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SOME CONCEPTS OF NEGATIVE DEPENDENCE

By HENRY W. BLock', THOMAS H. SaviTs?, AND MOSHE SHAKED®
)

University of Pittsburgh, University of Pittsburgh and Indiana University

The theory of positive dependence notions cannot yield useful results for
some widely used distributions such as the multinomial, Dirichlet and the
multivariate hypergeometric. Some conditions of negative dependence that
are satisfied by these distributions and which have practical meaning are
introduced. Useful inequalities for some widely used distributions are obtained.

1. Introduction. Concepts of positive dependence of sets of random variables (rv’s)
have received a lot of attention recently. Their study was found to yield a better
understanding of the structure of some widely used multivariate distribution functions
(df’s). In addition to this, various useful inequalities were obtained with applications in
many areas of probability and statistics. Barlow and Proschan (1975), Chapter 5, include
a review of most of the work done prior to 1972. A list of more recent references can be
found in Block and Ting (1981).

On the other hand, notions of negative dependence have received very little attention
in the literature. Some negative dependence analogs of positive dependence concepts have
been mentioned by some authors (Lehmann, 1966; Brindley and Thompson, 1972; Dykstra,
Hewett and Thompson, 1973; and Shaked, 1977, among others). In the bivariate setting
the random vector (T4, T%) is usually said to satisfy some negative dependence condition
if (Th, —T?) satisfies the analogous positive dependence condition. Many of the negative
dependence results of Lehmann (1966) were obtained in this way. Mallows (1968) examined
some properties of the multinomial distribution and Jogdeo and Patil (1975) extended
Mallows’ technique to other specific distributions. In this paper we attempt a systematic
study of negatively dependent distributions.

While the first draft of this paper was being written, two related works were brought to
our attention. The first work by Ebrahimi and Ghosh (1980) discusses some negative
dependence analogs of well known positive dependence concepts. Some of our definitions
overlap those of Ebrahimi and Ghosh (1980); however, our main results differ from theirs.
The second related paper is by Karlin and Rinott (1980). They introduce a negative
dependence notion which is closely related to one of ours and they obtain some results
which are similar to ours. Basically, we have one condition which is stronger than theirs
but is easier to check and a second condition which is weaker than theirs (but of a much
simpler form) which yields many of their results.

The main motivation for our definitions is to try to formulate the intuitive requirement
that if a set of negatively dependent random variables is split into two subsets in some
manner, then one subset will tend to be “large” when the other subset is “small” and vice
versa. Our condition N introduced in Section 4 accomplishes this. In Section 2 we define
some conditions to be discussed. We derive some properties in Section 3 and show that
condition IV implies the other properties in Section 4. Examples are given in Section 5.

In the following, “increasing” stands for “nondecreasing” and “decreasing” for
“nonincreasing”. Vectors in R" are denoted by t = (¢, -+ -, ¢,) and t < t' means ¢, < ¢}, i
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766 H. W. BLOCK, T. H. SAVITS AND M. SHAKED

=1, ..., n Similarly t <t'means t, < t/,i=1,+--,n,and 0 = (0, - - -, 0). A real function
on R" will be called increasing if it is increasing in each variable when the other variables
are held fixed. .

A bivariate function K (., -) which is defined on S; X S, (where S; and S, are subsets of
R) is said to be totally positive of order 2 (TP;) on 8; X S; if K(x, y) = 0 and if

(1.1) K(x, y)K(x’, y') = K(x, y')K(x', y) whenever x< x’,y< y’

(see Karlin, 1968). The function K is said to be reverse regular of order 2 (RR;) on S; X
S if K(x, y) =0 and if

(1.2) K(x,y)K(x',y') = K(x,y')K(x',y) whenever x=< x’, y< y’,
(see Karlin (1968), page 12).

2. Negative Dependence Concepts. One of the fundamental problems of positive
dependence has been to obtain conditions on a multivariate random vector T = (T1, - - -,
T.) such that the condition (or conditions similar to this)

P(T1>t1,"',Tn>tn)Z :L=1P(7‘;>tl)

holds for all real ¢. A particular problem has been to find conditions on the covariance
structure of the multivariate normal distribution so that conditions of the above type hold.
In reliability theory the problem of obtaining upper and lower bounds on joint probabilities
of dependent lifetimes in terms of the marginal lifetimes has also led to investigations of
problems of this type. A sufficient condition that the above inequality hold is that the
random vector have a joint density (discrete or continuous) which is TP, in pairs (see
Barlow and Proschan (1975) for a simple proof of this).

