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LAWS OF LARGE NUMBERS FOR SUMS OF EXTREME VALUES

By Davip M. MASON

University of Delaware

Let Xi, X5, - - -, be a sequence of nonnegative i.i.d. random variables with
common distribution F, and for each n = 1 let X3, =< ... < X,, denote the
order statistics based on X;, .-, X,. Necessary and sufficient conditions are
obtained for averages of the extreme values X,+1-,nt =1, .-+, k, + 1 of the
form: k' ¥ (Xu+1-1n — Xu-t,.n), Where k, — o and n~'k, — 0, to converge
in probability or almost surely to a finite positive constant. In the process,
characterizations are given of the classes of distributions with regularly varying
upper tails and of distributions with “exponential-like” upper tails.

1. Introduction. Let X;, X,, ..., be a sequence of i.i.d. nonnegative unbounded
random variables having common distribution F. For each n = 1, let X;, < -+ = X,
denote the order statistics based on Xi, .., X,. We will find necessary and sufficient
conditions under which averages of the k. + 1 extreme order statistics X,—£ ,n, «+* , Xnn,
of the form

Tn = k;1 2{?;1 (Xn+1—t,n - ank,,, n)

converge in probability or almost surely to a finite positive constant ¢, whenever %, is a
sequence of positive integers satisfying

(K) l1<k.<n k,— oo and n'k,— 0.

Sarhan (1955) has shown that T, is the best linear unbiased estimate of ¢ based on the
extreme order statistics, Xn—z, n, *++ , Xun, when Xi, ..., X, are independent identically
distributed (i.i.d.) exponential random variables with mean 0 < ¢ < . This fact is the key
to the characterization of laws of large numbers for 7),. For this purpose we introduce a
family of distributions that behave like an exponential distribution in their upper tails.

DeFINITION 1. For any finite constant ¢ > 0, let

1-FQ) =c}.

é"c = {F hmx_,m ) 1——5'(36)

8. will be called the class of distributions which have an exponential-like upper tail with
asymptotic mean c.

We will show that T, —,c for all sequences £, satisfying (K) if and only if F' € &,. In the
process, we will also derive a similar characterization of the class distributions with

regularly varying upper tails with exponent —c .

DEFINITION 2. For any finite constant ¢ > 0, let

(1-Gxt)) _ t}

. = I { h 1My 0
R {G or each ¢> 0 lim ey

. is the class of distributions with regularly varying upper tails of exponent —c ™.
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Let Y1, Y3, - -, be a sequence of i.i.d. nonnegative unbounded random variables with
common distribution G; and for each n=1, let Y.< ... <Y, denote the order statistics
based on Yi, ..., Y,. Consider the statistic

Sn = k;I Z;zél (ln Yn+1—t,n —In Yn—k,,,n)-

It will be shown that there exists a finite positive constant ¢ such that S, —,c for all
sequences &, satisfying (K) if and only if G € %.. (The statistic S, appears in Hill (1975).)

De Haan (1979), de Haan and Resnick (1980), and Teugels (1981) have recently obtained
some results closely related to the above characterization of the class %..

De Haan (1979), and de Haan and Resnick (1980) have shown that if G € #. and &,
satisfies (K) then

(In Y. —In Y, g »)/In by —pe.

Theorem 2 of Teugels (1981) implies that if G € . then for all sequences , satisfying
(K)

k;1(2?=_lk" Yoo — (n— kn)v Yn+1—k,,,n)/Yn+l—k,,,n —p (c— 1)_1y

where v=0ifl<c<wandrv=EY,if h<c <.

Another related problem concerns the possible limiting distributions of the extreme
order statistics X, » and X, ., when suitably normalized. For solutions to this problem
refer to Smirnov (1949), Chibisov (1964), Smirnov (1967), Mejzler (1978), and Balkema
and de Haan (1978a, 1978b). Also see Polfeldt (1970) and Nagaraja (1980) for an investi-
gation into the limiting distribution of finite averages of extreme order statistics.

REMARK 1. If a sequence of positive integers k, is chosen so that (n — k,)n™' — p €
[0, 1), then the following is true:

1
T.—» (1-p)™* J F'u) du— F'(p) (finite) a.s.

if and only if EX < co and F™' is continuous at p. (When p = 0, replace F~'(0) by F~'(0+).)
This statement follows from the strong law of large numbers for linear functions of order
statistics of either van Zwet (1980) or Mason (1982), combined with the fact that X,,_ kon
— F7'(p) as. if and only if F~! is continuous at p. This fact will be used later on in the
appendix.
The statistics T, and S, have a potential application as parameter estimates.

