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ON UPPER AND LOWER BOUNDS FOR THE VARIANCE OF A
FUNCTION OF A RANDOM VARIABLE'

By THEOPHILOS CACOULLOS

University of Athens

Chernoff (1981) obtained an upper bound for the variance of a function
of a standard normal random variable, using Hermite polynomials. Chen
(1980) gave a different proof, using the Cauchy-Schwarz inequality, and
extended the inequality to the case of a multivariate normal. Here it is shown
how similar upper bounds can be obtained for other distributions, including
discrete ones. Moreover, by using a variation of the Cramér-Rao inequality,
analogous lower bounds are given for the variance of a function of a random
variable which satisfies the usual regularity conditions. Matrix inequalities are
also obtained. All these bounds involve the first two moments of derivatives
or differences of the function.

1. Introduction. Let X have the standard normal distribution N (0, 1). Chernoff
(1981), using Hermite polynomials, proved the inequality

(1.1) Var[g(X)] = E[g'X) T,

if g is an absolutely continuous real-valued function and g (X) has finite variance; equality
holds if and only if g(x) = ax + b for some constants a and b.

Chen (1980) proved a multivariate extension of (1.1) using the Cauchy-Schwarz inequal-
ity. Specifically, if Xj, - .., X are independent identically distributed (i.i.d.) normal N (O,
1) rv’sand g, g1, - - - , 8 real-valued Borel measurable functions defined on R* such that

xl
g(xb e ;xk) =J gi(xb ey Xi-1, t’ Xi+1y **° ;xk) dt+g(xl; e ;xi—lyo; Xi+1y **° ;xk)
[

fori=1,...,k, then
(1.2) Var[g(Xi, -+, Xi)] = L Elg(Xy, -, X0

as in (1.1), equality holds if and only if g(x1, - - -, xz) is a linear function of x, - - - , xz.

These inequalities are relevant to solving variations of the classical isoperimetric
problem, which in turn is related to the problem of data compression in the theory of
element identification; see Chernoff (1980).

The preceding results motivated the search for similar variance bounds of functions of
other random variables, including discrete ones. Moreover, interestingly enough, using the
well-known Cramér-Rao (C-R) inequality—another by-product of the Cauchy-Schwarz
inequality—a lower bound was obtained for the variance of a function g(X) of a random
variable X which fulfills the regularity conditions stated in Lemma 2.2 (Section 2). Finally,
a matrix extension of (1.2) is given along with a lower bound, obtained from the C-R
inequality for multiparameter distributions. A common feature of all these variance bounds
is that they involve the first two moments of derivatives of g in the continuous case and
differences in the discrete case.

2. Preliminary general results. For our purposes, we prove two lemmas, of some
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interest by themselves. The proof of the following lemma follows the lines of Lemma 2.2
of Chen (1980).

LEMMA 2.1. Let X be a continuous r.v. with density function f(x). Let g and g’ be
real-valued functions on R such that g is an indefinite intergral of g’, and Var[g(X)] <
0. Then

o © 0 t
(21) Var[g(X)] = J J xf (x)[g' (DT dx dt — J J xf(x)[g'(t)])* dx dt.
0 t

—o0 o —c0

Proor. Since g(x) and [§ g'(¢) dt differ by a constant, we have

b's b's 2
Var[g(X)] = Var[J g'(t) dtil = E[J g'(t) dtil .
0 0

Now by the Cauchy-Schwarz inequality

X x X
Var[g(X)] = E[J 12 dtf (g )T dt] = E{XJ’ [g®F dt}

0 0 0 -

= J’ xf(x) J [g' ()] dt dx = J J xf(x)[g' ()] dt dx
—oo 0 0 0
0 x o ©
+ J J xf(x) g ()] dt dx = J J xf(x)[g"(®)] dx dt
o o Ji

0 t
- J J xf(x)[g’ () dx dt,

—o0 J —o0

which proves the lemma.
The next lemma is an immediate corollary of the derivation of the Cramér-Rao
inequality.

