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THE BEHAVIOR OF ASYMMETRIC CAUCHY PROCESSES
FOR LARGE TIME

By WiLLiaM E. PRUITT! AND S. JAMES TAYLOR!

University of Minnesota and University of Liverpool

This paper develops precise estimates for the potential kernel, capacities
of large intervals, and the probabilities of hitting large intervals for the
asymmetric Cauchy processes. These are then applied to study three problems
concerning the sample paths: (i) the rate of escape of | X;| as ¢ — oo; (ii) the
sizes of the large holes in the range of the process; (iii) the asymptotic behavior
of the Lebesgue measure of that part of the range of the process that is in a
large interval.

1. Introduction. The stable processes in R' have been extensively studied over the
years. Typically some property has been found for Brownian motion but then very similar
methods usually suffice to obtain the analogous property for the strictly stable processes.
A simple fact that is very useful here is the scaling property: for any r > 0, r~V°X,, is
another version of the process X, However, the asymmetric Cauchy processes do not
satisfy this simple scaling property and this makes their analysis much more difficult. It
also leads to some rather surprising results which we will obtain in the present paper.

The Cauchy processes in R" have stationary independent increments and characteristic
function

iuX, _ ,—tlu|(1+ih 1
(1.1) Ee™Xt = ¢ |u) ( zsgnuog|u|)’

where £ is a parameter in [—2/7, 2/7]. It is possible to introduce two additional parameters
by multiplying the process by a scale factor and adding a linear drift term; an examination
of the characteristic function shows that it is possible to remove the drift term by making
a simultaneous change of scale in both time and space. Thus the general asymmetric
Cauchy process Y, may be expressed in terms of X, satisfying (1.1) as Y, = cX,. for
appropriate positive ¢ and r. The parameter A is the same for X, and Y,. (Note that this is
not possible in the symmetric case & = 0.) Now it is easy to deduce the properties of Y,
from those of X, so we shall omit these two additional parameters.

It follows from (1.1) that X, has a density p(¢, x) which is infinitely differentiable in x.
The fact that for r > 0, ¢ > 0, rX, and X, — htr log r have the same distribution follows
easily from (1.1) and leads to

(1.2) p(t, x) =p(1, xt™ — hlog )t

We will still refer to (1.2) as the scaling property. Even though it is more involved than in
the strictly stable case, it does still allow us to obtain information about the entire family
of densities p(¢, x) from just p(1, x).

The analytic work begins with the determination of the asymptotic behavior of the
potential kernel

(1.3) gx) = f p(t, x) dt
0
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as x — =+ o, The leading term here was obtained by Port and Stone (1969) but we require
much sharper bounds for our results. Once these are available, we apply the potential
theory of Hunt since all of his conditions for the process to be nice are satisfied. We must
estimate the capacity of large intervals and even the manner in which the capacitary
distribution is spread over such an interval. These in turn lead to estimates of the
probability of hitting such an interval. One of the unusual features of the present work is
the very precise knowledge that is required of the potential kernel and the capacitary
distributions. These estimates on the potential kernel, capacities, and hitting probabilities
are given in Sections 3, 4, and 5.

The sample path properties are obtained in the final three sections. Section 6 deals
with the rate of escape problem; in Theorem 6.1, we have an integral test for determining
the lower envelope for | X;|. The results in Sections 7 and 8 are more unusual. They include
an integral test which determines which large intervals [, xp (x)] are missed by the sample
path and the very surprising result that the Lebesgue measure of that part of the range of
the sample path contained in [0, a], normalized by a/log a, converges in distribution to a
geometric distribution. These last two results were announced in [12].

The problem that first attracted us to these processes was posed by Kesten (1976),
namely, to determine whether the range of the process is nowhere dense. This problem
turned out to be very difficult and the solution took a long time. The answer is that the
range is in fact nowhere dense with probability one except in the completely asymmetric
case where it is a countable union of intervals. In both cases the range has infinite Lebesgue
measure. For comparison, note that the range of the symmetric Cauchy process has zero
Lebesgue measure but is dense in R'. This result and some related results about the local
behavior of the sample paths will appear in [13]. The analysis in this case starts with
determining very accurately the local behavior of the potential kernel and then goes on to
estimating capacitary distributions and hitting probabilities of small intervals. This part of
the analysis is similar to that of the present paper, but the probabilistic arguments that
follow are much more complex in [13] and a much deeper understanding of the evolution
of the sample path is required.

2. Preliminaries. We consider the Cauchy processes in R'. They have stationary
independent increments and characteristic function as in (1.1). The Lévy measure for this
process is given by

pr'z dx, x>0,
T

v(dx) = 0
Zgx?dx, x<0,
m

where p =0, ¢ =0, p + ¢ = 1. The parameter 4 in (1.1) is then (p — q)2/7. If p = q, then
h = 0 and we have the symmetric Cauchy process which is strictly stable; its properties
have been studied extensively along with those of the other strictly stable processes. We
will be concerned with the case 2 # 0. Since looking at the process —X, corresponds to
changing the sign of A, we will assume throughout that 2 > 0, i.e. p > q. Since we can think
of p and g as the weighting factors for positive and negative jumps, we are thereby
assuming that positive jumps are more likely than negative jumps. When p =1, h = 2/7,
and the process is called completely asymmetric. It has no negative jumps (but it is not an
increasing process) and several of its properties can be established by exploiting this fact—
see Millar (1972) and Mijnheer (1974). In some cases the results are different in this
extreme case and will be stated separately.

It is easy to check either directly or by using a general criterion (see Kingman, 1964)
that all asymmetric Cauchy processes are transient, i.e. |X;| — o as ¢ — o. In the
completely asymmetric case X, is bounded below and so X; — «. However, if A € (0, 2/7)
then more careful analysis shows that X, assumes both large positive values and large
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negative values when ¢ is large. For large times, the process is more likely to be positive
than negative in this case and this means that the part of the range of the process in
(—o0, —M] is much less dense than the part in [M, ) for large M. Some further remarks
about this appear at the end of Section 7.

We will need the asymptotic behavior of the density p(1, x) of X;. The density p(1, x)
can be expressed as an integral by the inversion formula and then the asymptotics can be
carried out. This has been done by Skorohod (1954). We only need his leading term which
is, in our notation,

@.1) (1, %) = 271’ ( +on 08 x) + o(%), x— +o,

22) P, x) =24 +2h1°g|x| +o[L) xo o
a x® | x|

We will also occasionally need the asymptotic behavior of the first two derivatives of the
density. Since they have similar integral expressions which may be obtained by differen-
tiation of the inversion formula, their asymptotic behavior can be determined by the same
techniques. As expected, the leading terms result from differentiating the leading terms in
(2.1) and (2.2).