In many cases, such as the case of the multinomial distribution, the opposite inequality
holds (Mallows, 1968). For distributions like the multinomial where correlations are
nonpositive it is important to have checkable conditions which imply the reverse inequality

P(Ti>t, -, To>t) <[[% P(T: > t,)

for all real ¢;. A natural condition is to assume the reverse TP, condition, i.e. that the joint
density is RR; in pairs. Unfortunately, unlike the TP; case, the marginal distributions need
not have the same property. A simple 3 X 2 discrete example suffices to show this. In fact
it is known that Theorem 5.1, page 173 of Karlin (1968) does not apply for RR; kernals. It
should also be remarked here that even in the TP; case, one must make some assumptions
on the nature of the set { /> 0} before one can use the above Theorem 5.1 to conclude that
the marginal densities are also TP, in pairs: see Kemperman (1977). A possible alternative
then is to assume that not only £, but all its marginal densities, are RR; in pairs. But even
under this assumption we have not been able to show that our weakest condition (see
Definition 2.2) is consequently satisfied. Ebrahimi and Ghosh (1980) claim to have proven
this result; however, their proof is based on an incorrect implication.

Karlin and Rinott (1980) have given a stronger definition of RR; called strongly MRR,
(S-MRR2) which implies the previous inequality. This definition however is not easy to
check directly (see pages 503-513 of that paper) and the form of the definition does not
lend itself to intuitive interpretation. We give here two new concepts of negative depend-
ence. One of them has a quite simple form (i.e., the measure is RR; in pairs) and is a
weaker definition than S-MRR, (as is shown in Remark vi, following Definition 2.1).
However, it possesses many of the same properties as the S-MRR; class.

The second new definition which we call condition N (see Section 4) is stronger than S-
MRR: but it is intuitive and is easier to verify for specific distributions than S-MRR,. In
fact, all of the examples of Karlin and Rinott (1980) satisfy this stronger condition, as we
show in Section 5.

Unlike other RR; definitions, we do not need to assume the existence of a density. We
work directly with the measure itself.
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Let u be a probability measure on the Borel sets in R*. If I, - - -, I,, are intervals in R",
we define the set function u(ly, ---, I,) by (I, - -+, I,) = u(l; X -+ X I,). By abuse of
notation, we write u instead of ji. If I and oJ are intervals in R', we write I<Jifx €1,y
€ J implies x < y, that is, if I lies to the left of ¢J.

DEFINITION 2.1. Let u be a probability measure on R? We say that u is reverse
regular of order two (RRy) if

(2.1) w(ly, Lps, It) < u(ly, I9p(dl, L)

for all intervals I, < I, I, < I in R'. We also say that u(l, I5) is RR; in the variables
I, I. If p is a probability measure on R" (n = 2), we say that u is RR, in pairs if p (I,
.-+, I,) is RR; in the pairs I;, I; for all 1 < i <j < n when the remaining variables are held
fixed. The random variables T4, - - -, T, (or the random vector T or its distribution function
F) are said to be RR; in pairs if its corresponding probability measure on R" is.

REMARKS.
(i) The obvious TP, definitions for u are obtained by reversing the inequality in (2.1).

(ii) Clearly, if p is RR2(TP3) in pairs, then so are all marginals. Furthermore, it is not
difficult to show that if F is the distribution function associated with u and if F (¢,
cooy tn) = u((t1, ), (t2, ®), - -+, (£, )) is the survival function, then the functions ¥
and F are RRy(TP5) in pairs in the sense of (1.2) ((1.1)).

(iii) It is easy to show by a simple limiting argument that if p is RRo(TP;) in pairs, and if
u has a density f with respect to a product measure m = m; X ... X m, of o-finite
measures such that fis continuous on the support of m and zero off the support of m,
then fis RR2(TP») in pairs.

(iv) In the n = 2 case, we have the stronger converse, namely, if u has a density f with

respect to a product measure m = m; X ms of o-finite measures which is RR.(TP;) on

S X S, where S; is the support of m;(i = 1, 2), then u is RR2(TP5).

