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SPATIAL GROWTH OF A BRANCHING PROCESS
OF PARTICLES LIVING IN R¢

By KonEI UcHIYAMA

Nara Women’s University

Consider a branching process in which particles are located in R% do not
move during their life times, die according to the exponential holding law, and
at their deaths give birth to random number of particles which are located at
distances from their parents. The total number process is supposed super-
critical. We are interested in the number of particles living in a shifted region
D + tc, denoted by Z,(D + ¢c), where ¢ € R and D is a bounded set of R and
observe a.s. convergences of Z,(D + ¢c)/E[Z:(D + tc)] as t — . The result is
applied to an associated non-linear evolution equation, which reduces, in a
special case, to the equation of a deterministic model of simple epidemics.

1. Introduction. Consider a branching process in which particles are located in S =
R? (d-dimensional Euclidean space), do not move during their life times, and die and
produce offsprings in the following way: if a particle is alive at time ¢ and located at
position x € S, then the particle dies in the time interval (¢, ¢t + dt) with probability kdt
+ o(d?) and at the moment of its death it gives birth, with probability =,(dy), to n particles
which are located in x + y + dy, y € §". Here ,(-) is a finite measure on %" the totality
of Borel sets of S (S™ is the n-fold direct sum of the vector space S) and we write

x+y=@&+y, x4 y)

fory = (y1, - -+, yx) € S". We assume of course Yi_; 7,(S") = 1. The development stated
is not affected by the existence of any other particles and the past history of the process.
Both the constant « and the system of measures =, are independent of x and ¢. It should
be noted that if 7 (S) > 0, the true rate of holding time for splitting (or vanishing) of a
particle is not « but k(1 — 7,(S)). For convenience we let S° = {6}, po=1—Yni m(S™)
and mo(-) = po8;(-), where d is an extra point and 8, is the delta measure at o.

Let Z/(D) be the total number of particles living in D € 4" at time ¢ and let Z, = Z«(S).
We will consider Z,(-) as a (stochastic) measure on S. Our main objective in this paper is
to determine the limiting behavior of shifted measures Z,(- + tc) for all ¢ € S, as ¢t
approaches the infinity (D + x denotes { y + x:y € D}). Now let the process start with one
particle at 0 at time 0 and set A(§) = log E[[se**Z:(dx)] for £ € S and

(1.1) v(c) = infies(A(¢) —c - £) for cE€S.

(Here the dot denotes the usual inner product of d-vectors.) Then under certain regularity
conditions on {,} it will be proved that if »(c) > 0, there exists a set Qo of full probability
such that for all bounded D € %' with Jap dx = 0 (8D is the boundary of D)

(1.2) limy. V2% " Z,(D + tc) = cg( f

D

e‘g'xdx)Wg on &,

where £ is a unique solution of v(c) = A(§) — c-¢ C; is a positive constant and W¥ is a
random variable with W¢ > 0 a.s. on {Z;, — o} (Theorem 1; see also Remark 1 after
Theorem 1), and that if v(c) < 0, lim,.Z:(D + tc) = 0 for all bounded D a.s. (Theorem 2).
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For the proof of the first result we will follow S. Watanabe [28]. The basic idea in [28] is
to expand the stochastic measure in (1.2) by a system of martingales W?} (see (5.3) of this
paper). In the present case W? is expressed as

Wi = e 40 J eMZ,(dx), A\=¢+ i

where {, n € S, i = V=1 and A(]) is defined for A with A(¢) finite; W#in (1.2) is the limit
of W} as ¢ — . The main and most hard task in this paper is to show an L,-boundedness
and an L,-continuity (w.r.t. n at 0) for the martingales W} with some « > 1. In the case
treated by Watanabe, the martingales were Ls-bounded which followed readily from one
of basic assumptions in view of a simple relation for the second moment of Z,(D) (cf. the
equations (2.23) and (3.21) in [28]), while in the present case the L,-boundedness is violated
for some £ appearing in (1.2) and there is no simple relation for estimating | W}~ Once
the estimates of W?} are obtained, the path to (1.2) is a saddle point method in which the
stochastic nature is managed by martingale inequalities. The same estimates of W? and
computations as leading to (1.2) will prove, without any additional cost, the convergence
of the following stochastic measures, provided »(c) > 0:

(1.3) Vider@rEaVig ez gy + ia + te) (a e S),

(14) e €Nz, (Jt dx + te).

The limiting measures are ®(a) W* dx for (1.8) and Wéd¢(x) dx for (1.4), where ®%(x) is
the density of a Gaussian probability measure on S and dx is the Lebesgue measure on S.

J. D. Biggins [7] has obtained results similar to (1.2) for discrete time and one
dimensional processes by a different method. His results would yield the corresponding
ones for continuous time processes by applying a technique which was used by Asmussen
and Kaplan [2]. When ¢ the velocity of shift takes a particular value which corresponds to
£ = 0 in the present situation, convergences of measures as defined in (1.3) and (1.4) have
been established in a number of papers for the various kinds of processes [2], [13], [15],
[21], [23], [24]. A recent work of Y. Ogura [22] is also relevant;: he treates a binary splitting
branching process of Brownian particles with drift on a positive real axis and investigates
the limiting behavior of the process according to the intensity of the drift.

In Section 7 we shall study asymptotic behavior of a stochastic region of propagation of
the process without assuming main conditions imposed in Theorems 1 or 2.

In the last section (Section 9) we shall make use of the results as mentioned above for
investigating the behavior of solutions of a non-linear evolution equation, which in a special
case reduces to

av

(1.5) 6_t =

( J v(t, x + y)H(dy))(l - )

where H(dy) is a probability measure on %' This equation appears as the deterministic
model for simple epidemics (cf. [4], [12], [19], [20]).

2. Preliminaries and main results. Let us denote by x,, the position of the kth
particle alive at time ¢ and set

X = (Xg1, ¢+, Xen)

if Zz=n =1 and x, = 9 if Z, = 0, where Z, is the total number of particles alive at ¢ as
defined in Section 1. Then x, is a strong Markov process on the state space S = U S
with trap o (see Ikeda et al. [14] for a detailed description and construction of the process).
We will denote by Py the probability measure of the process x, whose initial state is x and
by E, the integration by Py. If x = x € S, we will write simply P, or E,. For a Borel
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measurable complex valued function f on S we define a function on S:

oy Jf@) e+ flan) I x=(x, e, X)
2.1) 1) = {o if x=a
and then set
(2.2) Mf(x) = Yo j fx +y)m(dy), x€ S8
gn

if the right hand side is absolutely convergent (i.e. M| f|(x) is finite) for all x € S. From the
condition (C.2) which will be introduced soon it evidently follows that M1(x) = M 1(0) <
 and we can define a measure G(dx) on %' through the relation that Jf(x)G(dx) = Mf(0)
for all bounded f: then (2.2) is rewritten as

2.2y Mf(x) = J flx + y)G(dy).
S

Let for A = (A}, .-+, A%) € C? (a complex d-vector)
w(x) =", x€S

where A-x is the usual inner product, and let

A(X) = K(j o (x) G(dx) — 1) ,
S

Wi =e M g(x.),

which will be regarded as making sense if and only if A(%A) is finite. (Here 2\ = (2\),
«ov, ANY); Rz denotes the real part of z € C.) It will be seen in the next section that if
A(ZAN) <, W} is a martingale with respect to P, and to the monotone family of o-fields
generated by {x,:0 < s < ¢}, ¢ = 0; in particular Eo[¢r(x,)] = e*V* and the definition of
A(A) is consistent with what we have made in Section 1.

The following conditions are assumed throughout the paper:

(C.1) A(0) >0

(C.2) Y1 nPm(8™) < oo;

(C.3) G(-) is not supported by any (d — 1)-dimensional hyperplane of S;
(C.4) for each £ € S there is an e > 0 such that A(ef) < .