We make the usual assumption that we are dealing with a version of the process which
satisfies the strong Markov property and that the sample paths are right continuous with
left limits everywhere. Since the process has positive probability of hitting a point
(Theorem 1 of [11]), any compact set K has a unique capacitary distribution ux concen-
trated on K and satisfying

(2.3) b(x, K) = J gy —x)ux(dy)<1 forall x€ R,

(2.4) P(x,K)=1 forall x€ K

where g is the potential kernel defined in (1.3) (Proposition 4.7 of Chapter 6 of [1]).
Furthermore,

(2.5) ®(x, K) = P*{X, € K for some ¢>0}.

The total mass, ux(K), is called the capacity of K.
We will need to use a generalized version of the Borel-Cantelli lemma such as the one
in [7]. If {E}} is a sequence of events such that ) P(E;) diverges and
N SN, P(EE)
2.6) limingy. .. 2 ‘%" e,
(Y r=1 P(Er)}
then P(E}i.0.) > 0. Note that (2.6) is satisfied if for each fixed j the integers & > j split into
two sets I}, IZ such that

P(E;E;) = cP(E;)P(E) for ke I}, Zkel}‘ P(E;E:) < cP(E;)).

In the end we will always be able to assert, under these conditions, that P(E; i.0.) = 1 by
using a zero-one law. What we need here is a continuous time version of the Hewitt-Savage
Zero One Law. This is well known but we cannot find a reference that gives a complete
proof in the present context. The following will be sufficient for our purposes: if
A € N, o{X;:t = n}, then P(A) is zero or one. A proof (in a somewhat more general
setting) is given in [10].

3. The asymptotic behavior of the kernel. In this section we will obtain asymp-
totic estimates for the potential kernel g (x) both for x — +o and x — —. As mentioned
above we will assume without loss of generality that 2 > 0. The leading term in Theorem
3.1 has been obtained before [11] but the sharp error term is new and it is essential for our



ASYMMETRIC CAUCHY PROCESSES 305 -

later results. It will be evident from the proof that care is needed to obtain the actual error
term of order log™® x instead of an error of order loglog x/log? x which is not good enough
for our purposes. i

THEOREM 3.1. Define g by (1.3). Then

b +0 ! +
—— ©
log x log>x )’ T

d 1
g(x)_loglxl +O<log2|x|)> X —> — 00,
where b = 2p/wh?, d = 2q/mh?

gx) =

REMARK. In the completely asymmetric case, d = ¢ = 0 so that we have not really
given the asymptotic behavior of g in this case as x — —oo. It is possible here to use the
fact that the process has no negative jumps in a renewal argument to obtain g(x) = me*/2,
x =0, so that the negative tail of the kernel is much smaller in this case. We will not use
this in the present paper.

ProoF. The techniques involved in the two proofs are different so we will prove both
results. In the first part, we will use the function

Fuy=u+hlogu, u>0.

This increases and hence has an inverse function G defined on R'. From v = G(v)
+ h log G(v), we obtain first that for v large, log G (v) = log v + 0(1) and then

3.1) Gw)=v—hlogv+o(l), v— +ox

Also since G (v) > 0, we have

3.2) G(v) <exp{vh™'}, v<O.

Now we are prepared to estimate g. We have by the scaling property that

(3.3) gx) = j plt, x)dt = j p(1, xt™ — hlog )t dt.
0 0

Now for x > 0, we have

g(x) = J p(1, F(xt™) — hlog x)t ' dt
(3.4) o

= j p(1,v— hlog x)(G(v) + h)* dv

where we have made the substitution v = F(xt™') at the last step. Now we split the range
of integration into five pieces; we will denote the corresponding integrals as I, I», I3, 14, I5.
On (-, 0], we replace G(v) + h by h. The difference is of order G (v) which is integrable
by (3.2) while the density is O (log™ x) on this range by (2.2). Thus we have

I =h'P{X, = —hlog x} + O(log™® x)

(3.5)
_2¢1 1 2q 1 loglog x +0(log™ )

where we have used (2.2) to estimate the probability. For the interval [0, 1] we have
G(v) + h = h and the density is of order log™ x so that

(3.6) I, = O(log™? x).
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Next we consider the interval [1, %2 log x]. Here we replace G (v) + h by v. The difference
will give a term of order v log v which is integrable and again we have that the density
is O(log™2 x) on this range so the error is acceptable. Thus

(h/2)logx
I; = f p(1, v — hlog x)v'dv + O(log™? x)
1

(h/2)logx
2q 1 loglog x\ |dv Y
.[ [ 7 (v — hlog x)? + O( log’ x — + O(log™" x)

2¢1 1 (h/Blogx v dv _2
_7?log2x[ 1+0 —logx +O(log x)

_2q 1 loglog x

a h® log®x

3.7

+ O(log™2 x).

For the interval [%h log x, 2h log x] we use the expansion
1 _ 1
GWw)+h v—hlogv+ O(1)

_ 1 _ 1
T hlogx HAllogx

(v—hlogv+ O() — hlog x)

+ O(log%x)(v — hlog v+ O(1) — hlog x)°.
The O(1) in the second term leads to a term of order log™2 x since the density is integrable.
For the final error term, we use
(v—"hlog v+ O(1) — hlog x)? =< 2(v — hlog x)* + 2(hlog v + O(1))?
and note that the first of these leads to

1 hlogx 1
0<1—3) f uzp (1, u) du = 0(1—),
og" x —(h/2)logx ng x

while for the second, log v is of order loglog x and the density is integrable so we have a
term of order (loglog x)%/log® x which is even smaller. Finally, note that log v = loglog x
+ O(1) on the range in question. Thus we have

_ 1 loglog x
L= (hlogx+ hlog® x

)P{—glogxleshlogx}

1 hlogx
R vy J: up(1, u)du + 0(1 Z )

(h/2) log x

1 loglogx 2p

1
(3.8) T hlogx  hlogx 7 Klogx loglog x

2q 1 1
+— W lofx loglogx + 0(1 of x)

_ 1 loglog x 2p  2q 1
" hlogx +h210g2x<h p +0 log?® x

1 1
hlog x + O(log2 x)'
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On the last interval [2A log x, ©) we have G(v) ~ v = 2k log x and the integral of the
density is of order log'x. Thus

(3.9) I; = O(log%x).

Adding the estimates for I; — Is in (3.5) — (3.9) gives the first part of the theorem. The
second part is somewhat easier since the variable in the density in (3.3), xt ™' — h log ¢, has
a maximum value of —A (1 + log(—xA ™)) when x < 0 and this tends to —o as x — —co.
Thus we may use the asymptotic behavior of the density for all values of ¢ and work
directly from (3.3). First note that for x sufficiently negative xt ™' — & log ¢ < x/2t for all ¢
and so by (2.2) we have

| x] /log| x| el
J p,xt™ —hlog t)t ' dt = 0<J’ = dt)
o R x

~ | =

= O(log™? | x|).