In the TP, case, one can generalize to higher dimensions if one makes some

assumption on the set {f > 0}. Let p have a density f with respect to a product

measure m = m; X --- X m, of o-finite measures. Let S; be the support of m,. Then

the support of m is S = 8; X +-. X S,. We assume that there exists § = §; x ... X

S, such that {f> 0} N S = § and that fis TP, in pairs on S. Then p is TP, in pairs.

Just use Theorem 5.1, page 123 of Karlin (1968) repeatedly to show, e.g., that for

fixed intervals I, - - -, I, in R*,

&g (x1, x2) =f j f(x1, xa, X3, «++, Xn) dmz(x3) + + + dmn(x,)
I I,

~

(v

is TP, in x; and x; on §; X S;. The result then follows by a simple integration using
the TP, inequality for g.

(vi) The generalization to the RR; case is not as simple. If one assumes, however, that u
has a density f with respect to a product measure m = m; X ... X m, of o-finite
measures such that the density f when integrated over any n — 2 intervals in R' is
RR; in the remaining unintegrated variables, then p is RR; in pairs. In terms of
random variables, this can be paraphrased as follows. Let T4, ..., T, be random
variables with a density f (with respect to a product measure of o-finite measures).
Then p is RR; in pairs if and only if for every 1 < i <j < n the conditional density of

(T:, T))| Npwij { T € I}

is RR; in ¢ and ¢ for all choices of intervals I (% 5 i, j) in R'. Equivalently, if x;
denotes the indicator function of I, then p is RR; in pairs if and only if

f cee J [Mlewis xa, @)1 f (b1 <« oy 8T amss dte]
R R
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is RR; in the unintegrated variables ¢; and ¢ for all choices of intervals I (k # i, j) in
R'. By replacing x, by ¢ in the above integral, and requiring it to be RR; in ¢ and
t, whenever {¢z}r»,, is a set of PF; functions, one obtains the negative dependence
condition of Karlin and Rinott (1980). It is a condition which is stronger than the one
of Definition 2.1, as can be easily seen by recalling that the indicator function of an
interval is PF.. To see that it is strictly stronger, consider the 2 X 2 X 2 discrete
distribution

1/4 if (x’ y’ z) E {(17 O) 0)) (0) 1’ 0)’ (1’ ]') 0)’ (0) 0) 1)}’

PX=x,Y=y,Z=2)= {0 otherwise

which satisfies Definition 2.1, but does not satisfy the S-MRR:, definition for the PF,
function ¢(z) = e (this example is due to M. L. Lee).

(vii) Clearly, if {u.} is a sequence of probability measures which are RR; in pairs and if
pr converges weakly to u then p is RR; in pairs.

DErFINITION 2.2. The rv’s Ty, « -+, T, (or the random vector T or its df) are said to be
negatively upper orthant dependent (NUQOD) if for every t,

(2.2) P(T>t)<a P(T:>t).
They are said to be negatively lower orthant dependent (NLOD) if for every t,
(2.2) P(T=t) =7 P(Ti<t). )

When n = 2, (2.2) and (2.2) are equivalent, but not when n = 3 (see, for example,
Ebrahimi and Ghosh, 1980).

It is true that if u is RR; in pairs then (2.2) and (2.2") hold. This is clear since from the
Remark (ii) following Definition 2.1, we have that both F and F are RR; in pairs. The
result then follows by a simple argument. It also follows that the S-MRR; condition
implies (2.2) and (2.2) because of Remark (vi) following Definition 2.1. Finally, since any
of these conditions implies that P(T; > ¢, T, > ;) <= P(T; > t;))P(T; > ¢t) for 1= i<j=<n,
it follows, as in Lehmann (1966), that

(2.3) cov(T;, Tj) = 0.
This justifies the name negative dependence for any of these concepts.

3. Properties. This section is devoted to the derivation of some inequalities and
properties which may be of special interest. The inequalities are similar to those found in
Karlin and Rinott (1980), but are derived under weaker assumptions.

Suppose that u is RR; in pairs. For every i, let I; = J; U K;, all intervals, with J; < K;.