The conditions (C.1) and (C.2) are equivalent, respectively, to P.[Z, — »] > 0 (i.e. the
total number process Z;, which is clearly a Galton-Watson process, is super-critical) and to
E.[(Z))*] < o (¢ > 0). Let O be the unit sphere in S and for each € O define the positive
number r(f) < « through the relation

A(rd) A(rd)

(23) inf0<r<oo = limm(g,

Since A(rf) is a strictly convex function of » > 0 as far as it is finite, r(8) is uniquely
determined and A(r8)/r is strictly decreasing in 0 < r < r(8). If r(§) < « and A(r9) is finite
beyond r(6), r(8) is a unique point at which A (r)/r attains its minimum and the minimum
agrees with the value of the derivative (d/dr)A(rf) at r = r(8). Set

T={r6:0=r<r(f) and 4 € 6},

and let us have as given an a > 1 and a¢ € T. Then A(af) < aA(¢) and therefore there is
a 8 > 0 such that

(2.4) A(ag) <aZAN) for A=¢+in, nE€S with |7]<$8
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(i = ¥v=1, |n| = vn-n). The next proposition is essential to prove the main theorem
(Theorem 1) by the present method. We need the following condition

(A1) B(¢) = Yo n[ f <¢¥g<ym<dy)}<w forall {¢€T.
sn

ProposITION 1. Suppose (A.1) holds. Let 1 < a < 2 and o € T, and choose § > 0 so
that (2.4) is valid. Then for N\ appearing in (2.4), W? is L,-bounded, namely
supsoE[| W} |*] < co.

For £ € S with A(§) < o let
Wt = limy Wi (as.),

which exists (finite valued) since W3 is a positive martingale. In the last section it will be
deduced from Proposition 1 that under (A.1)

(2.5) W¢>0 as.on {Z— »} for ¢(¢€T.

To state the main theorem we need further a few notations. Let X be the set of all inner
points of the domain of convergence of A(§) (£ € S). A(§) is regular in X. Using the
convexity of the exponential function e’ and applying (C.4) to any d independent unit
vectors 0y, - - -, 04, we see supgeoA(ef) < o for some positive ¢; in particular 0 € X. By an
application of Holder’s inequality, we see that ¢ belongs to X if and only if A(af) < o« for
some « > 1. Therefore T'C X. For { € X we denote the first and the second derivatives of
A(¢) by DA(£) and by D?A(£), respectively; in other words DA(£) is the vector
& [ x¢e(x)G(dx) and D?A(¢) the matrix whose (j, k)-component is « [ x;xx¢s(x) G(dx).
Because of (C.3) D?A(¢) is positive definite. Therefore by the inverse mapping theorem X *
= {DA(§) : £ € X} is open and the mapping

(2.6) £~ c=DA($)
is a homeomorphism of X onto X*. Now we set
T* ={DA():£€ T}

and formulate the main theorem as the convergence of a measure valued process u; defined
force T*:

pi(D) = Vtle 4O=9Z(D + tc), DE A,

where £ corresponds to ¢ as the inverse image by the mapping (2.6).

THEOREM 1. Assume the Condition (A.1) and
(A.2) G(-) isnot supported by a set {ne:n €Z} forany e€S.

(Z is the set of all integers.) If ¢ € T*, then u$ converges vaguely to C; W with
probability one (P.), where £ corresponds to ¢ by (2.6), C; = (det(D?A(£))/(2m)%)"? and
ui(dx) = et~ dx.

REMARK 1. (i) Let »(c) be defined by (1.1) and set M = {¢ € S: »(c) > 0}. Then T* C
M, because T = {£ € X: A(§) — DA(§)-£ > 0} as is easily seen. Under the assumption of
Theorem 2 below we will show M = T* (cf. Lemma 11 in Section 8), but in general the
identity is violated. (ii) Let £(c) be the inverse image of ¢ by (2.6). Then the infimum »(c)
is attained at £(c):

v(c) = A(c)) — c-&(c) for c€E€X*.

Differentiating both sides w.r.t. ¢, we have a dual formula £(c) = —grad v(c). We also note
that T* agrees with the set {¢ € X*: »(c) > 0} and hence with the set of admissible velocity
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parameters in Biggins (1979) (Theorem B). (See Biggins (1978) for additional information
on these matters.) (iii) The condition (A.2) is equivalent to the condition

RA(in) <A(0) forall n#0, nES
or to an apparently stronger one that if A(£¢) < oo,
(2.7) RA(E+in) <A(&) forall n#0, nES.

In this paper (A.2) will be always applied in this form. When G(dx) is supported by a
centered lattice (i.e., a lattice which contains the origin as a lattice point), a complete
analogue will be obtained (Section 6). (iv) In Section 9 for the purpose of an application to
a non-linear equation we shall prove L,-convergences of u; which occur uniformly for ¢ €
F, provided F'is a closed set of S and contained in 7'*.

The next theorem is essentially due to Biggins (1977).

THEOREM 2. Assume the following two conditions
(A.3) G({x:60-x>0})>0 or G({x:0-x=0})<1 foreach 6€O
(A4) A(¢) is finite in a neighborhood of T.

Then for each ¢  T* there exists a £ € S such that if infiepé-x > —0, D C S, then
Zi(D + te) — 0(t — ) as.

REMARK 2. (i) Let the process start with one particle at the origin and let the first
inequality in (A.3) fail to hold for a # € 6. Then there lives no particle in {x:60-x > 0} a.s.
and the restriction of x, to the hyperplane Sy = {x:0.x = 0} is still a branching process of
the same kind as presently considered (but (d — 1)-dimensional), whose total number
process (= Z,(S;)) is supercritical or not according as G(Ss) > 1 or < 1. In the supercritical
case the problem is reduced to that of the (d — 1)-dimensional process. In the critical case
the conclusion of Theorem 2 can be false according to the behavior of G({x:—b < 0-x <
0}) as & | 0 (cf. Bramson, 1978). (ii) Assume po = 0 for simplicity. By Theorems 1 and 2,
for all nonempty bounded open D

(2.8) limyoZy(D +tc) =0 or o (as.)accordingas c&T* or c€T*

provided the assumptions of theorems hold. In this respect the Condition (A.4) is crucial.
In fact we will see in Section 7 that lim Z,(D + tc) = o for all nonempty open D if ¢ is an
inner point of M = {c: v(c) > 0} and (A.2) holds. As mentioned in Remark 1, 7* and M are
identical under (A.3) and (A.4). If (A.4) fails, not only the identity is violated, but the
subtraction of T* from M contains an inner point and hence we have a consequence
considerably different from (2.8).

What are asserted for the measure valued processes in (1.3) and (1.4) in Section 1 follow
from the following variants of Theorem 1 as special cases. Given a positive function p, and
a S-valued function a; of ¢ = 0 such that a = limy.a; exists in S, we set for c € T*

(29 5= (Vt/p)lexp{—(A®) — c-Ot + (& -a) VD e " Z,(p, dx + Via, + tc)

where £ corresponds to ¢ via (2.6) and [ f(x)u(p dx) is understood to be [ f(x/p)u(dx).

THEOREM 3. Assume (A.1). Let ¢c € T* and a = lim a, and assume either (a) lim p,
= w and lim p,/Vt = 0 or (b) p; is bounded and satisfies
. 1
lim sup;. 7 log(1/p:)
(2.10)
A
< [A(g) — max{inf1<a<2$ , lim supj; -« ZA(§ + in)}]/d.



GROWTH OF A BRANCHING PROCESS 901

Then {i; converges vaguely to ®(a) W* dx with probability one (P.), where ®(x) is the
density function of a Guassian probability distribution on S with mean 0 and covariance
matrix D?A(£).

THEOREM 4. Assume (A.1) and that p, is increasing and continuous and there exists
lim pt/\/; =m=w. Ifc € T* and a = lim a,, then with probability one (P,)

(i) (p/ VO weakly converges to Wiy if m = oo,

(i) fi weakly convergesto m  Wi®(x — a/m)ydx if 0<m< o,

We shall prove Proposition 1 in Section 4, Theorems 1, 3 and 4 in Section 5 and
Theorem 2 in Section 8.

