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THE CENTRAL LIMIT THEOREM FOR STOCHASTIC INTEGRALS
WITH RESPECT TO LEVY PROCESSES!

By EvVARIST GINE AND MIcHEL B. MARcCUS

Louisiana State University and Texas A&M University

Let M be a symmetric independently scattered random measure on [0, 1]
with control measure m which is uniformly in the domain of normal attraction
of a stable measure of index p € (0, 2]. Let f be a non-anticipating process
with respect to X (¢) = M[0, t] if m is continuous, and a previsible process in
general, satisfying [§ E |f|” dm < «. Then the stochastic integral [ f dM can
be defined as a process in D[0, 1] and is in the domain of normal attraction of
a stable process of order p in D[0, 1] in the sense of weak convergence of
probability measures. If M is Gaussian and continuous in probability then the
central limit theorem holds in C[0, 1]; in particular, It6 and diffusion processes
satisfy the CLT. Our main tool is an upper bound for the weak L? norm of
SUPo<¢=1 | [6 f dM | in terms of the L?(P X m) norm of f.

1. Introduction. Let (2, % P) be a complete probability space and Lo(R, &% P)
denote the measurable functions on (R, &% P). Let % denote the Borel sets on [0, 1]. A
random measure M is a mapping from 4 into Lo (2, &, P) such that for disjoint sets A,
cee, An, o0 € B, MU A) = Y1 M(A)) as. and lim,. M(U-1A;)) = M(A) in
probability, where A = U2, A;. We will consider random measures M satisfying the
following conditions:

(1.1) M has independent symmetric increments, that is, for each A € %, M(A) is
symmetric and if A;, ..., A, € # are disjoint then M(A,), ---, M(A,) are
independent;

(1.2) there exists a finite positive measure m on ([0, 1], 4), called the control measure of
M, such that for every A € %, M(A) is in the domain of normal attraction of
(m(A))P9, where 8 is a symmetric, stable random variable of index 0 < p < 2, i.e.
E exp(it) = exp(—|t|?), —0 < t < oo;

(1.3) supacaA,(M(A)/(m(A))”?) < c for some constant ¢ < .
Here we define, for £ € Ly(R, &, P),
(1.4) Ap(§) = (supaso NP {|£| > A}) 7.
Let .#(M, m) denote a class of functions { f (¢, w), t €[0, 1]} on (R, &% P). For f € 4 (M,

m) we define the stochastic integral

(1.5) F=F() = J fdM, te[o,1]
(1]

where the relationship between M and m is given in (1.2) and (1.3). The class .# (M, m)
will be discussed in Section 3. Here we only remark that when m is continuous, .# (M, m)
is precisely the class of non-anticipating processes satisfying

(1.6) f E|f|Pdm < o.

Received July 1981; revised February 1982.

! This research was supported in part by grants from the National Science Foundation.

AMS 1980 subject classifications. Primary 60B12, 60H05; secondary 60F17.

Key words and phrases. Domains of attraction in D[0, 1] and C[0, 1], functional central limit
theorems, stochastic integrals, maximal inequalities.

58

Y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to o2z

The Annals of Probability. STOR ®

WWW.jstor.org



CLT FOR STOCHASTIC INTEGRALS 59

We show that F(¢) has a version with almost all its sample paths in D[0, 1] and satisfies
the maximal inequality

1
(1.7) A(F) = c,,< f E| f|Pdm) e,
0

where || F|| = sup:epo,1| F(¢) | and ¢ is a constant depending only on p.

We can view F as a random variable with values in D[0, 1] and ask whether F satisfies
the central limit theorem (CLT) in D[0, 1]. Specifically, let {¥;} denote independent copies
of F. Define

(1.8) S,=n""PY",F,

(recall 0 < p < 2). Clearly S, is a D[0, 1] valued random variable and as such induces a
measure, say {in, on D[0, 1]. We say that F satisfies the CLT in D[0, 1] if the measures
{un} converge weakly to some measure, say 7, on D[0, 1]. It is well known that if such a
measure exists it is a stable measure. The main result of this paper is that the stochastic
integral F defined in (1.5) satisfies the CLT in D[0, 1]. The limiting measure 7 can be
characterized in terms of fand m.

All the questions above make sense when p = 2. In this case we consider random
measures satisfying:

(1.9) M has independent symmetric increments;

(1.10) there exists a finite positive control measure m on [0, 1] such that for every
AE R

EM*(A) =m(A).

The definition of the stochastic integral in this case is well known, as is the maximal

inequality
t 2\ 172 ) 1 1/2
deM ) sz(f E|f|2dm> .
0 0

The question of whether F satisfies the CLT in D[0, 1] is still revelant and indeed we show
that it does. Furthermore, when X (¢) = M[O, ¢] has a sample continuous version we show
that F satisfies the CLT in C[0, 1].

Our motivation for this work is to continue our study of domains of attraction of stable
laws in C[0, 1] and D[O0, 1]. This problem is considered in [11], [14], [7] and [17] in the case
when the limiting measure is Gaussian. The results in these papers do not imply the ones
we present here, which use properties specific to stochastic integrals. The only work we
know of which considers the case of non-Gaussian limit measures is [8] and [9]. This paper
is related to [8] (in [8] we consider stochastic integrals in which the integrand is indepen-
dent of the measure). Reference [9] contains an extension of the central limit theorem of
[14] to the case of non-Gaussian limits; however this result, which applies in a more general
setting (but only in C[0, 1]), does not imply all the results we give here. So far, there is no
comprehensive theory of the CLT in C[0, 1] and D[0, 1]. In the meantime, it seems
worthwhile to consider these questions for special classes of processes.

In Section 2 we present some preliminary results. In Section 3 we define the stochastic
integral in the case 0 < p < 2. We also describe a rather large class of measures M that
satisfy (1.1) — (1.3). The central limit theorem, 0 <p <2, is considered in Section 4. The
case p = 2 is studied in Section 5, where we also give examples of the random measures
satisfying (1.9) and (1.10). As an application we show that It6 and diffusion processes
satisfy the CLT in C[0, ).

E. Giné gratefully acknowledges several stimulating discussions with H. H. Kuo and S.
Smolenski.
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2. Notation and preliminaries. A real symmetric random variable £ is in the
domain of normal attraction (DNA) of a symmetric stable law p of index p if

@21 LTV &) —up

where {£;} are independent copies of £ £(€§) is the probability law of ¢ and —,, denotes
weak convergence of probability measures. Domains of attraction are defined similarly in
more abstract linear spaces, in particular D[0, 1] and C[0, 1] (and D0, ») and C[0, )).
Here we use standard notation: C[0, 1] denotes the space of real valued continuous
functions on [0, 1] with the sup norm and D[0, 1] denotes the real valued functions on
[0, 1] which are right continuous and have finite left limits at each ¢ € [0, 1], equipped with
the Skorohod topology ([4], Chapter 3). This topology is induced by a metric do, smaller
than the sup norm, which makes D[0, 1] a complete separable metric space. Addition is
not continous in D[0, 1] but it is measurable so that sums of D[0, 1] valued random
variables are also D[0, 1] valued random variables.