ExamPLE 1. If it is known that X has a distribution of the form:
1 - F(x) = exp(—(x — b)c™) + o(exp(—xc7)),

where 0 = b < w0 and 0 < ¢ <, then since F € §,, T, is a consistent estimate of ¢ for any
sequence k, satisfying (K). (If more smoothness assumptions are added to F a consistent
estimate for b also exists.) Such distributions occur as the distribution of the maximum
waiting time in the GI/G/1 queue. See Iglehart (1972) for details. The same family of
distributions occur as the stationary waiting time distribution in the GI /PH/c queue.
Refer to Neuts and Takahashi (1980).

ExaMPLE 2. It is well known that there exist normalizing constants a, and 8, such that
anYnn — Brn =4 P.; where ®, is the extreme value distribution D.(x) = exp(—x‘"l ) for
x>0, if and only if the distribution G of Y is in .. The statistic S, is a consistent estimate
of the parameter c for all sequences %, satisfying (K) if and only if G € %..

2. The Main Results. For any 0 < o < 1, set S,(a) = S, and T, (a) = T,, when &,
= [n°]. (As usual [x] denotes the greatest integer < x.) The following two theorems
characterize laws of large numbers for T, and S,,.

.
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THEOREM 1. Let X;, X,, ---, be a sequence of i.i.d. nonnegative random variables
with common distribution F. There exists a finite positive constant ¢ such that

(A) for some 0 < a <1, T,(a) —pc if and only if

(B) T.(a) > c as. if and only if

(C) T, —pc for every sequence k, satisfying (K) if and only if
(D) F € é&..

Proor. Postponed until Section 3.

REMARK 2. It would seem reasonable that T, —,c for some sequence k, satisfying (K)
would be enough to insure that F € &.. The example given in the appendix shows that this
conjecture is not true. There exists a finite positive constant ¢, a sequence k., satisfying (K)
and a distribution F such that T, —,c but F' & &.. Hence the word every cannot be replaced
by the word some in statement (C). On the other hand, statement (A) says that if %, is of
the form %, = [n*] for some 0 < a < 1 and T, =, ¢ then F € &.. In fact, by the equivalence
of (A) and (B) convergence in probability can be replaced by almost sure convergence for
the special sequence %, = [n].

The analogous theorem is true for the class ..

THEOREM 2. Let Y1, Y, ---, be a sequence of ii.d. nonnegative random variables
with common distribution G. There exists a finite positive constant ¢ such that

(A’) for some 0 < a < 1, S,(a) —pc if and only if

(B') S.(a) = c as. if and only if

(C') S, —pc for every sequence k, satisfying (K) if and only if
(D) G e4X..

Proor. Also postponed until Section 3.

Theorems 1 and 2 by no means exhaust the possible theorems of this sort.

Let g by any nondecreasing left continuous function defined cn (0, «) such that g(x)
— o as x — o, and let & denote the right continuous inverse of g. Define via g and any
finite positive constant c the class of distributions:

. "(1-FRh) ,
%—{F.hm,,_,°° T-FhG)) dy—c}.

x

For any sequence k, satisfying (K) set
Tn(g) = krzl 2;&41 (g(Xn+1—1,n) - g(Xn—k,,,n));

when &, = [n®] for some 0 < a < 1, set T, (g, a) = T.(g).
The following corollary follows almost immediately from Theorem 1.

COROLLARY 1. Let Xi, X,, ---, be a sequence of independent nonnegative random
variables with common distribution F. There exists a nondecreasing left continuous
function g defined on (0, ©) such that g(x) — o« as x — « and a finite positive constant
¢ such that

(Ag) for some 0 < a <1, T,(g, a) >, c if and only if

(Bg) T.(g,a) — ca.s. if and only if

(Cg) T,.(g) —p c for every sequence k, satisfying (K) if and only if
(Dg) Fe %..

REMARK 3. Theorem 1 corresponds to the case when g(x) = x, and Theorem 2 to the
case when g(x) = In(x \/ 1). To see how other classes of tail distributions can be constructed
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by appropriate choices of g, consider for instance g(x) = x*, where 0 < 8 < . In this case,
the class %. contains the Weibull distribution:

1— F(x) = exp(—xfc™') for x=0.