3. Martingales. Let B be the set of all bounded Borel measurable functions on S
which take values in C. For f € B the function u(¢, x) = E.[ f(x/)], x €S, is a unique global
solution of the evolution equation

u
3.1) m =k(Mu — u)

with u(0, x) = f(x), in which the operator M acts on x only (cf. [14]). This is the
fundamental equation in the later arguments. Instead of (3.1) we will often deal with the
following integral equation

t

3.1y u(t, x) = e f(x) + J ke Mu(t — s, -)(x) ds,

0

which is understood to be equivalent to (3.1) in a sense.

LemMMA 1. Let £ € S and A(§) < . If | f(x) | = ¢:(x) for all x € S where f is a Borel
measurable (not necessarily bounded) function, then there exists a unique solution u of
(3.1) such that |u(t, x) | < ¢:(x)e*®",

Proor. The solution is constructed by means of iteration. Let uo = e ™f(x) and
recursively define

t
un(t, x) = e ™f(x) +J ke *Mu,—1(t — s, -)(x) ds.

0
From | f| = ¢¢(x) and kMe; = (A(£) + k)¢ it follows by induction that | u, | < e*@¢,. If f
= 0, u, is increasing in n and u = lim u, solves (3.1). Because of the linearity of the
equation, this proves the existence part of the lemma. To show the uniqueness let u be the
difference of two solutions. So |u| <y = 2¢:e*?® and u =k [§ e ™ Mu(t — s, x) ds, and we
have

lul=(AG) + 0ty |ul=%[(AE + )]y, et
which yields u = 0.
LEMMA 2. If A(ZN) < o, then E[¢r(x:)] = dn(x)er™",
ProoF. First we assume A real and let £ = A.
Then by taking a sequence 0 < f, € B which is dominated by and converges to ¢:(x), we
see u(t, x) = E.[¢(x/)] is a solution of (3.1)’, which is not greater than ¢:(x)e?®% but

e (x)e?®" is also a solution and therefore by the uniqueness they coincide. When A is not
real, the similar argument can be applied by noting | pa(x)] = dura(x).



902 KOHEI UCHIYAMA

COROLLARY. If A(#M) < o, W} is a F-martingale, where % is the o-field generated
byx,0=s=t.

Proor. Using the additive nature of qg;\ and the Markov property of x; and then
applying Lemma 2 we have
EJin(Xers) | Z] = (B[] (x,) = eV (x,)
a.s., which is the same as what is to be shown.

4. Proof of Proposition 1. For a complex valued measurable function f on S, let us
define a function on S:

Fr(x) = | f(x)]*

where « is a fixed number between 1 and 2 and will be taken as in the statement of
Proposition 1, and set formally

(41) GFi(x) =« [zz;o Y f (| f&) + flo +y) = fla] = | f<x>|“m(dy>}
Ssn

if x = (x1, -+, X»)(m = 1) and GF;(3) = 0. If fis bounded, this definition makes sense by
virtue of (C.2) and it is standard to see that

1
lll'nhw (Ex[Ff(xp)] — Fr(x)) = GF¢(x).

(This would be a usual formula for the generator of a Markov process if Frwere bounded.)
To find bounds for (G Fy we prepare the following elementary lemma.

LEMMA 3. There exists a constant N such that for anyl =a <2 and any z € C

l1+aZz=<|1+z|"=s1+N|z|"+ a2z

PROOF. Asz—0,|l+z|*=(0+z+z+|z)"* =1+ (a/2)(z+Z+|2]) +O0(z])
(Z is the complex conjugate of z). Therefore |1 + z|*< 1+ Ni|z|* + aZz for | z| < % for
some constant Ni. Since |1 + z|*/|z|* and (#2)/| z|* are bounded as z — o, we have
|1+ z|* = Ny|z|* + a2z, |z| = %. Thus we can take N = max{N;, N,} for the second
inequality of the lemma. Letting x = 2z we have |1+ z|*= |1+ x|* = 1 + ax, proving the
first inequality.

Substitute z/w for z in the inequalities of Lemma 3. Then after elementary manipula-
tions we have

4.2) a|lw|Rezw)=|w+z|*—|w|*=N|z|"+a|w|[ % (zw)

for w, z € C, where |w|* % (z1) is understood as zero if w = 0. Apply the second inequality
in (4.2) to the 1ntegrands on the right side of (4.1) with w = f(x) and z = f(xk +y) — flxw).
Then by noting |20 + -+ + 2z, |*= (n + 1)(| 20|* + -+ + + | 2,|%), GFf(x) is bounded above
by

ko | fx)* 22 {F(x) it (Mf(xn) — f(x0)))
+ kN [z:;l (n+1) f (L FIY @ + ¥)7aldy) + (2 + A(0) /)] f(xk)r]
Sn
and if we write K = N (2« + A(0)) and

Maof(x) = Yr=1 (n + 1) f flx + y)m(dy),
sn

43)  GFx) <ka|f®PR{FERMf— ) &)} + KM £ + | ) ).
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This inequality will furnish the key to our proof of Proposition 1.
By virtue of the Condition (C.2) we obtain

d
(4.4) ’T E[F;(x)] = E.[GFf(x))]

for f € B, as will be proved below.
First we let ¥, F(x) = (1/h)(E{F(x:)] — F(x))(h > 0, x € S) for a non-negative
function F on S and prove.

LEMMA 4. IfF(x) = C(#X)? then ¥, F (x) = C1(#x)°. (#x =nifx € 8" C and C, are
constants independent of x.)

ProoF. Let 7 be the first jump time of x,. By the fact that Z, is a super-critical Galton-
Watson process we see

EJZ% | 7 < h] = #x)’E|[Z3 | < h]
and then

| YF (x)| = }ll Py(r < WEL[C(Z} + #x))| 7 < h] = k C#x)*(Bo[Z3 | * <h] + 1),

but
Eo[Z% | v < h] = Eo[Ex [Z3]] = E[Z2]E[Z3] < =,

proving the lemma.

Coming back to the proof of (4.4), let u(t, x) = E.[Fs(x;)] where f € B. Since
limpyo ¥rFy(x) = GFf(x) and (1/h)(u(t + A, x) — u(t, x)) = E.[¥,F(x:)], an application of
the dominated convergence theorem with the help of Lemma 4 and the moment condition
(C.2) implies that the right derivative (3*/8t)u(¢, x) exists and is equal to E.[ GF;(x,)]. By
(4.3), |GF(x)| = const(#x)” and by using Lemma 4 and (C.2) again we see that
(8*/at)u(t, x) is continuous in ¢. Since a continuous function having a continuous right-
derivative is differentiable, u (¢, x) is differentiable in ¢. Accordingly we obtain (4.4).

LEMMA 5. Assume (A.1). If1 = a =2, af € T and there exists a constant C such that
| f(x)] = Co¢(x) for all x € S, then (4.4) holds.

Proor. It follows from the first inequality of (4.2) that G Fy is bounded below by the
first term on the right-hand side of (4.3). Using this bound together with (4.3) we see

(4.5) | GFy| < const{(§)""'(Mg + &)+ (Mg}, g=1|f]

where we also used the inequality (g")vs (&)™ Let us prove that if a¢ € T, there is a
constant b such that

(4.6) E.{| $:(x)|*] < duelx)e’.

For this purpose let g.(x) = min {¢¢(x), n}, n = 1. Then Mg,(x) < min{Me:(x), n M1(x)}
=< Cig.(x) where C, is independent of n. Similarly, by using the Assumption (A.1), M2{gn}
(x) = C28.(x)". Hence by (4.5) we have | GF, (x)| = bF, (x) for some b independent of n.
This combined with (4.4) which is true for Fy yields E.[| £.(x.)|"] < g.(x)“e* and by letting
n — o we have (4.6).