At various times we will speak of the following, all of which are equivalent: a process
X (¢) having a version with almost all its sample paths in D[0, 1], a D[0, 1] valued random
variable, or a Borel probability measure on D[0, 1] (denoted #£(X) as usual). Indeed the
correspondence

X(t) = M[o, ¢]

for M as given in (1.1)—(1.3) yields stochastic processes X on [0, 1] satisfying the following
analogous conditions to (1.1) — (1.3): .

(2.2) X has independent symmetric increments;

(2.3) forevery0=s<t=1,X(t) — X(s) is in the domain of normal attraction of
(m (s, t]) /76,

(2.4) supo=s<i=1 Ap((X(t) — X(s))/(m(s, t])P) < c for some constant ¢ < oo,

and it is well known that X (¢) has a version with sample paths in D[0, 1]. This is a classical
result of P. Lévy (see e.g. [6], Chapter VIII, Theorem 7.2). Conversely, for every process X
on [0, 1] satisfying (2.2)—(2.4) there exists a random measure M satisfying (1.1)—(1.3),
given by M0, ¢t] = X (¢), as is easy to prove using Lemma 2.1.

Weak convergence of Borel probability measures on D[0, 1] will also be denoted by
—,, or w-lim. A D[0, 1] valued random variable S = S(¢), t € [0, 1], is called stable of index
p if all its finite dimensional distributions are stable of index p. A symmetric D[0, 1] valued
random variable X is in the domain of normal attraction of a symmetric stable process S
if:

2.5) {S has a version with almost all its sample

paths in D[0, 1], and L(n™? Y, X;) —, L(S)

as probability measures on D[0, 1], where X; are independent copies of X. In a similar way
one can define domain of attraction in C[0, 1]. If X is in the domain of normal attraction
of S we will sometimes write X € DNA(S).

It is well known that a real symmetric random variable € is in the domain of normal
attraction of some stable law of index p, 0 < p < 2, if and only if the sequence {nP[|{| >
n'/P]} is convergent. Therefore it is natural to consider the function A, defined in (1.4).
The set {£ € Lo(R, % P): Ap(§) < 0} is a linear space which can be equipped with a norm
equivalent to A, for which it is a Banach space for p > 1 and a Fréchet space for p < 1. If
we call this space L, .. then for every ¢ < p we have L, C L, . C L, and the inclusions are
continuous. (This follows by integration by parts).

The following lemma is generally known. A proof in a somewhat more general context
is given in [8], Lemma 2.1.

2.1. LEMMA. Let {q:} be a sequence of independent symmetric real valued random
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variables satisfying for some p € (0, 2)

(2.6) max; A, () = a < oo,
Then for any sequence of real numbers {a.} we have
4 — ip
2.7 ApQRe1 apme) = ¢1<2 _z ) k=1 | @ P>,

The next lemma, a slight modification of a result of Pisier ([18], part of Theorem 3.1),
is a useful criterion for weak convergence. For a proof see [8], Lemma 2.2. (Here we present
a version suitable for the problem at hand).

2.2. LEMMA. Let {X,} and {Y'},n =1, --;m =1, ..., be sequences of D[0, 1]
valued random variables such that
(2.8) {L(Y)} =1 is weakly convergent for each m and
(2.9) limym e sup.Ap (|| X — Y7 ||) = 0.

Then { £(X,)} -1 converges weakly and
(2.10) w — lim, o AX,) = w — limy, o {w — lim,_, L(Y)}.

Also an analogous statement holds for C[0,1] valued random variables.
We use Billingsley [4] for results on the weak convergence of measures on D[0,1].
Following [4], for X € DJ[0,1], define

wx(T) = supser| X(t) — X(s)|, T C [0,1], and
wfx(S) = inf(,,)[maxl-wx[ti, ti+1)], 5> 0,

where the infimum is taken over all the partitions 0 = f{, < - -+ < ¢, =1, r < o, of [0,1] such
thatt, — ;.1 >68,i1=1, .-+, r. ’

The following weak convergence criterion is a combination of Theorems 15.3, 15.4 and
the arguments on pages 133, 134, [4].

2.3. THEOREM. Let {X,} -1 be a sequence of D[0,1] valued random variables such
that:

(1) all the finite dimensional distributions of {X,} are weakly convergent (i.e., for any
finite set {t, ---, t»} C [0,1], the k-dimensional random variables {(X.(t), ---,
X..(tr))} are weakly convergent);

(2) there exist a > %, B > 0 and a right continuous, non-decreasing function F on [0.1]
such that:

(2.11) P{|Xa(t) = Xu(t)| Z A, | Xu(t2) — Xa(2)| = A}
SN AF(t) — F(8)*(F (&) — F ()"

forall0=ti<tst <1
(8) foreverye>0

(2.12) limsyosup; P{wx,[1 — 6,1) > ¢} =0,
(2.13) limsyosup, P{| X.(8) — X,.(0)| > ¢} = 0.

Then {£(X,)} n-1is a weakly convergent sequence of probability measures on D[0,1] and
the limit is determined by the limits of the finite dimensional distributions.

Proor. We will show that the conditions of Theorem 15.3 [4] are satisfied. Condition
(i), (15.7) of Theorem 15.3 [4], follows from condition (2) above by the argument on page
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133, 134 [4]. Conditions (i) and (ii), (15.8) of Theorem 15.3 [4] follows from our condition
(2.13) and from (ii), (15.7) of Theorem 15.3, as in the proof of Theorem 15.4, [4]. Finally,
our (3) is (ii), (15.9) of Theorem 15.3, [4]. The fact that the limit is determined by the finite
dimensional distributions is given in Theorem 15.1, [4]. 0O

The next lemma is technical. It also follows easily from the results in [4].

2.4. LEMMA. Let {Zi}3,i=1, ..., r <, be r sequences of D[0,1] valued random
variables such that:

(1) there exists 0 = s < s; < .-+ < s, = 1 such that for each i and all n, Z,,(t) = 0 if t
<si_iand Zi(t) = Zi(s:) if t = si;

(2) foreach i =1, -+, r, {L(Zi|1s_,s1) ) n=1 is tight as a sequence of measures on
D[Si_l, Si].

Then { £(Yi-1Z})} w1 is tight as a set of measures on D[0,1].