For the rest of the integral, using (2.2) again, we have

* © t™'— hlogt
J' 2__ lhl I ar + e log Ifc1 — clga | 1 gt
ioglsy T (6T~ hlog t) gl 6E — hlog ©)
(3.10) - 1
+ 0( f L dt) .
eitogiat | 567~ hlog ]

The final term is of order log~? | x| since we obtain a bound by integrating ¢~* log°t. For
the first term, we expand the integrand as follows:

2 1 1 1 1 |x
"2'—2——'2—_+O _3__'|_| .
7 h*log* t log’tt t

After integrating this we have

Do

g 1 1 1
7 h*log | x| — log log | x| +0<log2|x|)

2g 1 1 log log | x| 1
== +0l——|.
wh2<log|x|+ log® | x| 0 log® | x|

Finally the main contribution from the middle term in (3.10) is

4hq (~ loglogt 1 4hq 1 loglog | x| 1

L . —h®log® t 7 h® 2log®|x]| (log2 | x|
and it can be easily checked that the error is of order log log | x |/log® | x|. Adding these
estimates we again see that the log log | x |/log® | x| term disappears and we have proved
the theorem.

The other result we will need about the kernel g will be the leading term for the
difference g(x) — g(y). One would guess from Theorem 3.1 that this should behave like
b log(yx~')/log y log x as x, y — +o. Note, however, that even if y = 2x, for example, the
error term in Theorem 3.1 does not allow us to conclude this. Nevertheless, further detailed
analysis does show that this is the correct asymptotic behavior of g(x) — g(y) provided
only that y/x is bounded above and below.



308 W. E. PRUITT AND JAMES TAYLOR

THEOREM 3.2. Suppose that there exists a k > 0 such that k™' < yx™' < k. Then

log(yx™")

g(x) —g(y) ~ bm

as x,y— +oo,
log(yx™")

x) —g(y) ~d—r—"7—"—
£ =8 Mg Tyl Tog %]

as x,y— —ox,
where b = 2p/nh?, d = 2q/7h.

Proor. We first consider positive x and y. Since x and y may be interchanged, there
is no loss in considering only x < y. By (3.4)

G(u+ hlogy) — G(u+ hlog x) "
(Gu+hlogx) + h}{Gu+ hlogy) + A}

(3.11) g(x)—g(y)=f p(1,u)

By the mean value theorem there is an 1, € (¢ + & log x, u + A log y) such that

G("Iu)
Gnu) +h

- G(u+ hlogy)
T Gu+hlogy)+h

Fix ¢ € (0, h/2). We split the range of integration in (3.11) into five intervals. The main
contributions will come from the intervals [—(% + ¢) log x, —(h — ¢€) log x] and [—¢ log x,
¢ log x]. We first show that the integrals over the remaining three intervals are all of
smaller order. On (—o, —(h + ¢) log x], p(1, ¥) = O(log™? x), the three factors in the
denominator are all at least %, and the log(yx™") term comes from (3.12). Then by (3.2)

0=G(u+hlogy) — Gu+ hlog x) = hlog(yx™")
(3.12)

hlog(yx™").

—(h+e)logx —(h+e)logx
J' G(u+ hlogy)du< J v du = hyx""" = o(1).

Since log y = log x + O(1) under the boundedness assumption on yx ™, this is sufficient for
this first interval. On the interval [— (k2 — ¢) log x, —¢ log x], we work directly with (3.11).
Since G is increasing, the integrand is positive and we may use p(1, u) = O(log™® x) and
then

—elogx 1 1
J’ {G(u+hlogx)+h_G(u+h10gy)+h}du

—(h—¢)logx
elogx+hlog(yx—1) (h—¢)logx+hlog(yx—1)
= 1 d 1 dv
—_—dv - -
i G)+h A Gw)+h

logx —e)logx

= o(log(yx™))

by (3.1). On [e log x, ), we again use (3.12) in (3.11). The expression in (3.12) is
O(log(yx™")), the two terms in the denominator in (3.11) give O(log'x log'y) by (3.1)
and then the integral of p (1, u) over the interval is 0(1). Now we are ready for the two
main intervals. In each case we need separate upper and lower bounds but they are
essentially the same so we will only obtain the upper bounds. On the first interval we have
by (2.2) that for x sufficiently large

2q
p(l,u) 5*; 1+ E)m

for all u in the interval. Then working directly from (3.11) we have this factor times
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—(h—¢)logx 1 1
f {G(u+hlogx)+h_G(u+hlogy)+h}du

—(h+e)logx
—clogx+hlog(yx—1) elogx+hlog(yx—1)
! dv 1 di
= —— — ———————— v
Gw)+h i Gw)+h

—elogx logx

=log(yx™")(1 + o(1))

since the integrands are ~A~! and o(1) respectively by (3.2) and (3.1). Thus for this part of
the integral we have an upper bound of

1 log(yx™)
(h—¢)logxlogy’

(3.13) 2 (1+e)®
T

On the final interval we use (3.12) in (3.11). We then have as a bound for all the terms
except p(1, u)
1 1 o h  log(yx™)
G =0 Tog ) G(h =) Tog ) 108* )= 0+ &) G o o Ton
This bound comes from (3.1) and is uniform for all u € [—e log x, € log x] for x sufficiently

large. Of course the integral of p(1, u) over this interval is then ~1. Thus we have as an
upper bound for the part of the integral over this interval

h log(yx™)
(h—¢)’logxlogy

(3.14) (1+e)

Adding the bounds in (3.13) and (3.14) gives the upper bound for the first result in
Theorem 3.2. As indicated above, the lower bounds are essentially the same. For negative
x and y, it is easiest to develop the analogue of (3.4) which we did not need in the proof of
Theorem 3.1. Here we use

Fluy=-u+hlogu, u>0

which increases on (0, 4] and then decreases on [A, ). We let y = —h + A log A, the
maximum value of F, and define on (—o, y] the two inverse functions of F, G, and G;, with
G, taking values in (0, 2] and G in [A, ). Then, for x <0

g(x)=J p(l,—|x|t"1—hlogt)t'1dt=j p(L, F(|x|t™") — hlog |x|)t™" dt
0 (1]
=J' p(L,v—hlog|x|)(G(v) — h)'dv
+J p(L,v—nhlog|x|)(h— Gi(v)) "dv

Y
=J p(l,v— hlog|x|)Gs(v)du,

where

Gs(v) = (G2(v) = Gi(0))(Gz(v) = B) ' (h — Gy (v))".

As v — —o0, G1(v) = 0 and Ga(v) — o so that Gs(v) — A~". Also both (A — G1(v))~! and
(G2(v) — h)™! and hence G3(v) are integrable near y since, for example, making the
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substitution v = F'(u),

¥ A h
f (h—Gi(v)) 'dv = f (h—u) (=14 hu)du= J’ v du.