Now the lemma is proved by approximating f (x) by f, € B with | f,| = C¢;: the Relation
(4.4) is preserved in the limit because of (4.6) and the inequality

| GFy(x)| = const(g(x))",

which is verified from (4.5) and (A.1) as above.
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PrOOF OF PROPOSITION 1. Assume (A.l) andletA=¢(+in,1<a=<2and aé € T. We
see by (4.3) and (A.1)
GF,,(x) < o | xX)|* 2 {1 (X) (ANG(X))} + K (Mopat + ) (X)
= aRANF, (%) + Kigae(x)

where K; = K(2B(aé) + 1). Hence from Lemma 5 it follows that if u(¢, x) = E.{| ¢V>A(xt)|“],

.7) 9% = aRANu(t, %) + Kipas(x)e .

Rewritting this differential inequality in the following form

d
% (e u(t, x)) < ae'” 7",

where p = A(aé) and ¢ = aZA()N), and choosing 8 > 0 so small that p — ¢ = A(af) —
aRA) <0 for |n| <8 (see (2.4)), we conclude that E.[| W |*] = e “u(t, x) is bounded for
large t. The proof of Proposition 1 is complete.

The differential inequality (4.7) incidentally proves the following lemma, which will be
used in the next section.

LEMMA 6. Ifl=a=<2and af € T, then forany A = £ + iy
Ef| Wi '] < dag(x) (Kate™ #4040 4 gg 4 1),

5. Proofs of Theorems 1, 3 and 4. For A > 0 define functions on S:

. kb 2
Kn(x) = [If= (Su;g;f )> , x=(x) ..., x)ES.

Then for n = (%, -+, 7% €S
Ki(n) = (2R [[#=1 (2h — | n*|) if max.|n*|<2h
=0 otherwise

where f* denotes the Fourier transform of f:
f*(n) = 2(W)_df f(x)e™* dx
S

(cf. Breiman’s book, 1968, page 218). Let A, - - -, hq+1 be positive numbers such that if %
# J, i and A, are not rational multiples of each other. Then the function

(5.1) K(x) = Y321 Kn,(x)
is continuous, everywhere positive and integrable: [ K (x) dx < . In the rest of this section

except in the proof of Theorem 4 we assume the Conditions (A.1) and (A.2); also it is
assumed that £ € T and

c=DA($).

Proor oF THEOREM 1. What we prove below is the a.s. weak convergence of
K(x)e**ui(dx) to C*W*K (x) dx, or equivalently

(5.2) j e” K (x)et *ui(dx) — C; Wt f e”*K(x) dx as t— o
S S

for all points p in S with probability one (P,), which is somewhat stronger than the
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required vague convergence. Let
fo(x) = K(x)e?*, p€ES.

Then by Fourier’s inversion formula

j fr(x)e* ui(dx) = (J frme™™ dneg"‘> T(x, — te) - E(8)
(5.3) = f fEmdrx, — te) dn-E(t), A =¢+ in

=Jf:(n)wi\em(>\)—c->\n d’n-E(t)

where

E(t) = %2 ~(A§)—c-8)t,

We decompose the last integral: [ f,(x)e “ui(dx) = I(t) + II(¢) + III(¢) where

o= J e €4 VW () dn-Z(0
1) = [,y W = W) dn )

10 = [ e Wi ) 20,

First we observe that £ is chosen as the Saddle point of the last integral in (5.3), because
of the positive definiteness of D?A(£):

(5.4) AN — A= A(£) — c £ — WDA(&)n-n+iB " as n— 0,

wher(i/_ B = B(]) is real and bounded as n — 0. By the change of variable according to 5
— /v,

I(t) = jlnl<t"“ e exp(B | n [*/NOf (/N dny WS,
where J () = (%)(D*A(£)n) -1. Since
Je_‘”") dn = (2m)"*[det(D*A(£)]™?,
by writing 2; = {W§— W¢} we have
(5.5) I(t) > C; f folx) dx-W¢ (¢ — ) on .

Clearly €; is independent of p and P.(;) = 1.
Next we prove

(5.6) III(t) > 0 (t— o) on

for some 2 independent of p and P,(£2:) = 1. Let q(n) = A(¢) — ZA(N). Then
| (1)) = ¢ f e | W] - | £ d.

Since A(¢) — ZA\) = (%) (DPA(£)n) - q(1 + o(1)) as 7 — 0 and f2(n) = K*(n — p) is zero
outside a compact set, for each m =1, 2, - .. we can choose an ¢ > 0 so small that

[n|>¢~""

(5.7) if |n|>¢" and f¥(n)#0 forsome |p|<m, then q(n)t=et”?
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by virtue of (2.7). By a martingale inequality (cf. Meyer [8], II — 8) and Lemma 6 we see
forl<a=2withaée T

Ex[supnslsn+1|Wi\ |a] = (————a ) Ex[l Wi\z+1 Ia]
(5.8) a-1

< const Goe(x)n(e”@AANACR 4 1) =1,

On the other hand, by noting the factorization | f*(n)| = | f*(n)|"/* | f*(n)|"/# where 1/8 =
1 — 1/a, an application of the Holder’s inequality yields

a/f
PO f o £ W 72 ) dn[ f | ) dn} :

Therefore by (5.7) and (5.8)
E.[SUPn=t=n+15UP|pj<m | ITI(£)]|*] < const ¢ (x)n' T2 (e~ @ A —Aaiin 4 g am'®)
which implies
-0 Ex{supnsi<n+18uUpjpiam | HI()[*] <0, m=1,2,.--.
Accordingly we have (5.6).
To prove II(¢) — 0, we prepare Lemmas 7, 8 and 9 below.

LEMMA 7. For any a = 1, Eo[supi=i=z | X2 |*] = O (£*)(t — ).

Proor. It suffices to show that for each § € ©
Eo[(supi(x:-0)7)* ] = O(t*) ast— .
Here a* denotes the positive part of a € R. Let us fix 6 and set
Iy(x) = 1 or 0 according as x-§ >bor x.0=<0

where b € R and x € S. Take an & > 0, possibly by (C.4), so that A(ef) < . Since I;(x)
< et 070 = ¢7¢b 4 (x), we have

Po[supixsr-0 > b] < E[I,(x,)] < E[eo(x:)]e 8 = e D0,
Then, letting r = max {0, A (ef)/¢}

o

Eo[(supr(x:,x-0)7)*] = J ab* ' Py[suprx,.+-0 > b] db
0

©

rt
= j b db + J ab* Al db
0

rt

= 0O(t%).
Let
B,(x) = e Vg (x) — e Plpe(x), xES.

LEMMA 8. Let{€T,1<a=2 af€ Tand\=§+ in. Then

t
Eo[| W) — W%l“]st E[(My] @, + | ®,]%) (x,)] ds

0
where K and M appear in (4.3).
Proor. Noting that W} — W§ = &,(x,), let
‘u(t) = Eo[l‘i)t(xt)l“]-
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Then, writing F(x) = | &, (x) |%, it follows from Lemma 5

du(t) 9
ar Eo[(& Fl)(xt) + @Ft(xt):l~

Since for z, w e C, w # 0
lz]* — |w|* = aZ{w(z —w)}|w|**+o(|z—w|) asz—>w

(see (4.2)), on the one hand we have

~

a >~ (d
a—tF[ = a|®,|“_2ﬂ{®t<a—t q)t> }.
On the other hand by (4.3)
UF[ = Ka|¢n|”‘_2ﬂ{‘i)[(/0’ﬂ®t - q)t)"} + K(le q)tla + |q)[ |a).
But aitq)t = —k(M®; — ®,) and hence

du(t)
dt

< KE[(My|®,|* + | ®,]*) (x,)]
which implies the desired inequality.