ProOF. Since #(Z}|s,_,s1) 7-1 is tight for each i =1, - . -, r, we have by Theorem 15.2
[4] applied to each {Z}}%-: that

P{sup;|Yi-1 Zi| > u} = Yi-1 P{sup:| Z;,| > u/r} —> 0

uniformly in n as u — . Thus we see that Ni1Z, satisfies (i) of Theorem 15.2, [4]. It
remains to show that Y/-1Z}, satisfies (ii) of Theorem 15.2, [4], i.e. that for every ¢ > 0
there exists a § > 0 such that:

(2.14) P{w'y: z,(8) =¢} <e

As above we apply Theorem 15.2, (ii) of [4] to each sequence {Z5}%,,i=1, ---,r and get
that for each ¢ > 0 there exist a 8 > 0 and a partition {# } of [0,1] which contains the points
{s:} and which satisfies ¢.1 — ¢; > 8 for all j, such that

P {max,;sup, <,</<;,.| Z4(t) — Zi(s)| = ¢/r} <¢/r.

~This implies inequality (2.14), thus completing the proof. 0

3. A maximal inequality and construction of the stochastic integral, 0 < p <
2. We construct the stochastic integral in the standard way except that we use different
inequalities. To every random M satisfying (1.1)—(1.3) we associate a family of increasing
g-algebras % C % t € [0,1], as follows: & is the o-algebra generated by the random
variables M(A), A € # N [0, t] and by the sets of P-probability measure zero. A stochastic
process f(t, w), t € [0,1], » € Q, is non-anticipating with respect to M if it is jointly
measurable and if for each ¢ € [0,1], the random variable f (¢, w) is #;-measurable.

A stochastic process is said to be simple non-anticipating if there exists a partition 0 =
t1 < «++ <t =1 and random variables {a;}, i =0, - - -, r such that ao is a.s. constant and
a; is %, -measurable, i =1, -+ -, r, and

3.1) £(t, @) = a0@) T (&) + Bie10:(@) L 0,1 (8),

where I indicates the characteristic function of the set A.

The random measure M is based on a finite positive measure m called the control
measure of M. To each such M and m we will associate a class of stochastic processes
denoted by .# (M, m) as follows:

3.1. DEFINITION. A stochastic process f (¢, w), ¢ € [0,1], belongs to the class .# (M, m)
if it is non-anticipating with respect to M and if there exists a sequence {f,} of simple non-
anticipating processes such that:

1
lim,,_,mf E|f. — f|?dm =0,
0
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where m and p are related to M by (1.2) and (1.3).

3.2. REMARK. If m is a continuous measure on [0,1] then .# (M, m) is precisely the
class of non-anticipating processes with respect to M such that:

f E|f|?dm <

(or equivalently, f € L?( P X m)). The proof of this assertion follows that of [16], Lemma
4.4, by replacing 2 by p, Lebesgue measure by m, and the classical Lebesgue differentiation
theorem by the following generalization: if g € L'(m) then

t
lim,_o(m(k — 1/n, t])™" j gdm=g(t) ae.
t—1/n
The last statement can be proved by classical arguments using a generalized Vitali covering
theorem as given in [13] or [10]. However, if m has an atom at ¢ and « is a bounded %,-
measurable random variable, then al(;; € L?( P X m) and is non-anticipating, but it may
not belong to .# (M, m). If m is any finite positive measure with m{0} = 0, then the class
A (M, m) is still large enough to contain all the previsible processes in L?(P X m). (A
process is previsible if it is measurable with respect to the o-algebra of [0,1] X £ generated
by the non-anticipating left continuous processes).
For f simple non-anticipating, given by (3.1), the stochastic integral of f with respect to
Mis

J f(t, @) M(dt, ) = ao(w) M ({0}) + T i ai (w) M (&, ti1])
0

3.2) + ap(@) M((ts, t]), t E (b, trin], k=1, .--,7,

f(t, w) M (dt, w) = ap(w) M ({0}).
(0}
We denote this process by [§ f dM. We choose a separable version of M such that the
sample paths of the process X (¢) = M[O, ¢] are a.s. in D[0, 1]. Then clearly F = F (t) =
[6fdM is a.s. in D[0,1] and is non-anticipating with respect to M.
We now prove the maximal inequality given in (1.7) for simple functions.

3.3. LEMMA. Let M be a random measure on [0,1] satisfying (1.1) and (1.3), and let
f be a simple non-anticipating process as given in (3.1). Then, if (1.6) holds, so does (1.7),
with ¢, = ¢(1 + 8(2 — p)™H)'7.

Proor. The process F'is separable (it is a.s. in D[0,1]). Therefore

J’fdM J'SZfdMl>u}
0 0

where [s;} is a finite set of elements of [0,1] increasing to a dense set in [0,1]. We can
assume that each finite set {s;} contains 0, 1 and the points ¢ where f has jumps. This
assumption implies that

> u} = lim(s‘”P{maxi

(3.3) P{sup05tsl

fdM = B:M(si, sit1]

sl

where 8;, which is equal to some «;, is %, -measurable, in particular independent of M ((s,,
Si+1]). Let 0 = so = §1 < 83 < +++ < Sm+1 = 1 be one of these sets {s;}, set Bo = ao, Bi = o if
(Si, si+1] g (tj} tj+1]y L = 1, cee,m, MO = M({O})y and Mi = M((siy Sl+1]), = 17 e, m. Then

(3.4) J’ fdM = {=_(} ﬂzMi; = 17 cee,m+ 17
0



64 EVARIST GINE AND MICHAEL B. MARCUS

(3.5) j E|f|? dm = E| Bo|"m{0} + E:":ll E|B:i|’m(si, sis1]-

By (3.3) and (3.4) it will be enough to show:

1

(3.6) P{maxo<i<m| Y =oBiM;| > u} = cou™® J E|f|?dm, u>0.

0

Now, by intersecting the event on the left side of (3.6) with the set {max;|8:M;| > u} and
with its complement, we obtain

P{maXxo<i=m | Y i=0 BiM;| > u}
3.7)

= Yo P{| BiM;| > u} + P{maxozs=m| Y=o BiMlypm)<u)] > u}, u>0-
Since B; is independent of M;, Fubini’s theorem together with (1.3) and (3.5) give

1

(3.8) YEo P{|B:M;| > u} SC”u_”f E|f|?dm, u>0.

0

Consider now the following family of random variables and associated c-algebras:
(3.9) (B0 BiMiIip pi<us o1} o
where u is fixed. M, is symmetric and independent of %, , and B, is %, -measurable;
therefore it follows that
E (B:MeIyg, my<uy| ,) = 0.

