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SOME CHARACTERIZATIONS OF STRONG LAWS FOR LINEAR
FUNCTIONS OF ORDER STATISTICS

By Davip M. MasoN

University of Delaware

Some necessary and sufficient conditions for strong laws of large numbers
to hold for certain classes of linear functions of order statistics (L.F. of O.S.)
are given. The results are used to extend and complement some sufficient
conditions for strong laws for L.F. of O.S. derived by van Zwet [5] and Wellner
[6]. Also a moment-like condition almost equivalent to the existence of an
absolute pth moment is introduced.

1. Introduction and preliminaries. Let Ui, U,, - - -, be a sequence of uniform (0,
1) random variables. For each n = 1, let Uy, = ... =< U,, be the order statistics of Uj,

+, Un. Let H be a measurable real valued function defined on [0, 1]. The classical strong
law of large numbers (C.S.L. of L.N.) says that

lim,on ' Y2 HU;) = EH(U,) (finite) a.s.

if and only if E | H(Uy)| < .

Several workers, Helmers [2], Sen [4], van Zwet [5] and Wellner [6], have considered
strong laws for a more general class of statistics, which includes the sample mean, called
linear functions of order statistics (L.F. of O.S.). These are statistics of the form:

= pn-ly2 4
(1) Ln =n Ez=l J (n ¥

1) H(Uw),

where o/ is a real valued function, often called a score function, defined on (0, 1).
[2], [4], [5], and [6] have shown that under a variety of conditions on JJ and H

1
(L) lim, oL, = f Jw)H(u) du (finite) a.s.
0

The strongest results are those obtained by van Zwet [5] and Wellner [6]. So far the
problem of finding necessary and sufficient conditions on J and H such that (L) is true,
analogous to the necessary and sufficient condition on H given by the C. S. L. of L. N., has
not been solved. A partial solution to this problem will be presented in this paper.
Necessary and sufficient conditions for (L) will be derived for two special subclasses of
L.F. of O.S., which will be seen later on to arise naturally in the study of strong laws for
L.F. of O.S. These are L.F. of O.S. of the following two forms:

Let % denote the class of nonnegative real valued functions defined on [0, 1], which are
nonincreasing on (0, 1]. For each g € ¥and 0 < p < « set

) Su(g, p) = X1 VP 'n T Pg(Us).

Let s#denote the class of nonnegative real valued functions defined on [0, 1], which are
nondecreasing on [0, 1). For each A € #and 0 < g <  set

(3) To(h, q) = Yi iY97'0 7V (Unsr-in).
Sx(q, p) and Tu(h, q) are not quite in the form of L,, but will be notationally more
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convenient. S,(g, p) = ((n + 1)/n)"?7'L, with J(u) = u?™" and H = g, and T,(h, q) =
((n + 1)/n)"* 'L, with J(u) = (1 — w)¥**and H = A.

The asymptotic behavior of S,(g, p) and T.(h, q) respectively will be shown to be
completely determined by whether the following quantities are finite or infinite: For
g€ Yand 0 < p < w set

1

1
E,(g) = f g’w) du and M,(g) = f u?g(u) du;
0

0

and for 2 € #and 0 < g < « set

E,(h) = f h%(u) du and N,(h) =f (1 — w)"" 'h(u) du.
0 0

Finiteness of M,(g) and N, (k) is almost a moment condition on g and % respectively. It
is not too difficult to show that if 0 < p < 1 and E,(g) < « then M,(g) < o, though the
converse is not true; for example, set g(u) = (—u In(ue™))™?. When p = 1, E,(g) < « if
and only if M,(g) < . Finally, if o > p > 1, M,(g) < « implies E,(g) < o, but the converse
is not true; for example, set g(v) = u~?(—In(ue™)) ™. The analogous remarks are true for
E,(h) and N,(h). Refer to the Appendix for proofs of these statements. .

The characterizations obtained for the asymptotic behavior of S,(g, p) and T,(A, g) will
be used to extend the results of Wellner [6] and complement the results of van Zwet [5].
In addition, information concerning the general problem stated above will be gained in the
process.