Now we may complete the proof. We have, for y < x,

Y
glx) —g(y) = J {(p(1,v—nhlog|x|) —p,v—"hlog|y|)}Gs(v)dv
(3.15) -
= J' p’(1,7,) hlog(yx™")Gs(v) dv

where p’(1, u) is the derivative of p(1, ) and 0, € (v — h log | y|, v — h log | x|). Since
p’(1, u) is increasing for u sufficiently negative, we may obtain upper and lower bounds in
(3.15) by putting in the extreme values for 7,. Fix ¢ > 0 and choose M so that Gs(v) < (1
+ ¢)h~! for v = —M. Then

-M -M
f p'(1,7,) hlog(yx™")Gs(v)dv = (1 +¢) log(yx")f p'(L,v—~hlog |x|)dv

—o

= (1 +¢) log(yx™) p(1, —M — hlog | x|)

- 1y 29 1

(1 +¢) log(yx™) 7 R log %]
For the interval [—-M, y] we have p’ (1, 7,) = O(log™® | x|) and so by the integrability of Gs,
the integral over this interval is of order log( yx ™) log~® | x |. This is sufficient for the upper
bound; the lower bound clearly follows in the same way.

We conclude this section with three observations about the properties of g. By (3.11)
and the monotonicity of G, we see that

(3.16) & decreases on [0, ).

On the negative side, we cannot say as much. But since p’(1, ) > 0 for u sufficiently
negative, it follows from (3.15) that there is an M > 0 such that

(3.17) g increases on (—o, =M.

Finally, we note that g is continuous [11].

4. Capacitary distributions. In this section we will obtain the asymptotic estimates
that we need for the capacitary distribution on a large interval and on the union of two
such intervals. As above, we assume that A > 0. In this case, most of the mass of the
capacitary distribution for a long interval is spread relatively close to the right end of the
interval. Perhaps the most interesting result here is Theorem 4.5 which gives a very precise
estimate for this part of the distribution.

We state two results initially since it is more convenient to prove them simultaneously.
The constants in all these results are uniform in all the variables so long as they are in the
given range.

THEOREM 4.1. Let C(a) denote the capacity of an interval of length a. Then
C(a)=b""loga+ 0(1)

as a — o, where b = 2p /7h”.

LEMMA 4.2. Let p be the capacitary distribution on [0, a]. Then
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([0, x]) = O(xa™), 10= ax' =<log a/(log log a)®,

as a— o,
Proors. Since g decreases for x = 0 by (3.16), we have by (2.4)

4.1 1=J g(x)p(dx) = g(a)C(a).
0

By Theorem 3.1, this suffices for the upper bound in Theorem 4.1.

Next we prove the lemma. Divide the interval [a/2, a] into log® a intervals of length
a/2log?a. Since ([0, a]) = O(log a) by (4.1), at least one of these intervals must have
measure O (log~2a). Take such an interval, say [, v], and let y = (z + v)/2. By (2.4), we
have

J {g(2) —g(z—y)}uldz) =1-1=0,
0
so that
(4.2) J' {g(2) —g(z —y)}p(dz) = J' {g(z —y) — g(2)}p(dz). ~
0 u
We estimate the right side of (4.2):

J {g(z — y) — g(2)}p(dz) = O(p([u, v])) = O(og2a),

J {g(z —y) — g(2)}u(d2) = {g(a/41og’a) — g(a)} C(a) = O(log log a/log a)

where we have used Theorem 3.1 and (4.1) in the last estimate. The left hand side of (4.2)
is at least

b—e d+e
4.3) (m - TEEZ)“([O’ u])
for large a. Since A > 0 implies b > d, these estimates yield
(4.4) ©([0, a/2]) = u([0, u]) = O(log log a).

With this estimate at our disposal we can now prove the lemma by essentially repeating
the argument. Divide [x, 2x] into log® a intervals of length x/log® a. One of these must have
measure O(log™2a). We abuse the notation slightly by letting [u, v] denote this new
interval and y = (u + v)/2. We again use (4.2). In estimating the right side, the integral
over [u, v] is O(log™2a) as before. Next,

/2 log log a (log log a)*
J:) {g(z — y) —g(2)}pldz) = O(ng»a—>“([°’ a/2]) = O( log’a )

where we have used the upper bound for ax™' and Theorem 3.1 for the first equality and
then (4.4). Adding these first two estimates and using the upper bound for ax™ again we
see they are of order (log log a log a) 'xa™". Finally, by Theorem 3.2,

a

(e(z — ) —g(2)}u(dz) = (b + D)loga f log< z
a/2 =)

)u(dZ)

a/2

2x
< + 2T = -1 -1
= (b + ¢)log™’a Ta—2x C(a) = O((log'a)xa™)
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where we have used (4.1) and the lower bound for ax™" at the last step. Note that this term
dominates the earlier two integrals. Since the lower bound for the left side of (4.2) given in
(4.3) is still valid and [0, x] C [0, u], this completes the proof of the lemma.

To obtain the lower bound for C(a), divide the interval [0, @/20] into log®a intervals of
length a/20log?a. One must have measure O (log™'a); again we denote it by [u, v] with
y = (u + v)/2. Then

1= J’ g(z —y)u(dz)
0

a/10
= f g(z — y)u(dz) + (blog™'a + O(log™%a)) u([a/10, a]).
0

Now the integral over [0, /10] is of order log ' a since the measure of [, v] is of this order
and the integrand is of this order on the complement of [u, v] while the measure of
[0, @/10] is O(1) by Lemma 4.2. Thus we have

C(a) = p([a/10, a]) = b~ 'log a(1 + O(log™'a))

which completes the proof of the theorem.

Thus far we have seen that the capacity of an interval of length a grows like log a but
that the capacitary measure of an interval of length a/10 at the left end is bounded.
Actually most of the measure is concentrated relatively near the right end of the interval
and we will obtain a very precise estimate for u([a — x, a]). As a first step in this direction
we need the next lemma.

LEMMA 4.3. Let u be the capacitary distribution on [0, a] and let y € (1, bd ) bea
fixed constant. Then if x <y <a A\ x7,

b(6—1) log log x
,u([a—y,a—x])s(b_d8 +O< Tog x ))u([a—x,a])

as x — o, where 8 is defined by y = x°.

Proor. Divide [a — x, a] into log?x intervals of length x/log’x. One will have measure
no larger than log~%xu([a — x, a)); denote it by [, v] and let w = (uz + v)/2. Since both w
and a — y are in [0, a], we have

1= J' &g(z —w)u(dz) = J gz —a+y)u(dz)
0 0
and so
(4.5) J {g(z—a+y) —glz—w)}u(dz) = J' {g(z —w) —g(z — a + y)}u(dz).
0 u

We start by obtaining a lower bound for the left side of (4.5). First the integrand is
nonnegative for z € [0, a — y] since g is increasing for sufficiently negative arguments by
(8.17) and since z — w is very large negative on this range. For z € [a — y, u],

_ d
logy log(x/2log’x)

glz—a+y) —glz—w)= + O(log™%x)

= (b8~ — d)log'x + O(log log x log2x).
Thus the left side of (4.5) is at least
(4.6) (871 — d)log 'x (1 + O(log log x log™'x)) u([a — y, @ — x]).

