume p(y) is positive and non-decreasing on (0, x), p(0) =
¥*71/p**(y) is non-decreasing on [0, 1], and [ dy/p*(y) < . Then there exists a
constant C such that for all k = 1

|eu\y 1|2k1 v —onf 1
J' Zk(y) dySC D+ X

where p.(x) = min(1, p(x)), so that p*(x) = max(1, p~*(x)).

Proor. WhenA =1

|et>\}' 1|2k - J'1/>\ ()\y)2k~1 k[Jl dy Jroo dy il
=| X —dy+4 +
J T Y= e @ AT ) PP

= C* pIz'*(%), for some C < .

8)

When A < 1, the left hand side of (8) is bounded by

I(Ay)Zk_l kfm dy 2%—1_—2k —2k J’ (p(l )
———dy + 4 =A 1 4*p=2*(1
J:) pzk(y) Y ) p2k(y) p ( ) + ( )

=< C"* for some C < .

LEMMA 4. Asa— oo,

9) J log*(x)e™"* dx < v (log" a)
1

Proor. The left hand side of (9) is bounded by
(10) Sup;=.<w[log(x)e 7] f e™/* dy < Vrr supi=.<.log*(x)e "%
1

The supremum in the right hand side of (10) occurs when
(11) x%log x = 2u

so that if x* is the solution of (11), then x* < V2a when a = Le?, and it follows that for
such «, (10) is less than

Va log“(x*) = Vi (% log 2a)* < v (log a)°, since a = 2.

LEMMA 5. Assume that X (t) is SLoND(2) where ¢(t) = t* log? (e/t) for some 8 > 6.
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Then for any v satisfying 1 < y < (B — 2)/4, there exists a finite constant C, depending
only on y such that X(t) has a local time a which satisfies

0 o 2k
(12) E J' f ("‘(x +y ’Z()y)_ «x 1) ) dx dy < C*(2k)!(log k)™
where
0, y=0
p =2log7 (=), o<l|yl=1
|71

Ylyl—=v+1, |y|>1

Proor. It suffices to establish the result for all sufficiently large 2. Let Ran(t) =
det Cov(X(t), « -+, X(£2x-1)). Since (Cuzick, 1982, Lemma 3)

T

2k
j R7A(t) dt = (2k)! f RA(t) dt < (2k)!<Cj oV2(2) dt) <o
[0,T] 0=t;<...<ty<T 0

for some C < o, it follows that E [*. a®*(x, T) dx < o, k=1 and a(x, T) € L, for all p
= 1 (Geman and Horowitz, 1980, page 42). In particular, taking £ = 1 shows that (1) is
satisfied so that a square integrable local time exists and the representation '(2) is valid.
The relation (Berman, 1969, page 270)

0 T
J' a®(x, T) dx =J' (X (@), T) dt
o o
shows that

J {a(x + 3, T) — alx, T)}* dx
= J’ {a(x +y, T) — alx, T)}* a(x +y, T) — olx, T)} dx

T
='f {a(X(t), T) — a(X(t) — y, T)}Zk—l — {aX(@®) +y, T) — a(X(2), T)}zk—l dt
0

so that the left hand side of (12) equals

E jT Jw {aX(®), T)— a(X(@®) =y, TN = («(X(@®) +y, T) — a(X(®), T)}* dy dt
0 —o0

()

which, upon using the Fourier representation (2), equals

J' dt f dA J' (=" A —e™™) — % (™7 — 1)
oz Jguo Jgw p™(y)

X E exp{i Y27 A ;(X() — X(t))}
=2 f dt J' dy d\ {II7E7" | e™ = 13p™(y)
[0, T2+ RxR*! ,

X exp {—4Var[L721" Ai(X(#) — X(t))]}-
Applying Holder’s inequality (Hardy, Littlewood and Polya, 1952, Theorem 11) to the
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integral dt X dA, this expression is bounded by a constant times

'ew\jy — 1|2k 1
[ e[ salt
[0, T12* 2=

1 1/(2k—1)
x exp{—%Var[ T#7 M (X () — X(t))]}

which by Lemma 2 equals

l 0 - k
(13) (27r)k‘1/2j % 1[[ J Arfej — 1|1 e dy d\ 1/2k=1)
[0, 2% (R 2k— 1(t))1/2 A p ( )

where o = Var(X(;) — X(t) | X(t;) — X(to), i % j) and R%—1(t) = det Cov(X(t1) — X (%),
+, X(tar—1) — X(tp)). We now use Lemma 3 to bound the integral over dy and find that
(13) is bounded by

- 1/(2k—1)
(14) (Const)* _ﬂ_IZH% 1[J' p;2k( ) —-A2/2 d}\] 1
TP (R%-1(t))" . A

As

e
p*(x) = 1°g2k’( ) 0<v<l

1, x=1
and log$ (xy) = 2°[logix + log$ y] for a = 0 where log: (x) = max(1, log x), it follows that