THEOREM 3.1. If1=<k=<n,then

(3.1) w(Jr, « ooy Juldn, <o o, L) S u(Jy, o ooy Iy Dpwry ooy L) Xl ooy Iy Jprry o o0y o).
The result (3.1) is also true if we replace all J’s by K’s.

Proor. We proceed by induction. If n = 2, then

wly, R)ully, Jp) if k=1
W, J)ull, I) = {I-L(Jl, ol L) if k=2

The case £ = 1 follows from the RR; assumption since

w1, J2) (1, K) (1, Jz2) (1, J2 U Ky)
w(Ki, J2) (K, K») w1 U Ky, oJ3) w1 UKy, JoUKs) |’

0=

and the case k£ = 2 is an identity.
Now suppose that (3.1) is true whenever » is a probability measure on R" which is RR;
in pairs. Let p be a probability measure on R™" which is RR; in pairs and let 1 < 2 =<
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n + 1. Since there is nothing to prove if 2 = n + 1, we may assume that 1 < £ < n.

Similarly, we may assume that p(J1, « -+, Jn, Jn+1) # 0. It suffices then to prove that
”‘(Ily ctty Iny In+l) - H(Il’ cey In, Jn+1)

w(r, ooy Ty Ievry ooy Doy Dnwr) ™~ il ooy iy Devry oo o, Iy )

since by the induction hypothesis, we have that

I‘(Il) R In’ Jn+1) - “(Ila Tty Ik: Jk+1y ey, Jn) Jn+l)
H(Jl, s, Jk, Ik+1, ey In, Jn+1)_ M(Jl, coey i, Jnr1) ’

(3.2)

But,

B, oo D ) _ g By o Dy Bot) _ @l <oy iy T, < Jay D)
”(Ily R In’ Jn+l)_ ”(le 12) M) Iny Jn+1)_ - “(Jl) ct Jk) Ik+ly M) In’ Jn+1)

which is another way of writing (3.2). The jth inequality above follows from the fact that
u is RR; in the pair j and (n + 1).0

Suppose that (T}, - .-, T%) is RR; in pairs.

COROLLARY 1. If a, B partition {1, - .-, n}, then
P(T.ed,iceaUB)P(T:€I,i€ alUp)

3.3
(8.3) <PT.€J,i€aT€L,j€BPTE L i€ o; T)E Jj, j€ B).

It also holds true if we replace all JJ’s with the K’s.

COROLLARY 2. If a, B, y partition {1, ..., n}, then

P(T.eL,i€eaqT,€J,jJEBUYPT.EL,i€Ea; T;EL,jEBUY)
(3.4) =P(TieL,i€ea; T,ed,jeEB; TrE I, kE Y)
‘P(T.eLlijica; T;€L,jEB; TrEJr, kEY)

for any intervals L;, i € a. It also holds true if we replace all J’s with the K’s.
If we take J; = (—oo, b;] and I; = (—, ») for i € a U B in Corollary 1, we get (3.5) of
Karlin and Rinott (1980). If we take, in Corollary 2, L; = [a;, b;], i € a, J; = (—, b;] and

I; = (— o, ) for j € B U y we get (1.7) of Karlin and Rinott (1980).
Also, note that as soon as we have an inequality of the form

35 P(Ti=by, -, Tasb)=P(Ti=by, -+, To < bp)P(Ths1 < b1, +++, Tu < by)
it follows easily that

(3.6) E[mi=1 ¢:(T)] < Elmicy ¢i(T)E[7]=ke1 $;(T))]

whenever ¢, are nonnegative and decreasing. Similarly, if we have

37 PTi>ai, -+ Tho>a) =P(Ti>ai, -+, To > ap)P(Tre1 > Qpi1, o+, Tn > @)

then (3.6) holds for ¢; nonnegative and increasing.
In par_ticular, (3.5) holds if F'is RR; in pairs and (3.7) holds of F is RR; in pairs. In fact,
if F (or F) is RR; in pairs, then it is MRR; in the sense of Karlin and Rinott (1980); i.e.,

Fx Ay)F(xvy) = Fx)F(y).

The following results are useful for constructing new negatively dependent df’s from
known ones.