%, is thus a class of distributions with Weibull-like upper tails with shape parameter
B. For all sequences &, satisfying (K)

Tn(g) = kZI 2521 (Xﬁ+1—t,n - X'g—k,,’n)

is a consistent estimate of ¢ if and only if the distribution of X is in %..

3. Proofs of Theorems 1 and 2. It will be convenient to break up the proofs of
Theorems 1 and 2 into a number of propositions, each of which may be of independent
interest.

PropPoSITION 1. Let %, be any sequence of integers satisfying (K).

(E) If Y1, Yq, - - -, is a sequence of i.i.d. nonnegative unbounded random variables with
common distribution G € % then S, —, c.

F) If X,, Xz, ---, is a sequence of i.i.d. nonnegative unbounded random variables with
common distribution F € &., then T, — c.

Proor. Let G '(u) =inf{x: G(x) = u}. Since 1 — G is regularly varying with exponent
—c7!, G7'(1 — x7") is regularly varying with exponent c. (See Corollary 1.2.1 of de Haan
(1970).) Hence

1 G7'(1 - x7") = L(x)x",

where L(x) is a slowly varying function. L(x) can be represented as
(2) L(x) = a(x) exp(J’ bwu du) for x=1,
1

where lim,_,.a(x) = ao, with 0 < @o < %, and lim,_,.b(x) = 0.
Let Ui, ---, U, be independent Uniform (0, 1) random variables and let Uy, < --- <
U.,.. denote the order statistics based on Uy, - -., U,. Now

Sn=a 21 (In G (Ups1-in) —In G ' (Un+1-k,n)) k2",
which by (1) and (2) is equal to

3) e Yo (~In(1 = Ups1-in) + In(1 = Ups1-n,.0)) kn' +
(4) Z{eél (a((]- - Un+1—t,n)_1)_ a((l - Un+1—k,,,n )_1))k;1 +
(1=Upt1-1n)7"
(5) i J’ buyu™ du k.
(

1=Uppiop, n) !

—In(1 — Uy,) = --- = =In(1 — U,,) have the same distribution as the order statistics

E,, = ... = E,, of n independent exponential random variables E,, - - -, E,, with mean 1.
Hence expression (3) is equal in distribution to
(6) c z{gél (En+1—i,n - En—kn,n) kr_zl)

but since the random variables E;, < ... < E,, are equal in distribution to Y=, (n + 1
=) 'Ens1—; i=1, ..., nitis easy to show that expression (6) is equal in distribution to

) kil e, E,.
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Since k, — o the weak law of large numbers implies that expression (7) and hence
expression (3) converges in probability to c. It is easy to see that expression (4) converges
in probability to zero. Finally, expression (5) converges in probability to zero since the
absolute value of expression (5) is

(1=Ups1-n) 7"
=max{|b@) |:u= (1 — Uns1-k,) " }br"' Tk J v du,

(U=Upr_g ™!

which obviously converges in probability to zero by the above remarks.
The proof of part (F) follows directly from part (E) and the following lemma.

LEMMA 1. A nonnegative random variable X has a distribution F € &. if and only
if exp X has a distribution G € A..

ProoF. The proof is an elementary consequence of Theorem 1.2.1 of de Haan (1970).
This completes the proof of Proposition 1.0

Proposition 1 proves the (D) implies (C) part of Theorem 1 and the (D’) implies (C’)
part of Theorem 2. To complete the proofs of Theorems 1 and 2, we will require the

following equivalent characterization of the class &..
Let F~'(u) = inf{x: F(x) = u} for u € (0, 1], and F~'(0) = F~'(0+).

PROPOSITION 2. Let F be any distribution function. There exists a finite positive
constant c such that

1
. 1-
llm.m J; (1 —

ProoF. First assume that the above limit holds for some 0 < ¢ < . Since F~}(F(x))
=< xand F(F'(F(x))) = F(x)

" (L= F(y) * A -F() L
2l dy= A (L W _
T=F@ L“(F(xn 1-F® (& = FZ(F(),

) dF'(v) =c ifandonlyif FE &.

v
u

x

which by the change of variables y = F~'(v) equals

— 1 (1-v “10Y — (r — F-1
_J(x’ - F@ dF~(v) — (x — F(F(x))).

F(

The proof will be completed by showing that lim,_... (x — F~'(F(x))) = 0. For this
purpose we need the following lemma.