This shows that the family (3.9) is a martingale. Furthermore, since the set {s;} has m +
1 elements, we have

SupOsl’smI Zf;OBiMiI[|B‘M‘|5u] | = (m + l)u

Therefore (3.9) is a square integrable martingale, and the standard maximal inequality
(see e.g. [16], Theorem 2.4) gives

(3.10) P{maxos<m | Yico BiMilyig pry=uy | > u} =< 4u"°E (To BiMil} g p11<u))”

For i <j, M, is independent of B;, M; and B;, so that by symmetry,
EB:M:iLy .0 <) BiMiTy 5,150y = O-

Hence, inequality (3.10) becomes

(3.11) P {maxo</<m| Yico BiMil} g, p1, <) | > 4} = 4u~Y o Eﬂ%M%I[IB.M.ISu]'

Note that 8; and M; are independent. Let 8; be defined on the probability space (i, %,
P;) and M; be defined on the probability space (2, %, P2). Then

EB?M%I[“?,MJSu] = f B?(wl)Mzz'(wz)I[|p,(wl)M,(¢.,2)|5u](w1, wz) Po(dws) Pi(dw:)
Q1 JYQ2

(3.12) .
= J Bi(wr) f M?(w2)I[|M‘(w2)|5u/|p‘(,.,l)|](w1, wz) Py(dws) Pi(dws).
(B:#0) Q2

The interior integral in the expression immediately above is simply

w/|B,(w)] u/|8,(wy)|
J' tzdP2(|Mi|st)s2f tPo(| M;| > ¢t) dt
0

0
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u/|B, ()|
< 2¢”m(s;, Sir1] f t'P dp
0

= 2¢’m(si, $+1](2 — p) " 'u*?/| Bi(w) |* 77,
where we use integration by parts and (1.3). Thus the left side of (3.12) is bounded from
above by
2¢P(2 — p) WP PE | Bi|Pm(si, Siv1].
Using this and (3.11) we get

1
(3.13)  P{maxXo=;<m|XNi-0 B:M:I;\p.11,)<u)| > u} < 8c?(2 —-p)‘lu‘pJ’ E|f|?Pdm, u>0.
0

Finally, we get (3.6) by using (3.8) and (3.13) in (3.7). O

Having established Lemma 3.3 we can proceed to define the stochastic integral by
standard arguments. If {f,} is a Cauchy sequence in L?(P X m) of simple non-anticipating
processes then by Lemma 3.3 and the Borel-Cantelli lemma there exists a subsequence
{fz,} of {f} such that the sequence of processes

)

converges uniformly in ¢ € [0,1] a.s. Also, clearly, all such subsequences that converge
have the same limit. This limiting process is obviously adapted to { %}, has almost all its
sample paths in D[0,1] and satisfies (1.7). A consequence of this is that if f, — 0 in L?(P
x m) then for every subsequence {f,,} of {f.} such that {5 f., dM} converges uniformly
a.s., the limit is zero.

3.4 DEFINITION. Let M be a random measure satisfying (1.1) and (1.3) and let f €
M (M, m). Let {f,} be a sequence of simple non-anticipating functions such that f, — fin
L?(P X m) and such that {[§ f, M} converges uniformly a.s. Then the stochastic integral
of fwith respect to M, denoted as in (1.5), is defined as the limit

t t
F=F(t) = f fdM = lim, . J' fudMas, te[0,1].
0 0

We sum up the previous remarks in the following theorem.

3.5 THEOREM. Let M be a random measure satisfying (1.1) and (1.3) and let f €
M (M, m). Then the process [ f dM is adapted to { .}, has a version with almost all its
sample paths in D[0,1] and satisfies the maximal inequality (1.7) (where ¢, is given in
Lemma 3.3).

The next lemma will be useful when we consider the central limit theorem.

3.6 LEMMA. Let {M’, f'}7-1 be independent copies of (M, ) where M is a random
measure satisfying (1.1) and (1.3), and f € M4 (M, m). Then for every n € N,

1 1/p
oo [ mipan)”
0

Proor. It is enough to prove (3.14) for simple non-anticipating processes. The proof
is identical to that of Lemma 3.3 if one takes into account the following two observations.

t
n-lp 2};1 f fj dM’
0

(3.14) A,,(

where cj = c,[ (4 —p)/ 2 — p)]"~.
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If (B4, M?) are independent copies of (8; M;) in Lemma 3.3, then (2.7) and (1.3) give

1
Yo P{|n " ¥ jo BIMY| > u} < c”(4 — p)(2 —p)‘lu“’f E|f dm,
0
u>0, n=1,-....

(This inequality plays the role of inequality (3.8) in this new situation). The second
observation is that, assuming that the random measures M’ (together with the processes
f’) are defined on a product probability space, and letting { %/} be the associated o-
algebras, the family of random variables

(Xbeo n7VP(X 1 BIMAT p1my=u) Yoo
is a martingale with respect to the family of o-algebras
{'971 ®“ '®g;:/+1}?=0'

S¢+1

This fact allows for an inequality similar to (3.10) for the truncated sums, and the proof of
(3.14) now follows as in Lemma 3.3. 0

We will now give some examples of random measures M that satisfy (1.1)—(1.3). Of
course one obvious example is that M is itself a stable measure of index p with control
measure m. However, the class we are concerned with is larger than this.

3.7. EXAMPLE. Let u be a symmetric Lévy measure on R, ie. u{0} = 0 and
{ min(1, x®) du(x) < . Asume that

(3.15) suptPu[—t, t]° < o
and
(3.16) lime o tPu[—t, t]° = a,

where a = 2p~! (J% (1 — cos u)|u|™" du)~". Let m be a finite positive measure on [0, 1]
and let M be a random measure with independent increments given by

(3.17) E exp(itM(A)) = exp(m(A) J (cos tx — 1) du(x)) R —o<t<ow, AEZA.

Such a measure exists by the Kolmogorov Extension Theorem, and satisfies (1.1)-(1.3).

ProOF. M satisfies (1.1) by definition. To see that M satisfies (1.2) let M* be indepen-
dent copies of M and let A € 4 satisfy m(A) 5 0. The random variable n Py, MYA)
has characteristic function

exp(nm(A) f (costx — 1) d,u,,(x))

where
i(B) = u(n'”B), BEA.
By (3.16),
(3.18) nm(A)p[—8, 81° = nm(A)u[—6n'?, 8n'P]° — a8 Pm(A).
By (3.15)

n f x% dpn(x) < 87
|x|<8
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for some constant ¢ (by integration by parts). Thus
(3.19) limsjolim supy..n f x% dyn(x) = 0.
|x| <8

Using (3.18) and (3.19) in [2], Chapter 2, Theorem 5.5, we see that M(A) is in the domain
of normal attraction of (m(A))76, i.e. M satisfies (1.2). (Note that the case m(A) = 0 is
trivial). ‘

In order to show that M satisfies (1.3), consider the random measures M, k=1, -+,
given by characteristic functions

E exp(itM(A)) = exp[m(A) (cos tx — 1) d,u(x)] , —00 < ¢t < oo, AE 4.