Now we need an upper bound for the right side of (4.5). For the integral over [u, v] we
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simply use the measure which is O (log™*xu([a — %, a])). Then

¢ b b 1
jv {g(z—w) —g(z —a+y)}pldz) = (log(x/2 Tog'x) logy + 0<10g2x>)u([v, a))

b(6-1) log log x
= < 8log x + O( log®x ))u([a - % a),

and using these bounds together with the bound in (4.6) completes the proof.

Now we can prove the key lemma and the theorem which give the estimates for
p(a — x, a]). We state and prove them together since the first half of the theorem is
needed in the proof of the second half of the lemma.

LEMMA 4.4. Let p be the capacitary distribution on [0, a] and let A = b/(b — d),
n = (log log a)™2. Then if x = exp{(log log @)’} and y = x'*", y < a, it follows that

p(la =y, a]) = (1 +An + Om?)u(la — x, a])

as a— o,

THEOREM 4.5. Let u be the capacitary distribution on [0, a] and let A = b/(b — d).
Then )

log x)A log a

f»"([a - X a]) ~ (lOg a b

as a — o, uniformly for x € [exp{(log log @)}, a].

Proors. The upper bound in Lemma 4.4 follows immediately from Lemma 4.3 since
b(d—-1) _ bn

= = —+ 2
b—ds b—d—dy Mt Om
and
1 log 1
@) olg log x - 5 log log ogﬁa -t
og x (log log a)
for large a.

Next we prove the lower bound of Theorem 4.5. Define
x = g™

and let j = min{i: x; < x}. Since x;_; = x, we have

(4.8) (1+mn)/'=<logalog’x=<loga

which implies that jn = O (log log a). Thus

(4.9) j=0((loglog a@)® and jn*=o0(1).

Now we use the half of Lemma 4.4 that has been proved and Lemma 4.3 to obtain

— = J-1 .u([a - Xi, a]) . p,([a - x, a])
wlla = x al) = (0, ab Il pla = xi-1, a])  p(la — x-1, a])

(4.10) = p([0, a])(1 +An + O(®H))*!(1 + O())
= u([0, a))exp{—(An + O (1)) j}(1 + 0(1))
= u([0, aD e™*"(1 + o(1))

where (4.9) has been used at the last step. Now by (4.8),

exp{(n — n9)(j — 1)} < log a log'x
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which leads to e’” < log a log™'x(1 + o(1)) by (4.9). Using this in (4.10) and recalling
Theorem 4.1 completes the proof of the lower bound of Theorem 4.5.

Now we complete the proof of Lemma 4.4. Divide the interval [a — ¥, @ — y/2] into
log’y intervals of length y/21log?y. One of these must have measure no larger than log 2yu([a
— v, a]); denote this interval by [«, v] and its midpoint by w. Then as in (4.5) we have

(4.11) J’ {g(z—w) —g(z—a+x)}pu(dz) = f {g(z—a+ x) —g(z — w)}u(dz).
) a—x

This time we need an upper bound for the left side and this makes things a bit more
complicated than in the proof of Lemma 4.3. We will split this integral into four parts.
First

J {g(z —w) —g(z — a + x)}p(dz)

(4.12) b 4 .
= (log(y/4 log®) logy + O<1Og2y>>.u([a -y, a—x]
= ((b — d)log™'y + O(log log y log™%y))u([a — ¥, a — x]).

Then

(4.13) j {g(z — w) —g(z — a + x)}p(dz) = O(log"y)p([a — ¥, a])

by the choice of the interval [u, v]. Next choose § € (1, bd™), let s = y® A a, and
consider the integral over [a — s, u]. The integrand is O (log log y log™y) on [a — 2y, u] by
Theorem 3.1 and O(log %y) on [a — s, @ — 2y] by Theorem 3.2. Since pu([a — s, a]) =
O(u([a — x, a])) by Lemma 4.3 we have

(4.14) J’ {g(z — w) —g(z — a + x)}n(dz) = O(log log x log %x) u([a — x, a]).

Note that since u([a — y, a]) = p([a — s, a]), the error terms in (4.12) and (4.13) are also
of this order. Finally, on [0, a — s] we have by Theorem 3.2 that the integrand is of order

log™% log(i-_—ﬂ) = (log %) 2=2"Y < (log"%y) -2— ~ y"log .
w—=z w—2z -y

Now since y = x = exp{(log log a)®}, it follows that
y7% < exp{(1 — 8)(log log a)®} =< exp{—A log log a} =< (log y log™'a)*

= O(log'a)u([a — y, a])
where we have used the half of Theorem 4.5 that has been proved at the last step. Thus,
since the total mass of u is of order log a, we have
(4.15) J {g(z —w) —g(z — a + x)}p(dz) = OQog™"y)p([a — , a]).

0
Combining (4.12) — (4.15) and recalling that u([a — y, a]) = O(u([a — x, a])), we see that
the left side of (4.11) is at most

(b — d)log 'yu([a — y, a — x]) + O(log log x log *x)u([a — x, al).

Now we need a lower bound for the right side of (4.11). If we take a large enough so that
y = 3x, then by Theorem 3.1 we have this integral is at least

(log P Togy + 0(log2x)>u([a —x,a)]) = (logy + O(—log2x)>u([a x, a]).
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Putting these two bounds together and recalling (4.7) completes the proof of Lemma 4.4.
Now we can finish the proof of Theorem 4.5. With x; as before we have as in (4.10)

wla = x, a]) = p([a — x-1, al) = u([0, al)(1 +An + O@*) 7+
= ([0, a]lexp{(An + O (")) (= j + 1)} = u([0, ad e (1 + o(1))
by (4.9). Finally, x; < x implies
logaloglx =< (1+7)/<e”

and this completes the proof.

We also need bounds similar to those in Lemma 4.2 and Theorem 4.5 for the capacitary
distribution on the union of two intervals. Since the proofs are very similar to the ones
given above (and somewhat more tedious), we will simply state the results.