LEMMA 2.2. Let X,, - -+, X,, be independent r.v.’s with common density f(-, 8), 0 € O,
where O is an open interval in R. Suppose f satisfies the regularity conditions:

(i) f(x, 8) is positive on a set & independent of §
(ii) For each § € ©

a
Eo[ﬁ log f(X, 0)] =0.
Let g:R" — R a function such that
a
Eo[g(X) a—élog I F X, 0)] = a(f)

exists;, we set X = (X, + -+, X,). Then

[T
nd )

(2.2) Var[g(X)] =
where the Fisher information (number) J (8) in X, at 6 is given by

2
]
J(9) = E[ﬁ 19g fX, 0)] .
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LEMMA 2.3 Let X be a non-negative integer-valued r.v. with probability function
p(x), and g(x) a real-valued function defined on {0, 1, 2, - ..} such that the Var[g(X)]
< o, Then

2.3) Var[g(X)] =< $7-0 [Ag (B)T 32kt 2D (x)
where A denotes the forward difference operator, i.e., Ag(x) = g(x + 1) — g(x).
Proor. We write g(x) in the form
g(x) = Yizh Ag(k) + g(0),
so that by the same argument of Lemma 2.1
Var(g(X)) = Var(¥iZs Ag (k) < E(Ti Ag(k))?
= E{¥i% 1° Yi% [Ag(0)F) = E(X Ti5 [Ag (BT
= Y- 2 {Xi= [Ag () Fp(x)} = Timo [Ag (R) T TE-pe1 xp ().

Finally, we give the analogue of (2.2) for the multiparameter case (cf. Rao (1973), page
326).

LEmMMA 2.4. Let X be a random variable with probability density f (x, 8), where 8 =
(1, +++, 0r). Let g(x) = (g1(x), -+ -, &(x)) such that the Var[g.(X)] < o,-i=1, ---, 1.
Then the dispersion matrix D[ g(X)] = (o)), 0;, = Cov(g.(X), g/(X)), satisfies

(2.4) DlgX)]= AJHO))N

where J 7' is the inverse of the information matrix J (6) = (J.,;) with

_ dlog f(x,0)] ..
JU_E{_W’ l,_]—l’---’k

and A = (\;;) with

o

ofx8) i=1,...

(2.5) Ay = J_m 8i(x) 36, dx, j=1,..-

;Y

Note that X may also be a random vector.
Inequality (2.4) is to be understood in the sense of the following.

DEFINITION 2.1. If A and B are non-negative definite matrices, then A = B if and only
if A — B is non-negative definite.

3. The normal distribution. In this section, we apply Lemmas 2.1 and 2.2 to obtain
upper and lower bounds for the variance of a function of a standard normal random
variable N (0, 1).

ProposITION 3.1.  Let X follow the normal distribution N (0, 1) and £g(x) be a function
satisfying the conditions of Lemma 2.1 and E{| g’ (X)|} < . Then

(3.1) E’[g' (X)] = Var[g(X)] =< E[g'X)T,
where both equalities hold if and only if g (x) is linear.

Proor. The second inequality, i.e. Chernoff’s inequality (1.1), follows immediately
from (2.1) with f(x) = ¢(x) = (27)"%exp{— %x*} and the fact (cf. Lemma 2.2 of Chen,
1980)

J’ xp(x) dx =@(t), — J’ x@(x) dx = ().
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For the first inequality, we apply (2.2) with n = 1 and 8 = p for a r.v. X which has the
normal distribution N (g, 1). We have

J’ glx )a——\/.__ exp[—(x — p)?/2] dx——le_qTJ’ &(x)(x — p)exp[—(x — p)?/2] dx
—
3.2 =———| g(x)dexp[—(x—p)?/2]
3.2) = xp[—(x — p
L ("
=—— | g'(x)exp[—(x —p)*/2]dx = E[g'(X)].
= /2] [

Here, in integrating by parts, we used the fact that for some x sequences tending to +o or
—00 :

limy_,..g (x)exp[—(x — pn)?/2] =

which follows from E {| g’(X)|} < .