~&"L27°
Then, for every A € % such that m(A) # 0,

(3.20) L (Mi(A)/(m(A))7?) =, £ (M(A)/(m(A))"?)
(use characteristic functions). So, it will be enough to show that
(3.21) Ap(Mi(A)/(m(A))'?) < c

for some constant ¢ < « independent of A and k. Letting ux = p|-&-1 41, We see that the
law of M,(A) is given by the probability measure

e WunR S (m(A))"ul/n!
where pu; = e * R we- Then, for any ¢ > 0,
(3.22) tPP{| Mi(A)| > t(m(A))"*}
= tPe WM T (m(A))"wi{] x] > tm(A)7) /nl.

If {n;} are independent random variables with law p./px(R) then by (3.15) there is a
constant r < o independent of % such that

uPP{|n| > u} =r/p(R), u>0.
Hence, by Lemma 2.1,
w?ui{| x| > u) = uP(e(R)"P{|Xm:| > u} <= rn(m(R)", u>0
where r’ = r((4 — p)/(2 — p)). Using this in (3.22) we get that the left side of (3.22) is
dominated by
OB T 1 (m(A) e (R) (= D = 7.

From this, (3.21) follows with ¢ = (+')/7. O

3.8. REMARK. Let M be a random measure satisfying

E exp(itM(A)) = exp[—T(A)t2/2 + o(A) J’ (cos‘tx -1 d,u(x)] R

(3.22)
—oo<t< oo, A€ 3B,

where 7 and o are finite positive measures on [0,1] and  is a symmetric Lévy measure. In
order that M satisfy (1.2) it is necessary that 7 = 0, ¢ = m and that p satisfy Condition
(3.16). Condition (3.15) seems to be the right condition in order to handle small values of
m(A) in (1.3), and it may even be necessary for (1.3) to hold if m has an infinite support.
These remarks follow from well known facts on infinitely divisible measures and Theorem.
5.5, Chapter 2 in [2].
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39. ExampPLE. The next example is simpler. Let m = ), m;i8,, where m,; are
positive numbers and §;, point masses at £;, be a finite discrete measure on [0,1]. Let {7;}
be symmetric independent identically distributed random variables in the domain of
normal attraction of §. Then the random measure

(3.24) M(A) = Y,caminy;
satisfies (1.1)—(1.3).

Finally, the next example gives the form of some stochastic integrals.

3.10. ExamPLE. (1) Let M be a random measure of the type considered in 3.8, with
p € (0,1). Then the process X(¢) = M[0,¢] has almost all its sample paths of bounded
variation (as [x=1 | x| dpu(x) < ) and pure jump. In this case the stochastic integral can
be computed pathwise and we have that for every continuous function f on [0,1],

f f(M[0,s)) dM (s) = Yo<s=c f(M[0,s)) M{s}.
0

(2) If M is as in Remark 3.8 but p € [1, 2), then we can use a generalization of Ito’s
formula to compute integrals with respect to M ([3], Theorem 5.8 and Remark 5.9). In this
case X (t) is still pure jump (but not of bounded variation) and It6’s formula in [3] gives
that for any C' function f on [0,1],

t M(0,¢t] M([0,s]
f f(M[0,s)) dM (s) = f f(s) ds — Yo=s=: U f(w) du — f(M(O,s))M{s}}
)

M {0} M([0,s)

4. Central limit theorem in D[0,1], 0 <p < 2. The first step in proving the central
limit theorem in D[0,1] for the stochastic integral { F'(¢), ¢t € [0,1]} defined in (1.5) and in
Definition 3.4 is to show that the finite dimensional distributions of {[§ fdM, ¢ € [0,1]}, for
f simple non-anticipating, satisfy the central limit theorem. This is done in the next two
lemmas.

4.1. LEMMA. Let M be a random measure satisfying (1.1) and (1.2) and let f be a
simple non-anticipating process. Then the random variable [ f dM is in the domain of
normal attraction of ([3 E | f|* dm)'/?0, where 0 is given in (1.2).

Proor. It is well known that random variables ¢ are in the domain of normal
attraction of symmetric stable random variables of index p if and only if

4.1) Hm,,otPP{&> 1t} = ci< o

and (4.1) holds also for —¢;. Let & and a; be independent of &. Let &1, —&1, & and —¢; satisfy
(4.1) for i = 1, 2, where ¢; and c; need not be equal, and assume E | a; | < . Then we will
show that

(42) limt_,wt"P(il =+ a1§2 > t} =1+ C2 E|a1 lp

and that (4.2) holds also for —(¢; + a:&2). Once we have (4.2) the proof of this lemma
follows by iteration (since fis simple). The proof of (4.2) is a generalization of an argument
of Feller ([6], page 278). For one direction of the inequality we use that for 0 < ¢ < 1 and
allt> 0,

tPP{& + aibe >t} = tPP{&i>t(1 —e)} + tPP{ouba > t(1 — &)} + tPP{&1 > te, anéa > te).
The limit of the first term at the right side as £ — o is ¢1/(1 — ¢)? by hypothesis. By
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independence of £; and a; we can also easily conclude that the limit of the second term is
c2E | a1]?/(1 —€)?. As for the third, we note that since t”Pz{a:£; > te} < ce” | o1 |? for some
¢ < o and all ¢, the random variables { I} t"Pz{a:é2 > te}, t > 0} are dominated by an
integrable random variable and therefore, by the dominated convergence theorem,

lim,_,mt"P{gl > te, 0(1&2 > t&} = limt_mEll[gPMt"Pg{algz > t&} =0.

(As usual we assume here that £;, ay, &2 are defined in a product probability space and E;,
P; denote expectation and probability, respectively, in the ith factor space, i = 1, 2).
Collecting these results and letting e — 0 we get that

lim sup;,ot?P{é&1+ 1o >t} < c1+ 2 E|au|?,
which is half of (4.2). For the reverse inequality we use the fact that
tPP{& + anda >t} = tPP{& > t(1 + ¢), |auda| < et} + tPP{auée > t(1 + &), | 1] <et}.
The first term at the right side equals
EitPLy spqaey — Erligspqaent”Pel| anda] > et}

which obviously tends to ¢; /(1 + ¢)? as t — o by dominated convergence. The same type
of argument shows that the limit of the second term is co E | a1 |?/(1 + €) . The second half
of (4.2) is now obtained by letting e — 0. Clearly (4.2) holds also for — (& + a1é2). O

Consider the process [ f dM where fand M are as in Lemma 4.1. The finite dimensional
distributions of this process are determined by the laws of the random variables

¢ 1
211‘2=1 ajf fdM =f [ij=1 aij[tst,]] dM,
0 0

{g;}ei C R, {t}e, C[0,1], 2 =1, .-.. By Lemma 4.1 this random variable is in the
domain of normal attraction of the stable random variable
1/p

1
(4.3) <f E|Yk & fl<q1? dm) 0.
0
We will now exhibit a stable stochastic process of index p, {S(¢), t € [0,1]}, such that
1 1/p
y(ZJ]Ll ajSt,«) = f((J E|Z}e=l aij[tsl,] |p dm) 0)-
0