LEMMA 9. Let ¢, a and 8 be taken as in Proposition 1. Then for a constant C

Eo[Sup¢>0|Wi\— W§|"]SC|?7|“ fOI‘ |77|<3

ProoFr. First we observe that
| (x)|* = 2[e™ "] b — g |*(x) + [€74E — eV g |*(2)]
(5.9) = 2|1 — e %49 + (£| A(§) — AN) )" N pe(x)
= const(l + t*)e ™ **Mig  (x)(|x|* + 1)| 9|

By choosing 1 < p = 2 so that paé € T, we see

Ma{|-|"pus} (x) = J Pat(x + )| x + y[|*Ga(dy)

S

1/q
(5.10) = 2[ I X IuMg(ﬁag(x) + <J Iy Iang(dy)) (Mg(jyp,,,;(x))l/p]

= const ¢ue(x) (| x|* + 1),

where 1/g = 1 = 1/p and G- is a measure determined by Mz f(x) = [f(x + y) G=(dy), and

Eo[((]-]* + 1) o) (x)] = const Eof ($ac(x))”]? Eo[sups | x,x|7*1¢ + Eo[ac(x:)]

5.11
(G.11) < const et + 1)

where we make use of Proposition 1 and Lemma 7 in the last inequality. From Lemma 8
and inequalities (5.9) to (5.11) we now obtain

t

Eo[l Wf‘ _ W;g‘la] < constj (s* + 1)2e—(a.%A(}\)—A(a€))s ds'|n |u
0

= const |[n|* for |7n]|<3§,

which deduces the lemma by applying the martingale inequality that was used in (5.8).
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Coming back to the estimate of II(¢), we observe first that as in the case of I(¢)
II(¢) < ¢ f x(t, n)e @D W — Wi\ £ ()| dn

where 0(1) — 0 as ¢ — oo uniformly in 7 and x (¢, n) is the indicator function of {n:|n| =
t7%) . Let0<t;<t;<....Then

Eo[supt,<i=t,..suppes| II()|*] < (tnr1)*¥?| K*(0) |a<J e /M d77>a/ﬁ
(5.12)

X J' e Tty (¢, m) Eo[supeso| W — WE|*] dn,

where 1/8 = 1 — 1/a. By changing the variable according to n —»n/ Vt. and applying
Lemma 9 the right-hand side above is bounded by

(5.13) const([ e /™ dn)"‘/ﬂ f e 7D/ Vb)) dnlbps1 /t:) Y% < const t;°/2(bns1 /1, )* 2.
Consequently, taking ¢, = 2", Yu-1 Eo[sup,<i<t.pes |II(£)|*] < o; in particular
lim;_, sup,| II(¢)| = 0 a.s. This together with (5.5) and (5.6) proves (5.2). The proof of

Theorem 1 is finished.

REMARK 3. Let A(rf) < o» for an r > 1 and f(x) be a Borel measurable function on S
with | f(x)| = ¢¢(x)(1 + | x|) %% Then under the condition (A.2)

(5.14) Ex[f(xt —tc)] ~ C: <J' o_e(x) f(x) dx) be(x) Y2 4O

as t — o, where ¢ = DA(£). For the proof it suffices to show the relation for f(x) =
K (x)e® *¢¢(x). But for such a f the left hand side of (5.14) is equal to

J K*(n — p)oa(x)e@VVidy (X =¢ + in)

from which (5.14) can be deduced through the same calculations as leading (5.5). Theorem
1 combined with (5.15) yields

limiywZ(D + tc)/E.[Z.(D + tc)] = e S W, a.s. (Py)

if ¢ € T*, D is a nonempty bounded open set with [,p dx = 0 and the hypothesis of
Theorem 1 is satisfied.

Proor oF THEOREM 3. Let if be defined by (2.9). By using the same notations as
above and by writing ' = £ + in/p:, we have

(5.15) Jﬁn(x)ﬁf(dx) = f fF) WY exp{(AN) — ¢-N)t — im-a)Vt/p.} dnZ (t)/pd.

By the changes of variables according to n — p,n and n —p.n/ «/2, the right-hand side of
(5.15) becomes, respectively

(5.16) Jf;(pm) W2 exp{(A(A) — ¢-A)t — i(n-a,)VE} dnZ (¢)

and
(5.17) J f2 (e /Nt WY exp{(A\") — e\ )t — i(n-ar)} dnZ (£)/Vt%,

where \” = ¢ + in/ Vt. First we assume the case (a). Then there exists a function o, such
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that lim 0,0, = lim 0, V¢ = e and lim o, = 0. Let us consider the domain |1y< o, in the
integral (5.16), which corresponds to |n| < o:p; for (5.17) and to |n| < o, V¢ for (5.15),
and define I(¢), II(¢) and III (¢) as in the proof of Theorem 1, but how to divide the domam
of integration is decided by o; as just indicated. By (5.17) I(¢) converges (a.s.) to

1
f3(0) f exp{— EDZA(Q?M - in~a} dn W

and by using (5.16) we can estimate II(¢) and III(t) as before, proving the desired
convergence.

For the case (b) take £/ for o, in above. I(¢) and II(¢) can be dealt with in the same
way as in the proof of Theorem 1. To handle III(¢) divide further the domain of integration
for it into two parts: | n| > K and ¢t "/® < | 5| = K in the expression corresponding to (5.16),
where K is chosen so that [A(¢§) — ZA(M)]/d > lim sup(1/¢)log(1/p;) for | n| = K. Then by
noting [ | f*(om)| dn = O(p:?) and the Condition (2.10) you can discuss as before to show
lim I1I(¢) = 0.

PRroOF oF THEOREM 4. Since 11{(S) = (vt t/p.)“W¥, the weak convergences in (i) and
(i) follow from the corresponding vague convergences. For the proof of (i) let
lim p,/vt = . By letting ¢ — o in the expression (5.15) we see formally that (o, /vt V)¢
[ fo1is approaches to f,(0) W¢. This is justified by dealing with the random factor W¥
carefully. To this purpose we substitute W} — W for WY in the integral and denote the
resulting quantity by IT(¢). Then by the expression corresponding to (5.16)

11| < f |3 (o) | W) = W o,

and we can proceed as in (5.12) and (5.13); but this time we use the fact that
sup,pi<n | f2 ()] is zero outside a compact for each N =1, 2, . . . rather than the integrability
of e /"), and take t, so thatp,, = 2", proving (i).

The proof of (ii) is the same as that of Theorem 1.

6. The lattice case. In this section we assume that the measure G(dx) is supported
by a lattice I'" generated by d independent vectors e, ---, eq € S:

I' = {Yi-1 neer: (na, -+ -, na) € Z°.

To each x € S let us assign a point [x] € T" determined by x — [x] = Y%y are, where 0 <
ar<1l(k=1, ---,d), and we consider, instead of p{, a family of measures on I":

,Uaf,I‘(D) = \/Zde_(A@t_[t”]'g)Zt(D + [tc]), DcrT

where ¢ € T* and ¢ is chosen so that £ € T and ¢ = DA(§) as before. The initial particle
will be supposed to be located in T".

THEOREM 1. Assume (A.1) and let ¢ € T*. Then lim; ,opir(D) = CgWg[.ng(D) for
every D C T as. (P:), where C; is the same as before and p'(D) = |det(es, ---, eq) | -

Y end—¢(x).

Proor. Let {ef} be the dual basis to {e.} of S:er-ef = &,, I'* = {32m)njej:
(n1, «++, ng) € Z% and

A= {Z‘j=1a’ej*:—7rsaj3'n‘,j=1, <ee,d}.