Since (3.2) and o/ (1) = 1 hold for every p in R, the proof is complete. It is easily verified
that the first equality in (3.1) holds if and only if g(X) = aX + b for some constants ¢ and
b. Of course, this is in agreement with the fact that X is the efficient estimator of .

REMARK 3.1. If X is N(y, ¢°), then X = 6Z + pu where Z is N(0, 1); therefore, setting
8g(x) = go(z) we have go(z) = 0g’(x). Thus applying (3.1) to the function go(Z), we obtain
the following.

PROPOSITION 3.2. Let X be N (u, 6°) and g(x) as above. Then
(3.3) o’E%(g'(X)] = Var[g(X)] = o’E[g'(X) P

where equality holds if and only if g(x) = ax + b for some constants a and b.
Now we apply (2.2) to the density of N(0, ¢®) taking § = ¢ This gives the following.

ProPOSITION 3.3. Let X be N(0, 6% and g(x) and g’'(x) absolutely continuous such
that E{|g"(X)|} < . Then

4
(3.4 Var[g(X)] = 3 E’[g"(X)],
where equality holds if and only if g(x) = ax® + b for some constants a and b.

Proor. Integrating by parts twice (cf. the proof of (3.1) and McShane, 1944, pages
209, 332), we have

” 2 1
g(x) e"‘ /20 dy =
J_ a0 J 2v270

Since J(8) = (26%)7" = (206*)7!, the desired inequality (3.4) readily follows from (2.2).
Noting that equality holds if and only if

f g"(x)e" dx = E[g"(X)].

d 1 =¥ _ 1 z

308 oy "2 3

= cg(x)

completes the proof.
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Note. The condition on g(x) in order to attain the lower bound in (3.4) is a
consequence of the fact that X? is the efficient unbiased estimator of ¢2, if X is N (0, ?).

The following simple application of (2.4) to the N (u, 6°) throws more light on the nature
of the lower variance bounds given by (3.3) and (3.4).

PROPOSITION 3.4. Let X be N(u, o) and g(x) as in Proposition 3.3 such that
E{|g’(X)|} <o, E{|g”"(X)|} < . Then

(3.5) Var[g(X)] = o’E*[g"(X)] + %o*E*[g" (X)]

where equality holds if and only if g(x) = ax® + bx + ¢ for some constants a, b and c.

It is observed that (3.5) improves the lower bound provided by either (3.3) or (3.4). This
is so, because the lower limit of (3.3) is applicable whether o is known or unknown (X is
the unbiased efficient estimator of u), whereas the lower bound of (3.4) is applicable only
if p is known. In general, if several parameters 6y, - - - , 6 are involved in an estimation
problem, then the C-R lower bound for an estimate of 6; as a single parameter may not be
attained unless the estimate happens to be independent of the other parameters. Otherwise,
as in the present case, the lower limit may increase (cf. Rao, 1973, page 327).

On the other hand, the lower bound of the variance of g(X), regarded as an estimator
of its mean E[g(X)] = y(g, ¢%), can be expressed in terms of the information matrix Jx (u,
0”) and the derivatives of vy, independently of any chosen unbiased estimator of y(u, ¢?),
such as g (X). Indeed, by the Cramér-Rao inequality for the multiparameter case, we find

2 2
Var[g(X)] = 02(3%) + 204<ﬂ) .

do’

However, this lower bound involves the first two derivatives of g, as shown by (3.5),
reflecting the dependence on g.

Let us now consider bounds for the variance of a function g(Xj, - - - , X,,) where the X;
are normal. Using (2.2) with § = p and proceeding as in Proposition 3.1, we obtain the
following.

ProposiTiON 3.5. Let X = (Xy, ---, X.) where the X; are independent N(u, o?).
Suppose g(xi, - -+, x,) has partial derivatives gi(x1, «++ , x,) = (3/9x.)g (%1, -+ - , Xa) and
E{|gX)|} <w,i=1,-..,n. Then

2
(3.6) Var{g(X)] = — (31 E[&(X)])*
where equality holds if and only if g(X) = a Y%-1 X; + b for some constants a and b.
Combining (3.6) with the extension of (1.2) by (3.3) and (3.8), we have
2
I
- (Y1 EgiX))? = Var[g(X)] =< 0® ¥"ssi-1 E[g:(X)P.