LEmMMA 2. If limuy i (1 — v)/(1 — u) dF 7 (v) = ¢ for some 0 < ¢ < x, then

lim supgyisupp=u<i {F ' (u+) — F7'(u)} = 0.

PrRoOF. Choose any ¢ > 0 and 8 € (0, 1) such that for all u € [, 1),

1
c+£2j (i:z)dF_l(v)Zc—e.

Now

1 1
c+ezf uaIF—l(v) = FYu+) — F(u) +f udF‘l(v),
L, 1—u l-u

u+
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which for all § > 0 such thatu + § < 11is

= Fi(u+) — () +3& ; =

-8 a-v .,
2| e
= F Yu+) = F ' (u) +(1_—u_-—_ﬂ (c —¢).
l1-u
Hence, by letting 8 | 0, we have forallu € [8,1) c + e = F ' (u+) — F'(u) + ¢ — &.
This last inequality implies that for all u € [, 1), 2e = F'(u+) — F'(u) = 0.0

To complete the first half of Proposition 2, observe that x — F~'(F(x)) = F~'(F(x)+)
— F7'(F(x)), which by Lemma 2 converges to zero as x — . The second half of the
proposition is proven in a very similar manner and is left to the reader.O

In what follows, it will be convenient to use an alternate representation for 7.

Let Uy, Us, ---, be a sequence of independent Uniform (0, 1) random variables and for
eachn=1let Uy, < ... =< U, denote the order statistics based on Uy, - .-, U,. It is well
known that if X has distribution F, F~*(U;), F~}(U.), - - -, has the same distribution as a
process as the sequence of independent random variables X;, X,, ..., with common
distribution F. For each n =1 and u € (0, 1), let :

Gn(u) = n! "1 I(U; = u),

where I(x = y) = 1if x < y and 0 if x > y. G, is called the uniform empirical distribution
based on Uy, --., U,. Now

Tn = k;l E:e:l (Xn+1—i,n - Xn—kn,n)
=d k;] zgl (F_I(Un+l—i,n) - F_I(Un+1—k",n))y

which is not too difficult to show to be equal to

nky' f 1-G.w)dF'(u)=T} as.

Up-s

-

By the above remarks T, n = 1 is equal in distribution as a process to T, n = 1.

ProPoOSITION 3.  Suppose for some 0 < a <1, T,(a) is bounded in probability, then all
the positive moments of X are finite.

Proor. By the previous discussion

1

To(@) =a T (a) = nk;' f (1 — G.(w)) dF'(u), with &, =[n"].

Up-t

g

The proof will require the following lemma.

LEMMA 3. Let k, be any sequence of positive integers satisfying (K). For all1 > ¢ >
0, there exist 0 <A1 <1,0< A< 1,1 <)A3< 0 and 0 < ny < » such that for all n = n,

1- n
(8) P(inf{—(——-l-—?—?i221 Upipn=u< U,m} > )\1> >1-—e¢,
9) P(Up-r,n<l=—n""Neky,) >1—¢ and

(10) PUw>1-n""N3)>1—¢
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ProoF. Choose 0 <& < 1. Let p equal to the left side of inequality (8).

1—p=P(supy, , ,=u<v.{(1 = G.(@)"'(1 — u)} = A7)
= P(suposu<v{(1 — Go(w)) "1 — u)} = ATY),

which is easily seen by Remark 1 of Wellner (1978) to be

=eAi'e™! for 0<A,<1.

Now choose A; > 0 sufficiently small, so that this last term is less than e.
Choose any 0 < A; < 1. The left side of expression (9) is equal to

P(nky"*(Un-pyn — (1 — kan™')) < RY2(1 = Ay)).
Now since
(N) nk: " (Un—pyn — (1 — kyn™)) — 4N (0, 1)

(see Page 18 of Balkema and de Haan (1974)) inequality (9) is true for all n sufficiently
large.

The left side of expression (10) is equal to 1 — (1 — Asn™!)" = 1 — e™, which for A; > 1
sufficiently large and all n sufficiently large is > 1 — &. 0

To finish the proof of Proposition 3, observe that
U’l’l

Ty () = nky" infu, , epen, (1 — Ga (@) (1= )™ J’ (1 —u) dF ' (u).