2. Strong laws for linear functions of order statistics. The following two theo-
rems completely characterize strong laws for S.(g, p) and T.(h, q) respectively.

THEOREM 1. Letg € Yand > p > 0, then
(A) E,(8) <wand M,(g) < x if and only if
(B) lim,..S.(g, p) = My(g) <« as.; and
(C) E,(g) = o or My(g) = » if and only if
(D) lim sup,—«S.(g, p) = © as.

Proor. Postponed until Section 3.

THEOREM 2. Let h € H and « > q > 0, then
(A) E,(h) < o and Ny(h) < o if and only if
(B') lim, o Th(h; q) = Ny(h) < © as.; and
(C’) E4(h) = 0 or Ny(h) = if and only if
(D’) lim sup,—oTh(h, qg) = © a.s.

Proor. The proof follows from Theorem 1 by setting g(z) = A(1 — u) and observing
that 1 — Ui, 1 — Uy, - -+, is equal in distribution to Ui, U, --.,. O

Theorems 1 and 2 may be thought of as natural extensions of the strong law of large
numbers for nonnegative random variables. The moment-like conditions M,(g) and N, (k)
come into play only when p > 1.

The following corollary to Theorems 1 and 2 reveals the relationship between strong
laws for S,(g, p) and T.(A, ¢) and more general strong laws for L,.

CoroLLARY 1. (A Strong Law for L,). Assume that H and J are such that (i) for all
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0<a<l1/2

l-a
n~tyrtal J( " 1) H(U,) —» f J(w)H(u) du (finite) a.s.,

([x] = greatest integer < x.)
(ii) there exist M >0,p >0, q >0 and 0 < b < 1/2 such that
|J ()| = MuP" and |J(1—u)|< Mu"""!

for allu € (0, b); and
(iii) there exist g € 4, h € #, and 0 < ¢ < 1/2 such that |H(u)| < g(u) and |H(1 — u)| <
h(1 — u) for all u € (0, c), where g satisfies (A) and h satisfies (A’); then

1
lim, L, =f J(u)H(u) du (finite) a.s.
0

Proor. Conditions (ii) and (iii) imply that for some 0 < M, <
4) lim,jolim supp_. |7 T J ( ) H(U,)| =

(5) Molim, lim sup,_.«| Y9 "7 'n"Pg(Us) |,

which by (iii) and Theorem 1 is easily seen to equal

(6) Molim, o f u'Plg(u) du=0 as.
0
Similarly,
+1—-1
(7) lim,jolim supp—. |7 - Z[m] J <ll'n—+—i—£) H(Up11-in)| =0 as.

These two facts in combination with (i) complete the proof. 00

REMARK 1. Wellner [6] and van Zwet [5] give sufficient conditions for assumption (i)
to hold. In particular, the results of Wellner [6] can be shown to 1mp1y that if | H(u)| is
bounded on (a, 1 — a) for each 0 < a < 1/2, and

[nu]
( +1> J(u) as. (0,1),

then condition (i) holds. It would seem reasonable that [§ | J(u)H(u)| du < o along with
J and H satisfying the conditions just stated would be enough for a strong law to hold for
L,. The fact that M,(g) < « does not imply E,(g)*< o for 0 < p < 1 in combination with
Theorem 1 and the example given in the~introduction for 0 < p < 1 shows that this
conjecture is not true.

REMARK 2. Van Zwet [5] shows that if ¢/ is sufficiently smooth and for some © > p >
1 both E|J(U,)|?”*~" and E | H(U)|” are finite, then the conclusion of Corollary 1 holds.
Theorem 1 indicates that van Zwet’s moment conditions, though sufficient, are not
necessary. Consider for instance, for © >p > 1, J(u) = u*?"* and H(u) = u~?(=In(ue ™))%
These choices of J and H do not satisfy the moment conditions of van Zwet [5], though
Theorem 1 implies (L). On the other hand, there exist choices of / and H that satisfy van



1054 DAVID M. MASON

Zwet’s moment conditions but do not satisfy the conditions of Corollary 1. For example,
for o >p > 1set J(u) = u'?7(~In(ue™?)) ™ and H(u) = u~?(—In(ue™"))". So the general
problem posed in the introduction remains open.