Then any function f(x) on I', which is zero outside a finite set, has the representation

flx) = ij f*tme™ dn (x€T)
[A] ),
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where f*(n) = Yrerf(x)exp(—in-x)(n € S) and | A| denotes the Lebesgue measure of A,
and we get as before

J f(x)e*“uir(dx) = ﬁ WheAM el fx () gy Jide—A@ltlo)
r A

Since ZA(A) < A(§) for n € A — {0}, the same arguments for the proof of Theorem 1 leads
us to

2 d
lim, e J flx)e* “uir(dx) = % C:WEF*(0).
r
Now Theorem 1’ follows from | A |/(27)¢ = | det(eZ, - - -, %) | = | det(es, - -+, ea) | "

7. The region of propagation. In this section we see that the region of propagation
of the process x; asymptotically agrees with tM = {tx: x € M} or tM where

M= {ceS:v(c) >0} and vr(c)=infies(A(§) — c-§),

and M is the closure of M. The results similar to what will be given here are found in
Mollison’s papers [19], [20], in which the problem is treated under a more general situation
(see also [6]). ’

Because of (C.4) M is nonempty and bounded. M is open if (A.3) holds, but not in
general. M is convex as is clear from

M=Uj ﬂ,;es{c € S:A(¢) —c € >%} .

It should be noted, though not needed here, that the definition of M in [19], [20] is
Ngeo {¢:v(8) = c-0} where y(d) denotes the infimum appearing in (2.3). The agreement of
two definitions can be verified without difficulty.

Throughout this section the process is supposed to start with one particle at the origin.
First we assert the following.

i) If (A.2) holds, c is an inner point of M and 0 < § < v(c), then e *Z,(D + tc) — » a.s.
on {Z; — o} for any nonempty open D.

ii) Let ¢ € M and take £ so that A(¢) < c-&. Then Z,(D + tc) — 0 a.s. for all D such that
infiepé-x > —o0,

By observing M = {c:»(c) = 0}, { in ii) always exists.

Let us deduce i) from Theorem 1. Given a positive number N, consider a particle, among
those in x,, ¢t > 0, which is born out of distance N from its parent and you discard every
such one together with all its offspring. The resulting process, denoted by x2, is completely
dominated by x; and for the new process Theorem 1 can be applied if N is sufficiently
large. Let T*", M" and »" be defined for x. Since »" 1 » as N 1 o, if M contains ¢ as an
inner point, then so does M” for large N. In view of the next lemma, ¢ also belongs to T*"
and, from Theorem 1, i) follows.

LEMMA 10. If (A.4) holds, the interior of M agrees with T*.

Proor. Let (A.4) be true. Then for each ¢ € 3T* we have the following alternative:
either (a) there exists a £ € 0T such that ¢ = DA() or (b) there is an infinite sequence &,
€ T such that |§| — o, § = lim &,/ .| exists and ¢ = lim DA(£,). (b) occurs only if
G({x:6.x > 0}) = 0. Let us prove that if (b) is the case,

(7.1) c-§=0 and limA(.)/|é|=0.
For this purpose we write &, = r,0 + s,6,, where r, >0, s, € R and 6, € © with §.6,, = 0.
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Then s,/r, — 0, r, — o, and by the dominated convergence theorem

DA,)-60 = f 0. xe*G(dx) + o(1).

£n-x=0

Since £,-x = 0 implies —0-x < (s,/r»)0,-x and DA(,) -8, is bounded, the integral on the
right side above tends to zero. Thus c-8 = 0. The second relation of (7.1) follows from the
first with the help of the inequality 0 < A(¢) — DA(£)-§ < A(0) valid for § € T.

Now the proof of Lemma 10 is easy. Recall T* C M and M is convex. If the conclusion
of the lemma is false, there is an inner point ¢ of M which simultaneously belongs to the
boundary of T'*. (a) cannot occur for this ¢, because it implies ¢- £ = A(§), which contradicts
¢ € M. Let (b) occur. Since c is an inner point of M, there is an ¢ > 0 such that ¢ + e € M
and it follows that A(£,) > (¢ + €6)-&. = | §.| (c-8 + € + o(1)), which contradicts (7.1).

ii) is an easy consequence of W* < w a.s. In fact from the identity

(7.2) e (x, — tc) = Wiexp{—(c-£ — A§)¢}
it follows that if ¢- ¢ > A(£),
(7.3) limtqu;g(x[ —tc)=0 as.,

which is stronger than the conclusion of ii). :

Let B be the unit ball of S. To get a more visualized picture of the propagation we
consider the random set {x € S: Z,(B + x) > 0}: the set of all points of S, within distance
1 from that there lives at least one particle at time ¢, or more generally

F,={x€8:Z,(B + x) > p(t)}
where p(¢) is a positive function of ¢ = 0 and is assumed to satisfy
limy.e *p(t) =0 forall §>0.
1) If (A.2) holds and c is an inner point of M, then
(7.4) ¢ € lim infy..F;/t as.on {Z, — «}.
ii’) lim supyF./t C M as.

By 1') and ii’) the closures of lim inf F;, lim sup F, and M agree with each other a.s. on
{Z; — oo}, provided (A.2) holds.
We shall also consider the following random variables

(7.5) R!=max{r€ R:Z(B +rf) >p(t)}, €6
and show that if (A.2) holds and M contains an inner point in the direction § or —, then

iii) limg.RY/t = s(8) a.s. on {Z,— o}
where

s(f) =sup{re R:rd € M}.

For the proofs of i’), ii’) and iii) the previous results will be applied only via i) or ii).
1') is ready from i): in fact if ¢ is an inner point of M, then by i) we have Py[B + tc C F,
t1 | Z,— ] =1 and hence (7.4). To prove ii’) let { = DA(0) and

(7.6) AE) =A@ - ¢t

Then K(g) attains its minimum if and only if £ = 0. Let H® = {x: dist(x, M) = §} for § >
0. For each ¢ € 0H? we can choose a point £(c) € S so that

(7.7) c-&(c) > A(é(c)
which is the same as (¢ — ¢)-&(c) > A(&(c)). Thus (¢ — §)-£&(c) > 0, which enables us to find
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a finite set of points ci, - - -, ¢, € 0H?® such that
H? — { CULi(D, + (¢ = 9))

where D; = {x € S:x-£(c;) > 0}. Since ¢D; = Dy, it follows tH* C U (D, + tc;). By ii) with
the help of (7.7) we consequently obtain that Z,(¢H*) — 0 a.s. Hence lim sup F,/t C H*®
a.s., proving ii’).

For the proof of iii) let ¢ € aM and ¢ = s(#)§. By the assumption, ¢ — 8/n = (s(4)
— 1/n)8 € M for large n; hence from i) it follows Po[R?= (s(d) — 1/n)t, t 1 o |Z, — ] =
1, which proves the lower bound: lim inf R{/¢ = s(d) a.s. on {Z, — »}. The upper bound is
clear from ii’), proving iii).

There is a gap between i’) and ii’). The fact would be lim F;/¢ = M a.s. on {Z, — =}, but
the author could prove neither side of inclusion.

8. Proof of Theorem 2. For f € B with the bounds 0 < f < 1 we set

2on _ Jfxr) coe ) i x=(x(,---, %) S, n=1
f(x)_{l if x=9

and define
Kf(x) = Y=o f f(x + y)m(dy), x€S
Sn

(x + 9 is understood as 9). Then u(t, x) = E,[ f(x[)] is a unique bounded solution of the
non-linear evolution equation

(8.1) Z—I; = k(Ku — u)

with an initial condition (0, x) = f(x). (In (8.1) K acts on x only). (See [14].)

The problem treated in the next proposition is one dimensional in nature and has been
solved by Biggins (1977). For completeness we shall give a proof fitted to the present
context.

ProposITION 2. If ¢ € T and A(a¢) < » for some a > 1, then limy. Wi = 0 a.s. (Px).

ProoOF. Let £ satisfy the condition in the proposition. Following McKean [17] we set
u*(t, x) = E.[exp(—W%)].