Applying (2.2) again, with § = o” and proceeding as in Proposition 3.3, we have the
following.

PROPOSITION 3.6. Let X = (Xi, ---, X,,) where the X; are independent N (0, o). Let
& (x) be absolutely continuous with gi(x) = (3/3x:)g (x) absolutely continuous and suppose
E{| g:(X)|} < 0, where gi(x) = (8*/ax}g(x),i=1, ---, n. Then
4
Var[g(X)] = 7 BTl g4(X))

where equality holds if and only if g(X) = a Y21 X? + b for some constants a and b.
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As an example of an application of (2.4), we consider the case of a multivariate normal
N(p, I), taking @ = p = (1, - -+ , ) and r = 1. We will show the following.

ProposITION 3.7. Let X be N(pu, }:) and g(x) a differentiable real-valued function
defined on R*, with gradient Vg = (g1, - - - , g)' where g; = D;g is the partial derivative
of g with respect to x; and t denotes transpose. Suppose E {| g,(X)|} < . Then

(3.7) Var[g(X)] = E[V'g(X)]1Y E[Ve(X)]

where equality holds if and only if g(x) = a1x1 + -+« + arxy + b for some constants ai,
«vv,arand b.

ProoF. This is straightforward; it is easily verified that the information matrix, using

O=p
d%log f(x, p,):|> o
J=(-g| 222 )y
( [ Opidp, 1

whereas the vector A = (A1, - -+, Ax)’ (cf(2.5)) is given by

A= f g0 T e - j g()D;f(x, p) dx
Rk ‘U. Rk

J

=j [Dig(x)]f(x, p) dx = E[ g (X)].
Rk

Hence from (2.4), we obtain (3.7).
At this point it should be mentioned that Chen (1980) obtained the following upper
bound inequality for the case N (0, I):

(3.8) Var[ g(X)] = E[Vig(X) { Ve(X)],

which is a generalization of (1.2) when g has a differential at every point in R*. Combining
this inequality with (3.7), we obtain the following.

COROLLARY 3.1. Let X be N(0, Y) and g have a differential at every point in R*.
Then

(3.9 [E Vg(X)I[E Vg (X)] =< Var[g(X)] < E[Vg(X) ¥ Vg(X)]

where the two bounds coincide if and only if g(x) is linear, as in (3.7)
We close this section with a matrix analogue of (3.9).

ProposITION 3.8. Let X be N(0, I) and let g(X) = (g1(X), -+, & (X)) where each g;
is differentiable in R*. Set

_ 9gi(x) _ . .
U_a—x,; F_(glj)» l'_]-;"';r> 1_1)""k'
Then (see Definition 2.1)
(3.10) (ET)(ET)' = D[gX)]<=E(ITYH

where the two bounds coincide if and only if each g; is linear, that is,
(3.11) gX)=AX+b

where A is a matrix of constants and b is a constant vector.

Proor. The lower bound in (3.10) is obtained by using (2.4) for the normal N (u, I)
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and the vector function g and proceeding as in Proposition 3.5. Thus, from (2.5) and (3.9),
we have

ALJ=E[gij(X)], i=1;"';r; j=1""’k

and since the information matrix J is now the identity matrix, we conclude the first
inequality in (3.10).

For the second inequality, we use (1.2). It suffices to show that for any constant vector
Cc = (Cl, ces ,cr)t

Var[e’g(X)] =¢'D[gX)]c = c’ETTYe.
This however is a consequence of the fact that by (1.2) or (3.9)
Var[e'g(X)] = E{V'c'g X)V[c’g(X)]} = E[(c'T")(I""c)] = ¢'E(I'T")c.
Thus and by Corollary 3.1, as regards the equality of the two bounds, our proof is

complete.

Note. The required modification of (3.10) when X has a multivariate normal with
mean zero and general covariance matrix j_: is obvious.

4. The exponential distribution. Here we apply the general inequalities (2.1) and
(2.2) to the exponential density

(4.1) flx, 0) =6e7%, x>0.