REMARK 3. To see how Corollary 1 relates to the results in [6], in particular Theorem
4 of [6]; observe that if H and J satisfy Assumptions 1 and 2 of [6] the conditions of
Corollary 1 hold automatically. The first example given in Remark 2 clearly does not
satisfy Assumption 1 of [6], though (L) is true.

REMARK 4. A more general version of Corollary 1 could have been given here, where
J(i/n + 1) is replaced by the larger class of score functions considered in [5] and [6]. In
this case, condition (i) and the conclusion would have to be suitably modified. The proof
would be along the same lines as the proof just given. To simplify the presentation of the
main ideas in this paper such a generalization is not presented here.

3. Proof of Theorem 1. The proof of Theorem 1 will require the following two
lemmas. G, will denote the empirical distribution based on Ui, --. U,.

LEMMA 1.
(G) Letge Yandset D,(g) ='sup{Gr(u)g(u):0<u=<1}.If Eg(U,) < o then lim,_,»D.(g)
=sup{ug(u): 0 <u =<1} < w as.; and if Eg(U,) = o then lim sup,..D.(g) = » a.s.
(H) Let h € # and set E,(h) = sup{(1 — G.(u))h(u): 0 < u < 1}. If Eg(u,) < x then
lim,oE.(h) = sup{(1 — w)h(u): 0 = u < 1} < © as,; and if ER(U;) = o then lim
SUpPr—weEn(h) = © as.

Proor. Refer to Remarks 1 and 4 of Mason [3].

LEMMA 2.
(G) Letg€¥%and0<p < x, then
(a) E,(g) < x if and only if
(b) limsolim sup, ..maxi<i<.5i?n ?g(Us) =0 a.s.; and
(c) E,(g) = o if and only if
(d) forall0<d=1

lim sup,..MaxXi<<nsi?n " Pg(Uy) = © a.s.

(H) Lethe€ #and0 < q < w, then
(a’) E,(h) < o if and only if
(b’) limsyolim sup,_.omaxi<<psyi’n %(Ups1-in) = 0 as.; and
(¢') Eq4(h) = o if and only if
d) forall0< =1,

lim Supn—momaXlsis[mﬂil/qn——l/qh( Un+l—i,n) =0 a.s.
Proor. A proof will only be supplied for part (G); the proof of part (H) follows by

symmetry considerations from part (G). First assume (a). Since for each 0 < § < 1 Upg),n
— 8 a.s., we have

limgjolim SUP,—wmMaXi<i<ins)in ' &°(Uin)

< lim;jolim sup,—.sup{G.(w)g”(u):0 = u <68} as,
which by Lemma 1 is almost surely equal to
(8) limgyosup{ug?”(u):0 < u < 8}

but (a) along with g nonincreasing implies that expression (8) is zero.
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By Corollary 4.3.1 in Galambos [1], we have for all ¢ > 0
P(gP(Un) >neion.) =0 or 1
according as
Yr-1 P(g°(Uy) > ne) <o or =,

Thus lim,_,n"'g?(Ui,) = 0 a.s. when E,(g) < %, and lim sup,_.n"'g”(Un) = » a.s. when

E,(g) = .
This shows that (b) implies (a) and (c) implies (d). Finally it is not difficult to see that
(d) implies that lim sup,_.«D.(g”) = © a.s., which by Lemma 1 implies (c).

Proor oF THEOREM 1. The results of either [5] or [6] imply that for each 0 < 8 < 1,

1
n7t Y e (0P g(Uin) — f uP7lg(u) du < o as.

8
Therefore to complete the proof of Theorem 1 it will be sufficient to prove the following
lemma. Foreachg € 4, 0<p<o,and 0 < § < 1, set

S.(g, p, 8) = X0 VP 'n T Pg(U).
LEMMA 3. Letg € Yand 0 <p < x, then

(A) if and only if
(Bs) limsyolim sup,-«Sn(g, p, 8) =0 a.s; and

(C) if and only if
(D) for every 0 < 8 < 1, lim sup,—»S.(g, p, 8) = © as.

Proor.