LEMMA 4.6. Let p be the capacitary distribution on [0, «] U [8, a] where 2 < a < B.
Then
1[0, x]) = O(xa™), ifx= B, 10=< ax' = log a/(log log a)’,
w([0, a]) = O(Blog a/alog a), if 10=< af~ =<log a/(log log a)?,

as a — . (In these results a may tend to « as long as a < B.) If10 < af™! <
log a/(log log a)® and 10 < Ba™", then

p([0, x]) = O(xa™), ifB= alog a, 10 =< ax™' < log a/(log log a)?,
w([0, x]) = O(xB/aalog a), if B= alog a, 10 =< ax™! =< log a/(log log a)?,

as a— o,

THEOREM 4.7. Let p be the capacitary distribution on [0, a — 8] U [a — «, a] where
B> a, B = exp{(log log a)®}. Then

p(la — x, a]) ~ (log x log™" a)*u([0, a])
as a — », uniformly for x € [28, a]. Also

(b — d)log «

wla — a, a)) ~mﬂ([a —2B,a))

and if B = a?
r(la — x, a]) ~ (log x log™'a)u([a — a, a)
as a — o, uniformly for x € [exp{(log log a)*}, a].

5. Hitting probabilities. We can now obtain the estimates we require for the
probability of hitting a long interval or the union of two such intervals. Recall that ®(x, K)
is the probability of hitting K, starting from x, and by (2.3) is the potential of the capacitary
distribution on K. With the information that we have obtained about the kernel and the
capacitary distribution, these probabilities are now fairly easy to estimate. Note that the
probability of hitting a long interval is very close to one so it is more natural to give the
estimates for the “missing probabilities” 1 — ®(x, K).

The first two theorems give estimates for the probability of missing a large interval
starting from relatively nearby points on the left and right respectively. Recall that we are
assuming that A > 0.

THEOREM 5.1. Let K = [0, a]. Then

1 x

2aloga if10 = ax™' < log a/(log log @),

<1-®(-x K) < 4—>
aloga

and a is sufficiently large.
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REMARK. The additional assumption ax ™' — o« leads almost as easily to 1 — ®(—x, K)
~ x/a log a.

Proor. Divide the interval [0, x/log log x] into log x intervals of length x/log x log log x.
By Lemma 4.2 one of these intervals must have capacitary measure O(x/a log x log log x).
Denote it by [u, v] with y = (u + v)/2. Then

1-®(-x, K) = J {g(z —y) — gz + x)}pu(dz)
0

where p is the capacitary distribution for K. We split the range of integration into four
intervals. By Theorem 3.1, Lemma 4.2, and (4.4),

J {g(z —y) — g(z + x)}pn(dz) = O(log™" x)O(x/a log log x),
0
J {g(z — y) — g(z + 2)}u(dz) = O(x/alog x log log x),

a/2
J {g(z — y) — g(z + x)}u(dz) = O(log log a/log” a)O(log log a)

= O(x/a log a(log log a)?),

where we have used the upper bound for ax ! in the last bound. Since log x ~ log a, these
terms are all of smaller order than the main term and so can be ignored. Finally, by
Theorem 3.2 and Theorem 4.1

a

{g(z —y) — g(z + x)}u(dz)

a/2

" x
(5.1) =(b+elog™@a log(—_y T a2

XY (b+e)b'2x/alog a

S T
=(b+¢ebd log a———y+a/2

which gives the upper bound. Recalling (4.4), we can estimate the lower bound for (5.1)
similarly.

THEOREM 5.2. Let K = [0, a]. Then
1-®(a+x, K) ~A'(log xlog™'a)*! ifexp{(loglog @)’} =x=<a,
as a — o, uniformly for x € [exp{(log log a)®}, a], where A = b/(b — d).

Proor. For the lower bound,

1—®(a+ x, K) =J {g(z—a+x)—g(z— a—x)}u(dz)
0

ZJ {glz—a+x) —glz—a—2x)}ndz)

since the integrand is nonnegative for z < a — x as in the proof of Lemma 4.3. Then
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b d 1
1-®(a+x K)= {log P Togx + 0<10g2 x) };L([a - x, a))

~ (b —d)b'(log xlog™ a)*™*

by Theorems 3.1 and 4.5. For the upper bound, divide [a@ — x, a — x/2] into log® x intervals
of length x/2log’x. One must have measure no larger than log2xu([a — x, a]). Denote it
by [u, v] and its midpoint by y. Then

1—®(a+ x, K) =j {g(z—y) — gz — a — x)}u(dz)
0

and

“ b d 1
Jv {g(z—y) —glz—a - x)}uldz) = {log(x/4 Tog%) log x + O(log2x> }u([v, a))

- {b -d N O(log log x)},u([a —xa)

log x log®x

which has the right asymptotic behavior. Thus it remains to show the integral over [0, v]
is smaller. The interval [u, v] is all right by the way it was chosen. Let s = x% A a; then

J {g(z—y) — gz — a — x)}u(dz) = O(log log x log™*x)u([a — s, a])

and this is small enough since p([a — s, a]) = O(u([a — x, a])) by Theorem 4.5. Finally,
using Theorems 3.2 and 4.5, we have

f {g(z —y) — g(z — a — x)}pu(dz) = O(x" log2x)u([0, a])
0

= O(x logx(log a log™'x)")u([a — x, a))
= O(e)\logloga—(]og]oga)“log— x)#([a - x, a])
= O(log™"x)p([a — x, a])

for large @, where we have used the lower bound for x. This completes the proof of the
theorem.

REMARK. 1t is a consequence of Theorems 5.1 and 5.2 that the probability of hitting
an interval of length q, a large, starting from a point whose distance from the interval is of
order a is close to one if the starting point is to the left of the interval and close to d/b if
the starting point is to the right. This is another indication of the asymmetry. Theorem 5.2
is not very informative in the completely asymmetric case (A = 1), but we will not need it
then.

We need similar bounds for the probability of missing the union of two intervals. Since
the proofs are similar we simply state the results.

THEOREM 5.3. Let K = [0, o] U [B, a] where 10 < aB™' < log a/(log log @)® and
10 < ax ™' = log a/(log log a)*. Then
1—-®(—x, K) = O(x/alog a) if B= alog a,
= O(xB/aalog a log a) if B= alog a,

as x — oo,
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THEOREM 5.4. Let K=1[0,a — B]U [a — a, a] where 8 = o, B = exp{(log log a)®}.
Then
1 - ®(a + x, K) = O((log x log™"a)* *(log 8 log™a)*™),
if exp{(log log @)°} = x < & and a — », where A = b/(b — d).

For the rate of escape problem we will need estimates for delayed hitting probabilities.
These are given in the next three lemmas. As above we assume that 2 > 0.

LEMMA 5.5. Suppose € > 0. Then for a, T sufficiently large
P*{|X,| < a for some t=T} = (1 + ¢)log alog™'T for all x.
ProoF. First we write

P{|X,|=a forsomet=T}= fp(T, y — x)®(y, [—a, a]) dy.

Now let p be the capacitary distribution for [—a, a], use (2.3) and (1.3) and interchange
order of integration to obtain

P{|X|=<a forsometzT}=f jp(t+T,z—x)dtu(dz5
—a J0

= sup, J p(s,y) ds Cap([—a, a]).