Take ¢ € S so that A(§) = c-£and le:c f:(x) = exp(—¢¢(x)). Then u*(¢, x) = Ex[fg(xt —te)];
or what is the same, if u(¢, x) = E.[ f:(x/)],

(8.2) u*(t, x) = u(t, x — tc).
Since exp(— W¥) is a sub-martingale, u*(¢, x) is non-decreasing in ¢; in particular
1—u*(t, x) =1 — exp(—¢:(x)) = min{l, ¢:(x)}.
For the proof of Proposition 2 it suffices to show that the limit
w(x) = lim (1 — u*(¢, x))

is identically zero, for W$ has an a.s. limit. Let § = £/|¢| and define, for 0 < r < | £| and
t>0,

Vit,r) = J' (1 —u*(t, b0))e™ db

which is bounded in ¢ if r is fixed. By changing the variable according to b — b + ¢c-0 and
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noting u(¢, x) = u(t, (x-6)0), from (8.2) it follows that
Vit r) = j (1 — u(t, b8))e™ db-e™,

Since Ku(t, x) = Ku*(¢, x + tc) and u satisfies (8.1), we obtain

%‘tf= —f w(Ku* — u*)(t, b8)e ™ db — r(c-0)V
and, letting ¢ tend to infinity (along a sequence if necessary),
j k(—K{1—w) +1—w)(be ™ db—r(c-0) J w(bb)e™ db = 0.

From this and the following equation

f Muw(bb)e™™ db = f f w(bd + (y-6)0)e " G(dy) db

= (A(r8)/x + 1)f w(bf)e " db,

it follows that if we set
Q(x) = Mw(x) — (1 - K{1 — w}(x)),
then
(8.3) (A@r8) — re-0) Jm w(bf)e ™™ db =k Jm Q(b)e ™ db.

By induction it is easily shown that %, a* — 1+ [[}i 1 — ¢*) >0if0=sa* =1 (k=1,
-+, n) and at least two a”*’s are not zero (n = 2). Since Q(x) =Y, [ (W(x +y) — 1+
(1 — w) (x + y))7m.(dy) and w(bf) is monotone in b,

(8.4) J Qbf)e ™ db>0 forall r>0 or w=0.

Now let ¢ € 9T. Then we can take DA(£) for ¢ and it follows that A(rf) — rc-0 = A(rf)
—A@) — DAE)-(r8 — &) = O((|r — | £|)?) as r — | £|. By this relation and the inequality
w(b8) = min {1, exp(| £| )}, the left-hand side of (8.3) tends to zero as r 1 | £[, and so the
right-hand side is zero. Thus by (8.4) w = 0. When £ &€ T' U a7, there is 0 < s < || such
that A(sf) = sc-0. By (8.3) we have again [ Qe db = 0 and hence w = 0. The proof of
Proposition 2 is complete.

In view of Proposition 2, Theorem 2 is clear from the identity (7.2) and the first assertion
in the next lemma, which we arrange for quotation in the next section.

LEMMA 11. Assume the hypothesis of Theorem 2 and let { = DA(0). Then (a) M = T*
and for each ¢ & T* there exists £ € 8T and r = 1 such that (c — {)-£ >0, ¢ — { =r(DA(§)
— 0 and c-£ = A(£); (b) for each ¢ & T* U aT* there exists £ € T such that c-§ = A(§).

Proor. First we observe that by (A.3) T is bounded and by (A.4) T C X (see Section
1 for the definition of X). Hence for each ¢ € dT* there is a £ € 8T such that ¢ = DA(§)
and A(¢) — c-£ = 0; in particular »(c) = 0 and in view of Lemma 10 M = T*. Let ﬁ(‘f) =
A(¢) — ¢-£asin (7.6). Since ¢ € T*, for ¢ & T* there exists a ¢; € §T* which lies between
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c and ¢. If we take & € 8T so that ¢; = DA(&), then (¢1 — §)- & = A(&) > 0. It is clear that
this ¢&; satisfies the requirement for £ in (a). If not only ¢ &€ T*, but also ¢ & dT*, we have
c-¢& > A(4) with & taken above. By definition of T, there exists 0 < s < 1 such that if ¢
= s¢;, then £ € T and c- & = A(§), proving (b).

9. Applications to a non-linear equation. In this section we study the following

non-linear evolution equation
o

9.1) E=K(1—U—K{1—U}), w=v(,x),t=0,x€ES)
which is obtained from (8.1) by the simple change of dependent variables v = 1 — u. We
consider only solutions with values in the unit interval: 0 = v < 1. For simplifying the
exposition we assume 7, = 0 and that the hypotheses of Theorems 1 and 2 are valid
throughout this section, unless otherwise specified. When v is independent of the space
variable x, (9.1) is reduced to an ordinary differential equation:

du(t)

9.2) ar

= w(v(?))

where
w(s) =kl —s—Yr1 m(S")(1 —5)"), 0=s=1.

The function w has two zeros 0 and 1, which are equilibrium states of (9.1) as well as (9.2).
We discuss below the nature of the stability of these two states concerning the equation
9.1).

Let us first recall that the solution of (9.1) has a following representation

v(t,x) =1—E.[8x)]=1— Eo[8(x; + x)]

where g(x) =1 — v(0, x). Then from Theorem 1 or, what interests us, its crude consequence
that if ¢ € T*, for any open set D which is not empty,

XD+ tc) > o (t— o) as. (Py),

it follows that if v(0, x) is continuous and not identical to zero, then for each ¢ € T*, v(¢,
x — tc) = 1 (¢t = ») locally uniformly. This can be made a little more precise, though we
need an additional condition of

(A2) 1im SUp|yjen s RA (i) < A(0).

This implies the condition (A.2) and is satisfied if the absolutely continuous part of the
measure G(dx) is not zero. We shall prove the following:

1) if (A.2)" is further assumed, then for any closed set F C S which is contained in T*
and not empty,

9.3) infre—rv(t, x) > 1 as t—

(—tF = {—tc:c € F}), provided v(0, x) is continuous and not identical to zero; and
ii) if v(0, x) is zero outside a compact set,

(9.4) Supag_ir+v(f, x) = O(t™%) as t— oo

REMARK 4. (i) The results stated above are suggested by very similar ones observed
for the semi-linear diffusion equation
0
(9.5) a—‘t’ = Av + v(1 — v)
(cf. Aronson and Weinberger [1]). In a special case (1.5) some partial results are obtained
by several authors (cf. [4], [12], [19], or [20]; in this special case with d = 1 the present
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author [27] has obtained a direct proof of i)). (ii) Let d = 1. Denote by y: the position of the
rightmost particle at time ¢ of the process x, and let u(¢, x) be its distribution function
Po[ y: < x]. If x is the indicator function of negative real axis, we have u(¢, x) = E_.[ x(x)],
so the function v(¢, x) = 1 — u(t, — x) = Po[y. = —x] is a solution of (9.1) with v(0, .) =1
— x and the function m(t) = inf{x:Po[y: = —x] > %} would determine in a sense the
position of v(t, -). Since lim y,/t = ¢* = sup T* a.s. as we have known, lim m(t)/¢t = —c*.
For the one-dimensional branching Brownian motion to which (9.5) corresponds it has
been known that v(¢, x + m(¢)) converges to a proper distribution function as ¢ — o [16]
and an accurate asymptotic expansion of m(t) has been obtained [25], [9] (see also [26]).
Any corresponding result to the present case is not known.

For the proof of ii) we make use of the relation (5.14) which holds, as easily verified,
uniformly for f(x) = K(x)¢¢(x), £ € 9T (note T is bounded because of (A.3)). Let the initial
function f(x) = v(0, x) vanish off of a compact set. Then there exist a constant C and
measurable functions f; (x), £ € 9T such that for all x € S

(9.6) fe(x) = K(x)¢e(x)
9.7) f(x) = C-infee,rf; (x)
(9.8) fi(x + b(c: — §)) is non-decreasingin b€ R’

where ¢; = DA(¢) and { = DA(0). For each ¢ € T* we can find £ € 97 and r = 1 so that ¢
— ¢ =r(c: — ¢ by virtue of Lemma 11 (a). Then\by (9.7) and (9.8)

flx — te) = Cf:(x — te) = Cfy(x — tr(ce — §) — t8) = Cfe(x — tey).
Since Eo[ fg(xt — te;)] = O(t™*?) uniformly in ¢ € 9T by virtue of (9.6), we conclude
supegr Bo[ f(x; — te)] = O(t™"").
The required relation now follows from
1- E.[(1 - ) x)] = Ex[ F(x0)]
For the proof of i) we show a lemma and a theorem, which are interesting by themselves.
LEMMA 9. Assume (A.1) and (A.4). Then for any closed set I" C S which is contained
in T, there exist real numbers C, 8§ > 0 and 1 < a < 2 such that
Eo[| Wi — Wil*]=Cl§ —£|" if |§—-§]<d and § €T
THEOREM 5. Assume (A.2)" in addition to the assumption of Lemma 9'. Then for any

closed set F C S which is contained in T* there is a constant 1 < a < 2 such that if f is
continuous and vanishing off of a compact set,
] —o.