PArRT 1. (A) if and only if (B;). Observe that by the remarks in the introduction, when
0 <p =1, (A) is equivalent to E,(g) < « and when p = 1, (A) is equivalent to M,(g) <

o0,
Casel. p=1.
Proor. The proof in this case is elementary and left to the reader.
Case2. 0<p<l.
PrOOF. (A) implies (Bs): Foreach0 <8< 1landn=8"!set
m(n, 8) = maxi<.<5in 8" (Us).

Now Lemma 2 in combination with 0 < p < 1 implies that almost surely

limsolim sup,.n~" T g2(U;,)
)
= limsyolim sup,..n~" ¥ (m(n, 8))7"'g?(Us,) = limsjolim sup,_...S.(g, p, 8).

Since E,(g) < « the left hand side of (9) is a.s. zero by Case 1. (B;) implies (A): The
proof follows directly from Lemma 2.

Case3. p>1.

Proor. (A) implies (Bs): We will need the following fact.
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Cramm 1. Whenp>1l,foralln=1and1<i=<n
(in™) """ g(Uinn™ < (in™)7 'gin ™" + (Un) P "'g(Usn)n™".
Proor. If U, = in"" then (Ux)"""' < (in"")*"™!, and since g is nonincreasing g(U.,.)

= g@n™"). If Un < in”", (U)"P' > (in"*)*P71. So in either case the inequality is true.
By Claim 1, we see that

limsolim sup,.-S.(g, p, §) <
(10) limsolim sup,.n~' ¥ (n")7 'g(in™") +
(11) lim(swlim Supn_mn_l 25:? (Um) l/p_lg( Uin).

Since [§ u?"'g(u) du < » and u'?"'g(u) is nonincreasing, u"”"'g(u) is Riemann
integrable on (0, 1]. Thus expression (10) is zero. Expression (11) is zero by Case 1.

(Bs) implies (A): Assume (B;) but M,(g) = . Choose any 0 < & < 8 < 1. The results of
[5] or [6] show that

8
nt Y (in )P g(U) — f uPg(u) du a.s.
s

But since we assumed that M,(g) = o, we have
limg jolimp .. Egiﬂa'] i7" VPg(Ui) = w0 as,
which contradicts (Bs). Thus (B;) implies (A).

Part 2. (C) if and only if (Ds).

(Ds) implies (C): Obvious from (A) implies (B;).

(C) implies (Ds): Observe that when 0 < p <1, (C) is equivalent to E,(g) = o; and when
1= p < o (C) is equivalent to M,(g) = .

Casel. 0<p<1.

Proor. Since E,(g) = o, lim sup,_..n""?g(U) = » as.

CASE2. 1=p<o,

Proor. Note that foreach0 <8 <d<1
(12) lim sup,.S(g, p, 8) = limuan™ T (in™")P 7 g(Us).
T;le' right hand side of (12) converges a.s. to [§ u'”'g(u) du. Since M,(g) = =, the rest is
obvious.

This completes the proof of Theorem 1. [

4. Appendix. The following proposition shows the relationship between E,(g) and
M,(g).

PROPOSITION. Letg € %.
(i) If0<p =1, E,(g) <  implies M,(g) < .
(i) If 1 = p < 0, M,(g) < « implies E,(g) < .

Proor. We can assume without loss of generality that g(x) > 0 for all u sufficiently
close to 0. First assume 0 < p < 1. E,(g) <  and g nonincreasing imply that both

Yr-18°(n)n? <o and lim,..g?(n )n! = 0.
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Thus lim,....(g(n")n""?)?"! = «. Hence there exists a C > 0 and an integer no such that
>y, g’n n = CY¥r,, gn n P,

which implies that M,(g) < .
Now assume 1 < p < . M,(g) < « and g(u)u'”"" nonincreasing imply that both

Srign P <o and  lim,.gn VP = 0.
Thus lim,.(g(rn™")n""?)'” = . Hence there exists a C > 0 and an integer n, such that
o>Yr, gn P = C ¥, g°(nn 7,

which implies that E,(g) < .
The proof for the case p = 1 is obvious. O

The same relationship exists between E,(h) and N, ().
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