J pi2k<o’) N2\ = (Const)k[J e M2 d\ + J log 2 (E)e“ﬂ/2 dA
. A oAz loinI<1 %

+ f logZ*(\)e ™ 2d)\] .
lai/Al<1

By Lemma 4, this is bounded by
(Const)”[log””( ) + (log 2ky)2”7] = (Const)"[log”’( )][log k],
gj

It follows that (14) is bounded by

dt _ % €
15 Const)*(logk)?*" fargl | v<—)
(s (Const)"(logh) L,m EhL@ L gk (g

where y* = y(1 + (2 — 1)7").
Now
RY—.1(t) = det Cov(X(t:;) — X(to),i=1, -+, 2k — 1)
= [[%7' Var(X(t:) — X (%) | X(¢) — X(f), 1 =j <)

and, as adding X() to the conditioning set in each term reduces the conditional variance,
this is greater than or equal to

27 Var(X(#:) | X(8), 0 < j < i) = det Cov(X(to), - - -, X(t—1))/Var(X (%))
so that
(R2:(8)) 7% = (EX(t0))’R2"* ().
Again, by adding X () to the conditioning set
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o} = Var(X(t) — X(t) | X(t:) — X(to), i # )

= Var(X(t) | X(t.), i # j)

= Var(X(tj)

X(s), |s = t| = miny| t; - tjl)

= Cp(min;j| t; — t;|), for some C >0
by Lemma 1. From this it follows that (15) is bounded by
dt

(16) (Const)*(1 kz’”J' O e ogrt( L
enety e ) oo (Ba2x (8))2 I~ log (¢j)

where ¢; = min ,.;¢(| t; — ¢;|). Note that the additional factor log%* (1/¢0) now makes the
integrand invariant under permutations of the ¢, so that if

To={0<th< - <tp1< T3, then ¢; = ¢(min(Aj, Aji1))
where Aj=t;—ti_1,j=1,--+,2k — 1, Ay = Az = T and (16) equals

(17) (Const)k(2k)!(log k)zk" f #:))1/2 szial lOgl* (max(Aj“, Aj‘+11)) ‘
Tor

Now
R (t) = [[725" Var(X(t) | X (%), i <j) = C*([I#7" ¢ (A:)) Var X(t),
and
log? (max(4; ", A1) = (log%* A; ") (log%*(A;41))
so that after the change of variables
to=ty; A=t —t_y, i=1 ---,2b—1,
it follows that (17) is bounded by

T 10 ZY*(A_I) 2k—1
18) (Const)*(2k)!(log k)T log?* (T )[ J’ it/w dA}
0

As ¢'2(A) = A logP”? 1 , and %8 > 1 + 2y, we can choose & so large that
¢ g™\ 2

B/2—2y*=8/2-2y(1+ 2k -1 >1
and then (18) is bounded by (Const)* (2k)!(logk)2kY and the lemma is proven since 2y < 8.

Proor oF THEOREM. It follows from Lemma 5 and a power series expansion of e* that
when ¢(2) = | z| exp(| z|?), 6 < 1

(" (x+y, T)— alx, T)
E « o
L, J:m ‘p( pr(y) )dx W<

where p(y) is as in Lemma 5. Thus by Garsia’s lemma there are (random) constants B and
C such that for almost every (x, y) with |y| < e’

1 B 1)\~
la(x +y, T) —alx, T)| = J \I/I<F> dp(u) = C<10g<7)) .

This can then be extended to hold for all (x, y), |y| < e for the version of the local time
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given in (3) by using the second part of Garsia’s lemma and the representation (6). Thus
a(x, T) is a.s. continuous in x and given any 0 < § < “(B — 6) there exists a (random)
constant Cjs such that for all x .

1
lalx +y, T) — alx, T)| = Cs log‘5<m> , lyl=se?!

with probability one.

To establish the joint continuity in (x, T') of the local time it follows by a slight
modification of Lemma 5 that for () = | 2| exp(] z]?), 0 < 1

EJJJ f xl/(“(x+y’t)_“(x’s))dxdydsdt<oo
o Jo Jow ) p(y)

and since p(y) < p(max(|y|, |t — s|)), it follows from Garsia’s lemma that for a.e. x, y, s,

twith0=s=t=1|y|se’
max(|y|,|t—s|)
. C
12 1(;) dp(u)

for random C < . This result can then be extended to all x, y, s, ¢ in the above set as
before by noting that .

|a(x+y,t)—a(x,s)|$8J’

0

T+e s
(2¢) 2 J’ aly, s) dy ds = (2)° J J I xw-x=¢) du ds
(19) |x=y|=e|s—T|<¢ T—e J0O

Te
= (2e)7" J I(xe-x1=0 du.
[

It follows that the limit in (19) as & | 0 is bounded above by a(x, T + 8) for any § > 0.
Similarly a lower bound for (19) is a(x, T — 8). As a(x, T') is continuous in T for any fixed
x (Cuzick, 1982), it follows that the limit as € | 0 of (19) equals a(x, T') and that

|a(x +y, t +s) — alx, )| = Cslog°({max(]y|, |s])}™)

forall |y|<e',0=<t, s+ ¢= 1. Inparticular by taking s = 0, it follows that the modulus
of continuity in the space variable given in the theorem is uniform in 7.
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