PRroOPOSITION 4.1. Let X have the exponential density (4.1) and let g(x) be a differ-
entiable function such that g(X) has finite variance. Then
X

(4.2) Var[g(X)] = EU

0

2
1
g'(t) dt] =z E{[&(X)]’(1 + 6X)}
where both equalities hold if and only if g(x) = constant.

Proor. The left-hand inequality is trivial. The right-hand-side inequality follows from
(2.1) noting that

* 1
f Oxe ™% dx = 3 @t + 1)e?.
t

The first equality in (4.2) requires E[[§ g’(t) dt] = 0, and the second equality requires that
g be linear. Hence both equalities hold if and only if g(x) is a constant.
Inequality (4.2) can be improved by noting that under (4.1)

E[g(X)] = Elg'(X)] +g(0).

Hence, E[[§ g'(t) dt] =% E[g’'(X)] and (4.2) gives

X X 2 X
Var(g(X)) = Var[ f &) dt} = E[ f P40 dt} - E{ J gt dt]
0 0 0
1 1
=H Bl X)) - B¢/ X))} +5 E(X[g' X)T).

Note also that here equality holds if and only if the second equality in (4.2) holds, i.e., g (x)
is linear. Thus we have shown the following.
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PROPOSITION 4.2. Let X have the exponential density (4.1) and g(x) be differentiable
such that Var[ g (X)] < oo.

1 1
(4.3) Var[g(X)] = 7 Var[g'(X)] + 7 E{X[gX)]}
where equality hold if and only if g (x) is linear.

As regards a lower bound for the variance of g(X), we apply (2.2) for n = 1 to obtain the
following.

PROPOSITION 4.3. Under the assumptions of Proposition 4.1
(4.4) Var[g(X)] = E*[Xg'(X)]
where equality holds if and only if g(x) is linear.

It may be added that the treatment of the gamma distribution is similar. A straightfor-
ward application of (2.2) with n = 1 and 6§ equal to the scale parameter A yields the
following.

PROPOSITION 4.4 If g(x) satisfies the assumptions of Proposition 4.1 and X has the
density .

k

— )\ k—1_-Ax
f(x,)\)—l,(k)x e™, (x>0,k>0)

then
1
Var[g(X)] = 7 E’[Xg' (X)],
where equality holds if and only if g(x) is linear.

We can easily obtain the analogue of (4.4) for the case of X = (X;, - -+, X,) where the
X; are ii.d. exponential r.v.’s with density given by (4.1). We have

Tx(6)= nJx, ) = 3

and if g is differentiable (in the positive orthant of R") with gradient Vg = (g1, -+ , £»)",
then

E[g(X) —log f(X, 0)] = Sf-s Bl g(X)  log f(X;, )]

1
=- 5 2?=1 E[X;g:(X)]
Thus we have shown the inequality (cf.(3.6))

45) ~EX Vg(X)] = Var[g(X)}

(treating X as a row vector).
Similarly, assuming different parameters for the X; and using (2.4), we obtain the lower-
bound inequality (cf.(3.7) when }: =1)

1 E’[X.g:(X)] = Var[g(X)]
where equality holds if and only if g is linear in Xj, .-, X,.

5. The Poisson distribution. The derivation of upper bounds for the variance of a
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function of a discrete r.v. is based on Lemma 2.3, whereas lower bounds are obtained from
Lemma 2.2, as in the continuous case.

The main result for the Poisson distribution indicates that upper bounds do not have
the simple form of lower bounds (cf. (3.1)).

PRrOPOSITION 5.1. Let X be a Poisson r.v. with parameter A and g(x) a real-valued
function defined on the set Ny = {0, 1, 2, - ..} such that Var[ g(X)] is finite. Then

A
(5.1) AE[Ag(X)] = Var[g(X)] = AE[Ag(X)]* + A J' {E,[Ag(X)T'} dy
0

where E, indicates expectation under a Poisson with parameter y and both equalities
hold if g(x) is a constant.