Let (2, #’, P’) be an independent copy of (2, %, P), let
V, 3, v)=(011 X Q, B XF',m X P’)

and let M be a symmetric stable measure of index p on ¥, with independent increments
and with control measure ». That is, if we let A, A; € ¥, then M satisfies (1.1), and instead
of (1.2) we have more precisely, Z(M(A)) = L((v(A))/P9). ((1.3) is satisfied automatically).
For the same process f as in (1.1) we consider f («, w’) as a deterministic function on V and
define

(4.4) S=28=8( w) =f L=y (W) f (u, ") M (d(u, '), ),

v

where d(u, «’). indicates that we are integrating on the product space V. Note that
Iiu<f(u, 0’) is a deterministic function relative to (2, &, P) and (4.4) is a Wiener type
integral, not an It6 type integral as we have been considering. Consequently it is much
easier to define. The definition of (4.4) proceeds in the standard fashion from Lemma 2.1.
For further details see [8], Section 3. From the definition of (4.4) it is easy to show that
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E exp{iu 351 0,S,}

- esf-1ur” |

\4

(45)
| et @ Tue ) @f () |7 dm(w) dP(w'>} , —o<u<o

In view of (4.3) this gives us:

4.2. LEMMA. Let M and f be as in Lemma 4.1. Then the finite dimensional distribu-
tions of the process [§ f dM are in the domain of normal attraction of the symmetric
stable process S, defined in (4.4).

4.3. REMARK. The process S(f, w) defined in (4.4) for a simple function f can be
extended to all f € .# (M, m). Moreover, if f, — fin L?(P X m) and S, (¢, ) and S(¢, w) are
the corresponding processes given in (4.4), then the finite dimensional distributions of
S, (¢, w) converge weakly to the corresponding finite dimensional distributions of S(¢, w).
This follows immediately from (4.5).

Define

(46) Go(t) = M{0}I1o,11(2)
: Gi(t) = M(&i, )M, 0 () + M (i, tiei M, (8, T=1,--0,1,

where M satisfies (1.1)—(1.3). Then the stochastic integral defined in (3.2) can be written
as

4.7) J fdM =Y i-0 a;Gi(2).
0

We first consider the central limit theorem in D[0, 1] for a; G;(t), E| a; | < o; in fact we
start with «; bounded a.s. It is clear that oGy (t) satisfies the central limit theorem (Lemma
4.1), thus we consider o;G;, i # 0.

44. LEMMA. Let G; be any of the processes defined by (4.6) and let a; be independent
of G; and such that E| a;|” < ». Let {af, G¥}, k=1, - - -, be independent copies of («;, G;).
Then the sequence of probability measures on D[t;, t;+1],

(4.8) (LnVP Y, afGE [ttt 1)} =1

s weakly convergent (to the stable process determined by Lemma 4.2).

Proor. Let us first assume that «; is bounded a.s. We use Theorem 2.3 with [0, 1]
replaced by [¢;, ti+1]. Theorem 2.3 (1) is satisfied by Lemma 4.2. We now check condition
(2). By (4.6) Gilp,e, 0 = M(t;, t1I.,e, 1(t), t € [, tiv1] (ie. Gi(t;) = 0). Let {M*} denote
independent copies of M, independent of {af}. Denote by E, and P expectation with
respect to {af} and probability measure with respect to {M*} respectively. Then by
Lemma 2.1 and (1.3) we get thatfort, =us =u=<us < ¢+1and A >0,

P{| n~\p Iy ank(ul, ul| = A, Inil/p oy ank(u’ w]| = A}
(49) = E (Pu[|n™" iy ofM* (U1, u]| = N1Pul|n™"7 Sher o M* (1, u2]| = A1}
= A ZK,m(u ulm(u, u:1E[n"" Yizr |af|P]>

Thus, since «; is bounded, we see that the processes in (4.8) satisfy Theorem 2.3, (2), with
a=18=2pand F(t) = K',m(0, t], where K,, depends only on «; and p and is constant
with respect to n.

Next we check condition (3) in Theorem 2.3. Let M* denote the random measure M*(A)
= M*A) - Mk({tH,})B,iH(A), A € 4. Let w, be the modulus wx, defined in Section 2 for
the processes in (4.8) (i.e. X, = n™"” ¥h-1 afG¥| 0, 7).
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Then we have
Waltiv1 — 6, tiv1) = 2 sUpy,, —s=e=t4s |n_1/" Yh-1 afﬂk(ti, t]].

Therefore, since M* satisfy (1.1)~(1.3) with control measure i = m — m({t;+1})é; _,, Lemma

3.6 gives

+1?

P{wpltiv1 — 8, tiv1) > €} =< 2Pe7P(cp)Pmltiv: — 6, tiv1) E| i |”,
and this tends to zero uniformly in n as § — 0. This proves Condition (2.12). As for (2.13),
it is easy to see in a similar way that for 6 < ti+1 — &;,
P{|n7V" Yr_ oM (t;, t; + 8) | > €} < e PK,m(t;, t; + S]E[n" Yi-1 | |7]
which tends to zero uniformly as § — 0 (the a? are bounded). By Theorem 2.3, this lemma

is proved in the case of bounded a;.
For general o; (i.e. E| a;|? < ), set aiv = ailjja,<n7. By Lemma 3.6 we have

(4.10)  Ap(Supicniny| 27 Tio1 (af — afy)GER) |) = cp (B | ai — awv |"m[ti, tiv1 )P

We now use Lemma 2.2. We have already shown that { £ (n™"? Y7_1 alvG¥|1.0..1) }n=1 IS
weakly convergent in D[#;, t;+1]. This gives (2.8) in Lemma 2.2, and (4.10) immediately
gives (2.9). Thus, the weak convergence of the sequence (4.8) follows from Lemma 2.2. [

We can now prove the central limit theorem for the stochastic integrals of Definition
34.

4.5. THEOREM. Let M be a random measure satisfying (1.1)—(1.3) for some finite
positive measure m and p € (0,2). Let f € M4 (M, m) and let S be the stable process of
index p defined by (4.4). Then S; has a version with almost all its sample paths in
D[0, 1] and the process [§ f dM is in the domain of normal attraction of S, i.e. if {f k
M*} are independent copies of (f, M) then

(4.12) w— lim,,_mz’(n_’/” Yies J f* de) = 2(S)
0

as probability measures on D[0, 1].

Proor. In view of Lemma 4.4 it follows from Lemma 2.4 that for every simple non-
anticipating process f, if { f%, M*} are independent copies of (f, M) then

t o
o)
Jo n=1
is a tight sequence of probability measures on D[0, 1]. Therefore if S is the process defined
in (4.4) for this f, m and p then by Lemma 4.2 we have that

(4.12) J fdM € DNA(S)
0

as D[0, 1]-valued random variables_ (we choose a version of S with sample paths in
DI[o, 1]).