THEOREM 3.2. If Ty, .-, T, are (*) and if Y1, - - -, Y are strictly increasing functions
then Y1 (Ty), « + +, ¥ (T) are (*) where (*) is one of the following: RR; in pairs, NUOD or
NLOD.
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TrEOREM 3.3. If (Ty, ---, Tn) and (Si, ---, S,) are independent and are (*) then
(T, +++, T, S1, +++, Sn) is (*) where (*) is the same as in Theorem 3.2.

The proofs of these theorems are straightforward and will be omitted.

4. The structural condition. In this section we give our main result. The result is
that if a joint distribution satisfies a certain structural condition, then it is negatively
dependent according to all of the definitions discussed so far, as well as in the sense of
Karlin and Rinott. The condition intuitively states that if a distribution is like the
multinomial, i.e., essentially the sum of the random variables is fixed, then it satisfies the
other negative dependence conditions. This structural condition conforms to our original
idea that if the random variables are split into two subsets, one subset will be “large” when
the other subset is “small”.

We first need the following definition. A univariate density f is said to be a Polya
frequency function of order 2 (PFs) if f(x — y) is TP, on R X R. A probability function f
is PFz if f(x — y) is TP on N X N where N = {..., —1,0, 1, ---.}. A thorough discussion
of PF; densities and many examples can be found in Karlin (1968).

DEFINITION 4.1. The random vector (T, - -, T,) satisfies condition N if there exist
n + 1 independent rv’s Sy, Si, -+, S, each with a PF; density (or each with a PF,
probability function) and a real number s such that

(4.1) (Ty, «o+, Tn) = [(S1, -+, Sp) |[So +S1+ ++- + 8, =5].

THEOREM 4.1. Let (Ty, .-, T,) satisfy condition N. Then (T}, ---, T,) is RR. in
pairs and consequently NUOD and NLOD.

Proor. Let p be the probability measure of (T4, - -, T,) on R". Then by assumption
wly, -+, L)=PS €L, -+, S, €EL,|So+ Si + --- + S, = 5). Now the joint density of
[(S1, +++,Sa)|So+ St + --+ + S, =s] is given by

c iz f(s)fo(s —s1— + -0 — 8p)

where c is a normalizing constant. We first show that p is RR; in the variables I, I, when
the remaining intervals I, - - ., I, are held fixed. According to the Remark (vi) following
Definition 2.1, we need only show that

&(s1, 82) = cfi(s1) fa(s2) fo(s — 51 — s2)

is RR; in s; and s,, where

fo(%) =f f fs(ss) o+ fa(sa)fo(§ — 83— « -« — s,) dm(ss) -+ - dm(s,)
Iy I,

and m is either the Lebesgue measure or the counting measure. However, the above is
nothing but the convolution of the PF, functions fsxs,, - -, faxz, and fo, where x4 is the
indicator function of the set A, and sof{ is PF,. It easily follows then that g is RR,. The
proof that p is RR; in the variables I;, I; for all 1 < i <j < n is similar. 0

REMARK. By changing the indicator functions to PF, functions in the previous proof,
it follows that the S-MRR; definition of Karlin and Rinott (1980) is satisfied.

5. Examples. It is now shown that many of the standard examples of distributions
which are considered to be negative dependent in some sense actually satisfy the structural
condition N. Therefore they must satisfy all of the negative dependence conditions
mentioned in this paper. In particular they satisfy (2.2) and (2.2'), so that we obtain as
special cases the results of Jogdeo and Patil (1975).
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5.1 Multinomial. Let (T, .- -, T,) have the joint probability function with parameters
(N’ply ¢ ')pn)y
N!
t! e IIN=Y1 b

X (1= Yr p)VN T 4,20, Y%, 6, < N,

where p;=0(@=1,.--,n)and 0 <Y, p; < 1.

The multinomial df is the conditional df of independent Poisson rv’s given their sum.
Thus, by Theorem 4.1 the multinomial df is RR; in pairs and hence it is also NUOD and
NLOD. By Remark (iii) the joint probability function of (T4, - - -, T,) is RR; in pairs. By
the discussion after Theorem 4.1 the multinomial df satisfies the S-MRR, condition.

P(T1=t1y“'yTn=tn)=

) (71 pi)

5.2 Multivariate normal. Let T = (T, ..., T,) be a multivariate symmetric normal
random vector with Corr(T;, T;)) =p<0,1<i<j=n. Thenp = —(n — 1)~*. We will show
that T is RR; in pairs.