Un—k,,,n

Choose any 0 < ¢ < 1. Since T (a) is bounded in probability, we have in combination with
Lemma 3 that for appropriate 0 < M < o, A1, Az, A3, and ny that for all n = n,

1-n""\y
PM > T} (a) = nky'\ f (1—u)dF'(u)) >1—g¢,
1-n~1k, A2
which implies that for all n = n,
1-n"1\,;
(11) M = nk;'\, J (1 - uw) dF'(u).
l—n_'kn>\2

Since k, = [n*], we can find a number A > 0 such that the right side of expression (11)
is

1=An=1+e
=n'""\; J’ (1 - u) dF'(u).
1

_)\n—l+u

It is easy to see now that for every § > 0 such that 1 — a > § > 0 there exists a constant
B; > 0 such that for all n = n,

1—An‘”"r|

(12) Mn~% = B; f (1 — u)?-07" dF 7y,

l—An_H“

To keep the notation simple, we will assume without loss of generality that 2"~ is an
integer. Observe that by means of inequality (12), we have

1—A2-(k+D)

0 > M2°k°=k0 2—k6(1—4_x)“ > z;;ko Ba f (1 _ u)ﬁ(l—a)" dF—l(u)
1-a27*
1
(13) = BaJ (1 =)t dF ' (u),
1-A27 k0
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where %, is chosen so that 2%!'"¥~' > n,. Since expression (13) is finite forall 1 — a > § >
0, we have

1
(14) J (1—uw)dF*u) <o forevery &>0,
0

but this is equivalent to all the positive moments of X being finite. 0
Proposition 3 is the key to the proofs of Theorems 1 and 2.

PROPOSITION 4. Suppose all the positive moments of X are finite, then for every 0 <
a<l

Tw(a) — E(To(a) | Upipn) > 0 as.
Proor. Choose any 0 < a < 1. We will show that
Tx(a) — E(T¥(a) | Un-p,n) > 0 as.
Observe that
(15)  E(T}()| Un-p,n) = E(kz"' Biz1 (F7 (Ups1-in) = F 7 (Un-t,n)) | Un-ty.n).

Now since conditioned on U,-»_ . being fixed Y%, F~(U,+1-;.) has the same distri-
bution as Z?gl F~(V;), where V3, ---, V., are independent Uniform (U,-,,», 1) random
variables; expression (15) is equal to

1
J’ F_l(v)(l - l]n—k,”n)_1 dU - F_I(Un—k,,,n)~

Ut n
Hence, for eachp = 1
(16)  E(T3(a) — E(Tx(a) | Up-k,,2))* = E(E(ky" Xtz (F (Vi) — EF ' (V1))® | Un—s, n)-

By the Marcinkiewicz and Zygmund inequality (see Page 149 of Stout (1974)), expression
(16) is

= kPALE(E(F7Y(Vi) — EFT{(Vi))? | Uyt ),

for some constant 4, > 0 independent of F'~', which in turn equals

1 1 _ _ 2
(17) k;pApE(J' (1= Ub_s '”)_l(f (F ' (w) — F(v)) dv) du) .
" 1- Un—k,,,n

Un—lzn.n Un—kn,n

By Holder’s inequality and the ¢, inequality expression (17) is

1 1 -1 2p -1 2p
sk;"BpE(J’ f UF~ @] +|F )] )dudv)
U, Un—k",n

(1 - l]n—k”,n)2

(-
for some constant B, independent of F~!, which is
(18) < 2k;?B,EX*E(1 — Up,0) "

At this point we require a lemma.

LEMMA 4. There exists a constant 0 < C < w such that foralln=2and1<i<n

EQ1 - Upri-in) ™' = Cri™".
PrROOF. E(1 — Un+1-00) ' = [[}= (1 —j ') ~". Now standard approximations show that
= Yiln(l =) =Y+ n=nmi™) + 7,
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where 7, and 7, are finite constants independent of n =2 and 1 <i=<n. Let C = e™ [

Application of Lemma 4 along with the assumption that %, = [n*] for some 0 < a < 1
implies that expression (18) is

< Dpn—pa—a+1’
for some constant 0 < D, <  independent of n.

By choosing p sufficiently large so that ¥7-; n77***' < o« and applying the Borel-
Cantelli lemma in the usual way we complete the proof. [

PROPOSITION 5.  Suppose for some 0 < a < 1, T,(a) —, ¢, where c is a finite positive
constant, then

(G) hmunf (- dF '(v) = ¢, and

(H) Toa) > c as.