Now let f € .4 (M, m) and { f;} = be simple non-anticipating functions converging to f
in L?(P X m). Denote by S; and S the corresponding processes defined by (4.4) with f; and
f. Then, analogous to (4.12) we have

t
(4.13) j fidM € DNA(S)),i=1, .- -.
0
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If { f%, f*, M*} are independent copies of {f;, f, M} then Lemma 3.6 gives

1/p

t
= hmmc;,(f E|fi—f dm) =0.
0

nVP $ies J (ff— f*) dm*
0

lim;_,Sup, A,,(

(4.14)

We use (4.13) and (4.14) in Lemma 2.2 with

t
Ya(t) =n" Ez-lf ffdM*,  te[o,1]
0

and

t
Yi(t)=n‘1/"27:=1f flaMm*,  telo,1]
0

to see that {£(X,)} -1 converges weakly and that its limit is w — lim;..& (S:). By
Remark 4.3 this limit is #(S). This completes the proof of the theorem. O

4.6. REMARK. All these results make sense in D[0, ). Let m be a positive locally finite
Borel measure on [0, ®) such that M and m satisfy (1.1) and (1.2) for some p € (0, 2) and
all sets in 4 (the Borel s-algebra of [0, )). Instead of (1.3) we assume that for each T <
o there exists a constant ¢z such that

supacwnp,mAM(A)/(m(A))7?) < cr.

For any T < o, define .#7(M, m) by replacing [0, 1] in Definition 3.1 by [0, T'], and let
MM, m) = NrM4T(M, m). The process S; can be defined on [0, ) for all f€ #/~(M, m)
as in (4.4). Thus if M and m are given as above and f € ./ *(M, m), it follows from Theorem
4.5 and Theorem 3 in [15] that [% f dM belongs to the domain of normal attraction of S, as
random variables with values in D[0, ). Note that D[0, ) is the set of all real valued
functions on [0, ) which are right continuous and have left limits at all ¢ € [0, ),
equipped with a topology that extends the Skorokhod topology on D[0, T'] in a natural
way (see e.g. [15] and the references there, in particular C. Stone’s work where D[0, ) was
introduced and weak convergence on this space was first considered).

4.7. REMARK. When 0 < p < 1 and the random measure M is given by
(4.15) E exp(itM(A)) = exp[m(A) f (e —1) du(x)] s —0 < t< oo, AE %,
0

where t?u{x > t} — k and sup;ot’u{x > t} < oo, then we can considerably simplify the
definition of the stochastic integral [ fdM, f € .4 (M, m) and the proof that it satisfies the
CLT in D[O0, 1]. First of all, if {n:} are independent and satisfy (2.6), then (2.7) can be
strengthened to

2 _ 1/p .
(4.16) Ap(Shet | axms]) < “(1 _ﬁ) (Sho1 | @x]?) "2,

using, basically, the same proof as that of Lemma 2.1. Also, we note that M(A) as defined

in (4.15), is nonnegative for all A € %. The proof of Example 3.7 shows that M satisfies
(1.3), and (4.16) readily gives
t
Jines])
0

oo
(4.17) 0
1 2_p 1/p 1 1/p
_A, fdM)s( ) <JEf”d)
(j I o(222) (] v am
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for f simple non-anticipating. This inequality extends to all f € .# (M, m) and defines the
stochastic integral. The proof of the CLT follows as in the general case. The absence of
symmetry introduces no centering problem: the centering functions in the CLT can be
taken to be zero (see e.g. [6], page 546).

5. Central limit theorem in D[0, 1] and C[0, 1], p = 2. Let M be a random measure
satisfying (1.9) and (1.10). The family of functions f € .# (M, m) is defined exactly as in
Definition 3.1, but with p = 2. For f simple nonanticipating we already have

t 2 t
(5.1) E(f fdM) =J’ E|f|*dm, te€]0,1],
0 0

and since the stochastic integral is a square integrable martingale with right continuous
trajectories, it satisfies (1.11) ([16], Theorem 3.2). Thus the stochastic integral can be
defined for general f € # (M, m) as in the case p € (0, 2) and the resulting process is a
square integrable martingale with respect to {%} which satisfies (5.1) and (1.11) and has
a version with almost all of its sample paths in D[0, 1].

We now show that F satisfies the central limit thorem in D[0, 1]. The identity (5.1)
implies that the finite dimensional distributions of [§ f dM belong to the domain of normal
attraction of the Gaussian process

(5.2) S=8=8(w) = f Tu=a(Wf(u, 0" YM(d (4, »'), ®)

\4

where everything is as in (4.4) except that £ (M(A)) = £ ((v(A))"*g), where g is a normal
random variable with mean zero and variance one. Now note that if one defines A5 (£)
exactly as in (1.4) then it follows from Chebyshev’s inequality and (1.11) that

t 1 1/2
A2< deM”)sZ(j E|f|2dm> .

Thus, Lemma 4.4 and Theorem 4.5 are valid also for p = 2. We get:

5.1. THEOREM. Let M be a random measure satisfying (1.9) and (1.10) for some finite
positive measure m. Let f € M (M, m), p = 2, and let S; be the Gaussian process defined
in (5.2). Then S; has a version with almost all its sample paths in D[0,1] and the process
[% f dM is in the domain of normal attraction of S, i.e. if {f*, M*} are independent
coptes of (f, M) then

t
(5.8) w-— lim,,_,oc,;f(n"‘/2 Shi J r* dM"’) = 2(Sy)
0

as probability measures on D[0, 1].
5.2. REMARK. Remark 4.6 on the CLT in D[0, o) applies also in this case.

A well known result of P. Lévy is that a stochastic process with independent increments
which is continuous in probability is sample continuous if and only if it is Gaussian. If m
is continuous, (5.1) shows that M is continuous in probability and therefore if X(t) =
M(0, t] is sample continuous, then M must be a Gaussian measure and this is the only
example of a random measure M satisfying (1.1)~(1.3) or (1.9)-(1.10) such that M0, ¢] is
sample continuous. In this case, by construction, the process [§ f dM is also sample
continuous. We will now show that it satisfies the CLT in C[0, 1].

5.3. THEOREM. Let M be a random measure satisfying (1.9) and (1.10) for some finite
positive continuous measure m on [0, 1] such that X(t) = M[O0, t] is a sample continuous
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(Gaussian) process. Let f € M (M, m), p = 2, and let S, be the Gaussian process defined
in (5.2). Then S; has a version with almost all its sample paths in C[0, 1] and the process
[% f dM is in the domain of normal attraction of S;, i.e. if {f*, M*} are independent
copies of (f, M) then

(5.4) w— lim,,_,m,,f(n'l/2 Y1 f i de) = Z(S)
0

as probability measures on C[0, 1].