ProoF. For the first inequality, we apply (2.2) to the Poisson probability function
f(x, 8), with § = A, thus obtaining

X

A A
-0 [g(x) f(x,)\)] [Ex— 1),g(x) Y=oy g(x)]

=e™ E?=o§ [gx + 1) — g(x)] = E[Ag(X)].

Hence and from the fact that Jx(A) = 1/A, we obtain the lower bound in (5.1), which is
attained only if g is linear.
For the upper bound, we write

g(x) = Y5 Ag(k) + g(0)
and, by Lemma 2.3, setting a, = Ag(k), we have
AI
(5.2) Var[g(X)] = e Y i-o0 a; N xmht1 (T-:T)—'- .

To evaluate the second sum, we differentiate with respect to A the well-known relation
2x>k+1 f —e7y* dy.

This yields

AT M1 A%
2?=k+1xa=)\e>‘{ i Ee‘y dy+Fe "}.

Hence the right-hand side of (5.2) is equal to

k

A
1 A
)\L (Zkzo a;zeﬁe_yyk) dy + A Y=o aie‘xﬁ,

from which (5.1) follows. Therefore the proof of (5.1) is complete.

As regards a lower bound for the variance of g(X) when the components Xj, - - -, X,, of
X are independent Poisson r.v.’s with the same parameter A, we obtain the inequality
(cf.(3.6), (4.5))

A
— E’[Yr-1 0,g(X)] = Var[g(X)]
where A, indicates the forward difference operator operating on x, i.e.,

Akg(x) =g(x1) ey Xk + 1) Xk+1, "'»xn) _A(xla ct 0y xn)'

We give also the lower variance bound which is obtained by using (2.4) when the X; are
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independent with different parameters A,. We find
Yi-1 MET[Arg(X)] = Var[ g(X)]
where equality holds if and only if g(X) is linear.
6. The binomial distribution. Here we take as § of Lemma 2.2 the parameter p and

obtain the lower bound given in (6.1). Also, using Lemma 2.3, we find an upper bound,
which, as in the Poisson case, does not have the simple form of the lower bound.

PROPOSITION 6.1. Let X be binomial b(n, p), with parameters n and p. Let g(x) be a
real-valued function with finite variance. Then
(6.1) npg E%,_)[Ag(X)] = Var[g(X)] )
=npq E,-[Ag(X)]* + n’p j En-15[Ag(X)]? dt

0
where E, denotes expectations under b(n, p) and E,, denotes expectation under the
binomial b(n, t); g =1 — p.

(This upper-bound expression is due to my Research Assistant M. Koutras).

Proor. For the lower-bound inequality, it suffices to verify that
n a n X n—x
2x=0g(x)£<x)p q =n E, - y[Ag(X)],

and that, as is well-known, Jx(p) = n/pq.
To show the upper bound, we first note that (2.3) becomes (setting again a, = Ag(k))

(6.2) Var[g(X)] = E[X Y%} ai] = Y42d a3 Yo x(;’)p“q”‘x.

We evaluate the second sum here by setting w = p/q and then differentiating both sides of
the known identity (relation between the binomial tail and the incomplete beta function)

D=1 <z>w =m(1 + w) jo (-6 dt

with respect to w. After some simplification and return to the original parameter p =
w(l + )7, we find

7
PR x(;l)p"q""‘ = npq(” b 1>pkq"‘k“ +n’p j (" X l)t’*(l — 1 dt.
0

Therefore by (6.2) we have the upper bound in (6.1).
It should be added that, whereas the lower bound is attained if g is linear, the upper
bound is attained only when g is constant (cf. the exponential case (4.2) and (5.1)).
Finally, we give a lower bound which corresponds to the situation of » i.i.d. binomials
b(n, p). One easily finds that

%q' {21‘;=1 Ek[Ag(Xh ety XV)]}z = Var[g(Xh ) Xu)]

where A, denotes the A operator acting only on x, i.e.,
Brg(x1, »vv,2,) = g1, oo vy Xpm1, X + 1, Xpwry o0, ) — g1, -0 0, 1),

and E,[g(X, - - -, Xv)] means expectation when X, is b(n, p) for i # % and X, is b(n — 1,
p).
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