T

First consider | y| =< T. Then for s = T we have | ys™'| = 1 so that

“2¢ 1 ds_ d
7 hlog’s s log T’

j pls,y) ds= f p(1,ys7' —hlog s)s' ds ~j

T T T

For | y| > T, we simply bound the integral by g(y) and use Theorem 3.1. Thus we obtain

SUpyf p(s,y)ds< (1 +e)blog™'T

T

for all sufficiently large T. Using this with the capacity estimate of Theorem 4.1 yields the
result.

LEMMA 5.6. Ifc <d/2b, then
P{|X;|<a forsomet=<T)}=clogalog™|x|,

provided that T = | x|*%, | x| = 2a, and a is sufficiently large.

Proor. We write
P¥|X;|=a forsomet=T}=®d(x,[—a,a]) — P{|X|=a forsomet=T}.
By (2.3) and Theorems 3.1 and 4.1, the first term on the right is at least
(1— ¢) dlog™'| x |6 'log a,
while the previous lemma implies that the second term is at most
(1 + e)log a log™'T = (1 + ¢)(d/2b)log a log™'| x|.
Subtracting the two estimates gives the result.
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LEMMA 5.7. Suppose that h < 2/7. Then there is a ¢ > 0 such that
P{|X;|=a forsomet€E [T, T:]} = clog alog™'T\,
provided that T: = T?“, a < hTilog T:/2, and a is sufficiently large.

ProOOF. First write
P{|X;|<a forsomet€ [Ty, T:]}

=Jp(T1,x)P"{|Xt|S a forsomet=T,— T} dx

=clog alog ' TiP{hTilog T\ =< | X7, | = T%},

where at the last step we have restricted the range of integration as indicated and used
Lemma 5.6, the assumptions being valid for large enough a. To estimate the probability,
we have

P{(hTlog T\ =< | X7, |=Ti} = J p(1, xT7' — hlog T1)T1" dx

F
ZJ’p(l, u) du,
fe]

where
F={hTilog T.<|x|=T%}, G={0=x=<T.—hlog Ti)}.

Since the last integral is asymptotically P{X; = 0} > 0, this is sufficient to complete the
proof.

Finally, for the result on the Lebesgue measure of the range, we need some results on
the probability of hitting one and two point sets before moving too far toward +o. Again
we assume that 2 > 0.

LEMMA 58. Ifaloga<x<y<a-—alog™aandy — x> alog “a for some a > 0,
then as @ — ®©

() P{(X. hits (x) before [a, ©)} = 1og1 - (1 + o(l—"fo—lg"—i—“» ,

(i) P*{X. hits {y} before [a, ©)} = lo; 2 <1 + 0<101g0:)(g, a)) ’

log log a

(iii) P*(X, hits {x} before [a, )} = O(—k?“—) '

ProOOF. Since the proofs of (i) and (ii) are essentially the same, we will only prove (ii).
Let A =[a, ©), B =[a, a + 2a/log*a], C = A\B, D = [a, a + a/log*a]. For any set E, Tx
will denote the first hitting time of E, i.e.

Tg=inf{t >0:X, € E},
with the usual provision that Tx = « if X; € E for all ¢. If E = {2z} we write T for Tx. Now
PY{Ty<Tg} — P{Tc< Ty < Tp}=P*T,<Ts} =PT,< Tg}
and we estimate the error term by
P¥{Te< Ty < Tp} < E*{(1{Tc < Tp} P**{T, < »}}
= O(loga)P*{Tc < Tpn} = O(log log a log~%a)
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where the last estimate follows Lemma 1 of [12] and the estimate for P*{T), < «} follows
from Theorem 3.1 since the capacity of a one point set must be 1/g(0). To estimate
P*{T, < Tg}, we use

PHT, < o} = P*{T, < Ts} + P*{Ts < T, < 0}

(5.2) ; : d logloga)) _~
=P¥T, < Ts} + P*{Te < Ty}<log a + O( log’a m,

where we have started the process over when it hits B, and used Theorem 3.1 to estimate
the probability of hitting {y} starting from some point in B. Similarly, we have

b log 1 1
P¥{Ts < w} = P*{T, < TB}(log —+ 0( olgogZia>>( oi a., O(log log a))

(5.3)
+ PHTs<T,).

Solving these two equations yields

P"{Ty<TB}<1— d _1 )

£(0) loga
I _ px d 1 log log a
(5.4) = P¥T, < o} — P*{Tp < 0} 20) oz @ + O( Tog’a )
_b-d 1 log log a
£g(0) loga log’a /)’

where we have used Theorems 3.1 and 4.1 at the last step. Now g(0) can be evaluated from
(3.3) and is equal to A™* = b — d. Thus we have proved (ii). It is easier to prove (iii). We
use

PHT. < Ta} = P’{T. < Tg)

and the latter probability can be estimated as in (5.2)-(5.4). The fact that the roles of x
and y have been interchanged only affects the term P”{T, < «} which is d(g(0)log a)™
+ O(log log @ log%a) and this means that th principal term on the right side of (5.4)
disappears.

LEMMA 5.9. Under the conditions of Lemma 5.8, as a — ®

P{X, hits both {x} and {y} before [a, ®)} = lo;Za (1 " O(lo—lgolgo_tgz a)) '

ProoF. First note that with A = [a, «)

P(T, < T < Ta} = P{Ty < )} P(T: < Ta} = 0('10——12;5,&)

by (iii) of Lemma 5.8 and the strong Markov property. The main contribution comes from
hitting x first and so we have to use more care there:
P{T.<T,<Ta} =P{T.<T,, T: < Ta}P*{T, < Ta}.

The estimate for the second term on the right comes from (ii) of Lemma 5.8. The estimate
for the first term comes from (i) of Lemma 5.8 since with E = [y, «),

P(T. < Tg} < P{T.<T,, T < Ta} = P{T. < T4).

6. Rate of escape. Since the asymmetric Cauchy processes are transient we know
that | X,| — o as t — . The most natural question to ask about the rate at which it
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approaches infinity is: which monotone functions will eventually lie below | X;|? In the
completely asymmetric case, A = 2/7, we have | X,| = X, for all sufficiently large ¢ and
Millar (1972) has shown that in this case there is an exact lower function:

lim inf, , X/t log t = 2/7 a.s.

(Even more is known in this case; an integral test is given in Mijnheer (1974).) This is not
the case for the other asymmetric Cauchy processes however. But there is a simple integral
test that answers the question.