Proor. We have already established weak convergence of the finite dimensional
distributions. We can continue to trace all the steps of the proof of D[0, 1] convergence
making the necessary substitutions. We already remarked that Lemma 2.2 is also valid for
C[0, 1]. Lemma 2.4 is not needed in this case because finite sums of tight sequences of
C[0, 1] valued random variables are obviously tight. In fact we only need to prove the
counterpart of Lemma 4.4 in the case of bounded a;, i.e. that the processes a;G;(t) defined
in (4.5), where «; is a bounded random variable, satisfy the central limit theorem. Now
clearly the processes G; satisfy the CLT because in the case we are now considering they
are continuous Gaussian processes. The following lemma shows that «;G; satisfies the
CLT. It is fairly well known but we will include a proof for lack of a suitable reference.

5.4. LEMMA. Let {X;} be independent identically distributed random variables with
values in a separable Banach space B. Let {a;} be bounded independent identically
distributed random variables independent of {X;}. Suppose there exists a Gaussian
measure y such that

(56.5) w—limy e Z(n2YE1 X)) = 7.
Then there exists a Gaussian measure y’ such that

(5.6) w—lim, o (Y a:X) =7,

Proor. By Theorem 1.3 in [18], (5.5) holds if and only if for each £ > 0 there exists a
sequence of independent identically distributed random variables {Y;.} taking values in a
finite dimensional subspace of B such that EY;, = 0, E|| Y;.||* <  and

Suanl n_1/2 =1 (Xz - Yi,f) ” <e
The Y;. may be chosen independent of the a;. Then by [12], Corollary 4.2,
sup,E|n 2 Y (X — a;Y,.) || =< (ess sup a;)e.

Since Ea,Y,. = 0 and E| a;Y,.||* < o, Theorem 1.3, [18], implies 5.6. (Note that [12],
Corollary 4.2, requires EX; = 0, but it is well known that (5.5) implies this; in the present
situation where X; = G, we do not even need this additional argument as G;is symmetric). 0

With Lemma 5.4, the proof of Theorem 5.3 is completed. (Note that tightness of the
sequence in (5.4) together with the fact that the finite dimensional distributions of this
sequence converge weakly to the corresponding finite dimensional distributions of S, prove
both that S; is sample continuous and that (5.4) holds). O

5.5. REMARK. Theorem 5.4 holds, with appropriate modifications, for C[0, «), the
space of continuous functions on [0, ») with the topology of uniform convergence on
compact sets. As in the case of D[0, ), £(X,) —=, Z(X) in C[0, «) if and only if
&L (X lw0,11) 2w L X|0r) in C[0, T] for all 0 < T < « ([19], Theorem 5). Therefore, if a
random measure satisfies (1.9) and (1.10) for every Borel set A C [0, ») and for some
locally finite positive measure m, and if f € .#“(M, m) (see Remark 4.6) then (5.4) holds
as a weak limit of probability measures on C[0, ).
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5.6. ExaAMPLE. We apply Theorem 5.3 to Itd processes. Let W = (W,, &%), t € [0, ),
be a Wiener process defined on the probability space (2, & P), where % is the o-algebra
generated by {W;, s < ¢} and by the sets of P-measure zero. A process &, t € [0, «), is
called an It6 process with respect to W if

t t

a(s, w) ds + J’ b(s, w) W(ds, w), 0=<t< oo,

0

(6.7 flw) =%+ J’

0

where @ and b are non-anticipating processes, & is a real valued random variable and the
last term is the integral of b with respect to the random measure generated by W. The
conditions

t
(58) Etf<o, supirEad’(t, w) <o, J’ Ebitw)dt<o, 0<T<om,
0

imply that the process

t

(5.9) TIt=Et—E§z=Et‘E£0—EJ' a(s,w)ds, 0=st<oo,

0
satisfies the central limit theorem in C[0, =) (i.e. it belongs to the domain of normal
attraction of a Gaussian law in C[0, »)).

Proor. Since E¢f < « and E& = E& + E [b a(s, w) ds, the finite dimensional
distributions of the process {n;, 0 < ¢ < o} defined in (5.9) satisfy the central limit theorem.
Therefore it is enough to check that each one of the three terms

& — ES, J' a(s,w) ds— E j a(s, w) ds and f b(s, w) W(ds, w),
0 0 0

satisfies the CLT in C[0, »). & — E& obviously does and [§ b(s, w) W(ds, w) does also by
Theorem 5.4 and Remark 5.5. As for

t

(5.10) j a(s, w) ds — EJ' a(s, w) ds,
0

0

let us note that forevery 0= u<v=T,0= T < o,

v v 2 v 2
E[j a(s, w) ds—Ej a(s, w) ds] SE[J’ a(s,w) ds]
‘ ’ v 1/2 2
SE[(j a’(s, w) ds) v - u)l/z}

=< (v — u)’sup;=rEa®(¢, w).

Since (5.10) satisfies the Kolmogorov conditions it satisfies the CLT on C[0, T for every
T < oo ([1]). Therefore it satisfies the CLT on [0, ). 0

We can apply the previous remarks to diffusion processes, i.e. to solutions of stochastic

differential equations of the form
(5.11) {dg& f:(t, &) dt+b(t, &) dW,,  tE[0, )
0=

where 7 € R and the functions a(t, x), b(¢, x), ¢t € [0, ») and x € (—w, ), are jointly
measurable and satisfy the following Lipschitz and growth conditions:
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(5.12) la(t, x) — a(t, )T + [b(t, x) — b(t, )T = L(x — yy°
) at,y) + 0%, ) = L(L+»"), xyER

for some constant L < . A classical result of It0 states that under these conditions the
stochastic differential equation (5.11) has a unique solution, which is square integrable
(see e.g. [16], page 136-137), and satisfies

t

f=n+ J a(s, &) ds + J’ b(s, &)Wi(ds), 0=<t<oo.
0

1]
Note that then ¢y = sup,<rE£? < oo, The;*efore, by (5.12),
Ea®(t &) + EbXt, &) <L(Q +cr), t<T.

So, a and b satisfy condition (5.8). It follows then that & — 7 — E [§ a(s, &) ds (i.e.. & —
E¢;) satisfies the CLT in C[0, ). (In fact conditions (5.12) can be replaced by the less
restrictive conditions (4.110) and (4.111) in [16] page 128).

Finally, we give some examples of random measures satisfying (1.9) and (1.10).

5.7. EXxXAMPLE. If M has the characteristic function
E exp(itM(A)) = exp[—m(A)02t2/2 + m(A) J' (cos tx— 1) du(x)],

-0 < < o, AE %,

where ¢ < © and p is a symmetric measure such that
J' x% du(x) < oo,

then some constant times M satisfies conditions (1.9) and (1.10). In fact,

EM?*(A) = [02+ f x? du(x)}m(A).

5.8. ExaMPLE. If M is given by (3.24) with p = 2 and the variables 7; symmetric,
independent, identically distributed and such that En? = 1, then M satisfies (1.9) and

(1.10). .
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