ProoF. Since Tn(a) —, c, all of the positive moments of X are finite, by Propos1t10n
3. Hence by Proposition 4

(19) T} (a) — E(T¥a)| Up-r,n) > 0 as.
which in turn implies that
E(T3(a)| Up—t,n) —» c.
By integration by parts we see that

1

(20) E(T#@)| Upt,n) = J (1‘ v - '(v) as.

U"_kn (1 - —k n)

Hence the right side of (20) converges in probability to c. To complete the proof, it will
be sufficient to show that this last statement implies (G); since (G) combined with the fact
that U,_,, , — 1 a.s. implies that

E(TXa)| Us-p,n) = ¢ as,

which in turn by (19) implies (H).

To prove that convergence in probability of the right side of (20) to ¢ for some 0 < «
< 1 implies (G), it will be enough to show that there exists a sequence of constants a., such
that (i) 0 < am < 1, (i) @n — 1, (ii)) (1 — @pn)(1 — @m+1) > — 1, and

"(1-v)

dF'(v) =c.
1—an,

(iv) lim,, .,

@

We leave it to the reader to show that the existence of such a sequence implies (G).
Statement (N) in the proof of Lemma 38 implies that

Fn <~/k_n>

1- Un—k,,,n =—+0,
n n

Now since in this case nk,' (n + 1) k41 — 1, and

J L =) dF )1 = Up-p,n) ' =5 ¢,

U,
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a routine argument shows that we can extract a sequence a,, satisfying (i) through (iv).
This completes the proof of Proposition 5.0

We can now complete the proof of Theorems 1 and 2.

ProoF oF THEOREM 1. Propositions 2 and 5 give (A) implies (B), (B) implies (D), and
(C) implies (D). Proposition 1 gives (D) implies (C). Finally, it is obvious that (B) implies
(A), and (C) implies (A). All of these implications together show that (A), (B), (C) and (D)
are equivalent.

PrROOF OF THEOREM 2. Set X;=In (Y, 1) fori=1,2, ..., where x \/ y = max (x, y),
and let F denote the distribution of X.
It is easy to see that

Tn = k;1 E{ZI (Xn+l—i,n - Xn—kn,n) —>pC

if and only if S, —, c.

Hence statements (A’), (B’) and (C’) of Theorem 2 are equivalent to the corresponding
statements (A), (B) and (C) of Theorem 1 for T},. Now by Lemma 1 statement (D) is true
for F if and only if the distribution of Y, \/ 1 is in %,., which is easy to see to be true if and
only if the distribution G of Y; is in Z.. 0O

4. Appendix. We will give an example of a distribution F such that 7, , c for a
particular sequence k, satisfying (K) and finite positive constant c, yet F & &..

ExaMPLE. Let X be a nonnegative random variable with distribution F, where F is
defined via its inverse as follows: Let

F—1(1—27M)=m fOI‘ m=0,1,2,..., and
Fluwy=m+ @—-1-2"7)2"" for 1-2"<u<l-—2""

Foreachm =0

1-27k-1

1
f (1 — u) dF (4) = $iem f 91 — ) dut = —o -

2m+1
_o—k

Hence, for each integer m = 0,
' 3
(21) 2"’J’ (1—-u)dF Yu)=-.
1—2m 2

However, for each integer m = 0

m+2 Q-1 ' _ -1 _1_7
(22) 2" 3 J: (1—-u)dF (u)—12.

—3/2m+2

Equations (21) and (22) show that F' & &, for any 0 < ¢ < .
For each fixed integer m = 1, let

2-m
Tn,m = 2{:1 ! Xn+1—i,n/[n27”‘] - Xn—[nZ""],n

for each integer n = 2™,
Observe that since F ! is continuous

Xn—[nZ""],n —m a.s.
Hence by Remark 1, we have

1
3
Tn,m_)2mf F'u)ydu-m=- as. as n— o,
1-2-m

V]



764 DAVID M. MASON

Now choose N; > 2 such that P(| T, — % | > %) < % for all n = N;, N> > max (2%, Ny)
such that P(| The— % |> %) <Yforaln=N,, ..., and N, > max (2™, N,_1) such that
P(|Thm—%|>2"") <2 ™ for all n = N, etc. Let k, = 1 for all 2 < n < N, and for n
= N, let k, = [n27™"] whenever N, =n < N4 form = 1.

By construction we see that %, satisfies (K), and T, —, % for this particular sequence
kn; however, F & &;5.
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