By assuming, instead of (A.2)’, that G(dx) is supported by a centered lattice as in
Section 6, we also have the conclusion of Theorem 5 with a minor modification of the
proof.

Before proceeding into proofs of Lemma 9 and Theorem 5, we show i) by applying
them. Let g(x) =1 — v(0, x), f(x) = —log g(x) and write simply u$(f) for [s f(x)u(dx). We
can assume that g(x) is positive, continuous and equal to 1 outside a compact set, reflecting
on f so that Theorem 5 can be applied to f. Since

1 — v(t, —tc) = Eo[8(x, — tc)] = Eolexp(—f(x; — tc))]
= Eo[exp(—p:(f)/E(¢))]

limmsupcepEx[ J' f(x)ui(dx) — Cg( J' f(x)ug(dx)) w*
S S

(Here notations pu?, etc. are the same as in Theorem 1.)
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where Z(¢) is one appearing in (5.3), it suffices to show
lim supsosupcerPo[pi(f) <e] >0 as e 0,

for F C S closed and contained in T*. Assign £ € T to ¢ € T* so that ¢ = DA(¢) and
observe

Polpi(f) < €] = Po[Cep*(f)W* < 2] + Po[Cep(f)W* = pi(f) > e].

By Theorem 5 the second term on the right side vanishes as ¢ — o uniformly for ¢ € F. By
using the analogous inequality and applying Lemma 9’, we can verify that the first term
also vanishes as ¢ | 0 uniformly for ¢ € F. Thus we obtain i).

Proor oF LEMMA 9. Let I" be a closed subset of S which is contained in 7. Then
there exist real numbers e >0, > 0 and 1 < a < 2 such that

9.9 aA(¢) —A(ag')=e if |£—-¢|<8 and & ¢ ET.

Recall the proofs of Lemmas 8 and 9 and the definition of ®,(x) there, and replace A = ¢
+ in by ¢’ € S in them. Then instead of (5.9) we have

| @:(x) |* =< const[e @ | x|*(Paz (X) + duz (X)) + | £]"e ™ o (x)]] & — &

The rest goes through as in Lemma 9, by noting (9.9).

Proor oF THEOREM 5. We shall follow the proof of Theorem 1. Let I(#)’s be the same
as I(t)’s except that f,(x) in I(¢)’s is replaced by f(x)e ** where f(x) is a smooth function
with compact support. Let F C T* and I C T be closed sets and DA(T") = F, and choose
8 and « as in the proof of Lemma 9. Our task is to show that the following three
expectations

converge to zero uniformly in ¢ € F. The assertion for the first one is easily seen without
any cost. To estimate the second expectation we note that the condition (A.2)" implies that
if A(§) <

ETO1; Bl 10|} E[

Ity - Cgf F(x)ps(dx) W*
S

J(§) = A(¢) — lim sup|yj—sw,nesZA (€ + in) > 0.

Since I'' is compact and A (§ + in) is equi-continuous in £ € T" for n € S, infeer j(€) > 0. This
enables us to obtain the uniform convergence for E,|ITI(¢) |*. As for the third one, it
suffices to show that the convergence of lim, .. Eo[| Wi — W¢|*] = 0 is uniform in ¢ € T,
but this is easily verified in view of Lemma 9. The proof of Theorem 5 is finished.

When v(0, x) is smooth, the solution v of (9.1) is differentiable in x and if we let 0(¢, x)
= v(t, x — tc),
o0 . . .
Frin k(l—0—K{1-10}) — c-0:0,
where 3, = ((3/9x"), + - -, (8/3x%)). If we take v(0, x) = 1 —exp(—¢:(x)) and ¢ € S such that
c-&£=A(¢), then d(¢, x) = 1 — E, [exp(—W?$)] and its limit

(9.10) w(x) =1— E.[exp(—W?*)]
satisfies
(9.11) k(l—w—K{1-w})—c-d,w=0.

By Propositions 1 and 2 w(x) in (9.10) is not constant if ¢ € T and is identical to zero if
¢ & T. A nonconstant solution of (9.11) (with values in [0, 1]) is called a traveling wave for
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(9.1) with velocity c. If w is a traveling wave with velocity ¢, we have a plain wave solution
w(x + tc) for (9.1). In the diffusion case (9.5) it is known that there is a traveling wave with
velocity ¢ (which is analogously defined for (9.5)) if and only if | ¢ | = 2 (cf. [1]). An analogue
is

iii) a traveling wave for (9.1) with velocity c exists if and only if ¢ € T*.

(This result is not new; it is obtained by applying the fixed point theorem [3], [11].) It is
plain to see from i) that there is no traveling wave for ¢ € T*. To see the existence, first we
take ¢ € T* U 9T*, and choose ¢ € T so that ¢-¢ = A(¢), which is possible by Lemma 11
(b). Then w(x) in (9.10) is a traveling wave with velocity c as is remarked just after (9.11).
Let us shift this w so that the resultant, say w.(x), takes value % at x = 0: w.(0) = %. Now
let ¢ € 9T*. Since by (9.11) d,w. is bounded uniformly for ¢, by the Arzela-Ascoli theorem
there is a sequence ¢, such that ¢, — co and w,, is locally uniformly convergent. By using
(9.11) again d.w. is also convergent and so w* = lim w._is a solution of (9.11) with ¢ = co.
Since w*(0) = % and K {#} < %, w* is not constant. Thus w* is a traveling wave with
velocity co.

Finally let us prove (2.5) by making use of (9.11). When £ = 0, (2.5) is nothing but the
well-known result for the Galton Watson processes. Let w be defined by (9.10) for { € T,
£ # 0. Noting that w(x) = 1 — Eo[exp(—e**W¥)], we have ¢ = 1 — Po[W* = 0] =
lim,_.w(r¢) and by (9.11) 1 — ¢ = K{1 — ¢} = w(1 — q). Therefore g is 0 or 1, but by
Proposition 1 g # 0. Hence P.[W* > 0] = 1. (A similar argument proves (2.5) without
restriction of m = 0.)

The following two examples illustrate typical cases of our process and of the equation
9.1).

ExamMpLE 1. Let m, = 0for n 1,2 and m(-) = p28o(-) where 0 < p; < 1 and & denotes
the delta measure carrying unit mass at 0 € S®. Then our process x; becomes a binary
splitting branching Poisson process in which each particle moves through its lifetime
obeying the law of a compound Poisson process in S whose infinitesimal generator is

Ff(x) = Kl( J' f(x + y)H(dy) — f(x))
S

where k; = km1(S) and H(.) = 71(-)/m(S), and the rate of exponential holding time for
splitting is k2 = k — k1 = kp2. The equation (9.1) then reduces to
av

E= Lu + k(1 — V)

and A(¢) = k([ e**H(dx) — 1) + 2.

ExaAMPLE 2. Let 7, = 0 for n # 2 and 7(dy'dy?) = 8(dy')H(dy®) where H(dy) is a
probability measure on S. Then A(¢) = « [ e**H(dx) and (9.1) becomes

av

% = x( J; v(t, x + y)H(dy))(l —v).
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