Using Theorem 3.2 assume, without loss of generality, that ET; = 0 and Var(T)) = 1,
t=1,-..,n Let Yy, ..., Y, be independent identically distributed normal rv’s such that
EY,=0and Var(Y;)) =1—p (i=1, ---, n) and let Y, be an independent normal rv with
EY,=0and Var(Y,) = (—p) (1 — p)(1 + (n — 1)p). Then

(Ty, <+, To) =a [(Y1, -+, V) [ Yo+ Vi + oo + ¥V, =0].

Since any normal density is PF, it follows, from Theorem 4.1, that T is RR; in pairs.
In fact we can obtain a stronger result. If the correlation matrix of T is of the form

rn 0 (r = DY [((rn=1)"2« « (ra—1)?)
(5.2.1) . -

0 (rn — 1)/2
wherer,=1,i=1,..-,nand Y% ri' = n — 1, then T is RR; in pairs.

To show this, note that every matrix of the form (5.2.1) can be the correlation matrix of
a multinomial random vector, X = (X, .-, X.), say. Let X', ¢=1, 2, ..., be a sequence
of independent random vectors distributed as X. Clearly Y™ =Y%, X is a multinomial
random vector with correlation matrix (5.2.1). Normalizing Y™ such that it has zero
means and unit variances, it converges in distribution, by the multivariate central limit
theorem, to a multivariate normal random vector with correlation matrix (5.2.1). By
Remark (vii) the limit in distribution of RR; in pairs random vectors is RR; in pairs. The
assertion in the preceding paragraph now follows. The previous result that deals with the
symmetric multivariate normal df with negative correlations p is obtained by taking r; =
1-pin (5.2.1).

A simple transformation of parameters shows that the Karlin-Rinott normal example
is a special case of the above in that ours contains a singular normal distribution and theirs
does not.

5.3. Multivariate hypergeometric. Let (Ti, .. T,) have the probability function

-1
P(T =11, +e, Tn = tn) = <%) [77?=1 (jgt)](]‘]lv__zzl::l]yl)’

t,=0, Z?=1 = N, 27:1 M, =< M,

with positive integer-valued parameter vector (N, My, - - -, M,,, M) [see Johnson and Kotz,
1969].

The multivariate hypergeometric df is the conditional df of independent binomial rv’s
given their sum. Thus, by Theorem 4.1 the hypergeometric df is RR; in pairs and hence it
is also NUOD and NLOD. By Remark (iii) the joint probability function of (T4, - --, T%)
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is RR; in pairs. A special case of this fact was observed by Lehmann (1966), page 1144. See
also Ebrahimi and Ghosh (1980) and Gastwirth (1980). By the discussion after Theorem
4.1 it follows that this df satisfies the S-MRR; condition.

5.4 The Dirichlet Distribution. Let T = (T4, ..., T,) have the density

_T(X)=06)

flt, o t) =57 55)

A=Y ) wiaty, =0, Fiats1,
where the parameter vector (6o, 8y, - - -, 6,) satisfies ,=1,j=0,1, ---, n.

The Dirichlet df is the conditional df of independent gamma rv’s given their sum is
equal to 1. Thus, by Theorem 4.1 the Dirichlet df is RR, in pairs and hence it is also
NUOD and NLOD. By Remark (iii) fis RR; in pairs. A special case of this fact is Example
10 (iii) of Lehmann (1966). See also Ebrahimi and Ghosh (1980). By the discussion after
Theorem 4.1 it follows that this df satisfies the S-MRR; condition.

5.5 Dirichlet compound multinomial df. Let T = (T4, ---, T,) have the probability
function
_ _ ., _ NII'(R}8) , T+
P(Ti=t, -, Ta=t)= TV + 30 6) = 4110,
TN = Y%+ 6)
(N =351 )T @)’

where N is a positive integer and ;= 1,7 =0, 1, .. -, n [see Johnson and Kotz, 1969].

The Dirichlet compound multinomial df is the conditional df of independent Pascal
(negative binomial) rv’s given their sum. Thus, by Theorem 4.1 this df is RR; in pairs and
hence it is also NUOD and NLOD, and by the remark after Theorem 4.1 it satisfies the
S-MRR; condition.

1

thO» Z?=1tJSN’
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