THEOREM 6.1. Assume that h < 2/ and let ¢(t)]. Then

j log ¢(t) g <%

P{|X,| = p(¢)i0. ast— o} = 0 T log™ - o

1

ProoF. First note that if ¢ is bounded then the integral converges and | X| will
eventually lie above ¢. Thus we may assume that ¢(¢) 1 . Suppose the integral converges
and let ¢, = exp{e*}. Then

tpt2 log (p( ) |7 .
- -1 -
J: t log®t dt = log ¢ (t+1) j pr =e (1 - e")log ¢ (tr+1)log 't

k+1
=e(1—e ™)1 +e) 'P{|X;| = ¢(tp+1) for some t= t;}

by Lemma 5.5. Thus for % sufficiently large and ¢, < ¢ < ¢+, we have by Borel-Cantelli
that | X;| > @(tz+1) = @(t). If the integral diverges, we first show that we may assume with
no loss of generality that ¢(¢) < ¢ for all large ¢ If not, then there is a sequence ¢ T » with
@(tr) > tr. Letting ¢1(¢) = @(¢) A ¢, we have

m]og 1(t) dt log tk
————dt=1 t
L tlog?t 0g¢1(k)fk tlog’ logtn

so the integral diverges for ¢;. Once we have proved the theorem for ¢ such that ¢(¢) < ¢,
we will know it for ¢; and so we will have | X;| < @1(£) < @(¢) i.0. as t — «. Thus we will
assume that ¢(¢) < t. Choose y > 5b/d and let ¢, = exp{y*},

E,={|X.| = ¢(tz) forsome ¢E [tx, tr+1/2]).

Since ¢(t:) < t, < htrlog t./2 for large k, Lemma 5.7 applies and

* log p(t)

-1 _ 1y-1
P(E;) = clog p(t)log™ tr=c(y — 1) L_ T logtt dt.

Thus we know that ¥, P(E,) diverges. If j < &, then #.1/2 < #, and it is easy to use the
Markov property and Lemmas 5.5 and 5.7 to obtain

(6.1) P(E,E}) = P(E;)(1 + e)log ¢ (t)log™'t = O(P(E;)P(E)).

Note that the fact that the upper bound in Lemma 5.5 is uniform in the starting point is
used here when we start the process over at time ¢;.,/2. Now (6.1) means that we may use
the generalized Borel-Cantelli lemma and the zero-one law to see that infinitely many E,
occur with probability one and this is enough.

REMARKS. This proof does not apply in the completely asymmetric case since Lemma
5.6 does not provide a reasonable lower bound. An examination of the proofs of Lemmas
5.6 and 5.7 shows that they are also valid if | X;| = a is replaced by X; € [0, a] or



322 W. E. PRUITT AND JAMES TAYLOR

X, € [—a, 0]. This means that the integral test of Theorem 6.1 is also valid for the one
sided rate of escape problems, i.e. for

0=X,=¢()io. and —¢(t) =X,=0io.

We now compare the rate of escape with some similar known results. It follows from
Theorem 6.1 that the process will lie below exp {log t/log log ¢} infinitely often and this
function grows more slowly than any power. However, if one considers M, = supo<s=¢| X |,
then one has lim inf,_..M,/t log ¢ = c a.s. (Theorem 4 of [4]). This gives some idea of the
magnitude of the fluctuations. If we look for the large values of | X;|, these are not very
much larger than ¢ log ¢ but the best way to investigate this problem is to center the
process at the median. It follows readily from the scaling property that

med X; = htlog ¢t + t med X;.

The linear term is not important so we will center at At log ¢. Then one may prove in the
usual fashion (see, for example, Theorem 5 on page 294 of [3]) that for any increasing ¢

X, —
limsup;_ml . —htlogt] 0 . J dt <o
o(t) © pt) ==
Note that it is a consequence of this that
. | X:|
1 e =0 as.
10 SUPe—e 3 log t(log log ¢)'** as

for every ¢ > 0. But this also shows that the behavior of the large values of | X;| is quite
different for these processes than for the strictly stable processes. In particular, it is
possible to find an exact normalizing function for the lim sup problem for | X, |. If one takes
an increasing sequence of times # such that ), 1/log ¢ converges and then defines
o(t) =Y t log t:1(ts—1, ], it is easy to deduce from the above result that if 4 > 0, then

X, X,
lim sup;— == h, lim inf,_. == 0, as.

P(?) P(t)

7. Holes in the range of the process. In this section we obtain integral tests for
the existence of holes in the range of the process. The main tool is the missing probability
estimates of Theorems 5.1-5.4. Theorem 7.1 gives the result for the positive axis and
Theorem 7.2 for the negative axis. In the latter result, the completely asymmetric case
(h = 2/7) is excluded but there are trivially holes that are arbitrarily large in this case
" since the process is bounded below.

Erickson [2] has recently obtained results of this type for random walks that drift to
infinity. He also considers a local problem concerning small holes near zero for a class of
Lévy processes that includes the subordinators.

THEOREM 7.1. Suppose that ¢(x)] and let R denote the range of the process, i.e.
R = {x:x = X, for some t = 0}. Then

. 0 . * dx <
P{RN[n,np(n)] =Dio} = iff fm e

ProoF. First note that we may assume that ¢(x) 1 « since otherwise the integral
diverges and ¢(x) =< log log x for large x and the result for ¢ will follow from the one for
log log x. Next we may assume that

(7.1 @(x) < (log log x)%

To see this, let @i1(x) = ¢(x) A (log log x)? and suppose that the theorem has been proved
for ;. It is easy to check that the integral converges for ¢ iff it does for ¢; and clearly



ASYMMETRIC CAUCHY PROCESSES 323

R N [n, ngi(n)] # @ implies the same for . Finally, in the divergent case, there must be
a sequence n; = ni(w) such that

R N [ng, nepi(n)] = D, R N [ne, ne(log log ni)*] # 2.

Thus ¢1(n:) < (log log nx)® so that ¢;(n,) = ¢(n:) and this implies that [n., nyp (n:)] is also
missed.

Now we prove the theorem with ¢ subject to (7.1). This condition will make it possible
to verify the restrictions in Theorems 5.1-5.4. First suppose the integral converges and let

E, = {R N [2*", 2% (2%)] = @}.
By Theorem 5.1, we have for large %

2

2 20 20 " dx
2%p(2"klog 2~ kp(2")  klog2¢(2F) |, , x

P(Ey) <5

o dx
=20 J; L Tlogxg®@
By Borel-Cantelli this implies that
R N [2%*, 2% (2%)] % @
for all % sufficiently large. This is sufficient since
[2%*1, 2% (25)] C [, np(n)], 2% <n =< 2**.
Now suppose that the integral diverges and let
F, = {R N [2% 2%p(2")] = ).

Then Y, P(F}) diverges by using Theorem 5.1 and comparing with the integral as above. It
only remains to estimate P(F;F}) so that we may apply the generalized Borel-Cantelli
lemma. We assume that j < . Fix j and let
k1 = max{k: 2* < 2/p(2/)log(2/p(27))}.
For & < ki, we have by Theorem 5.1 if 2* < 279 (2’) or Theorem 5.3 otherwise that
2/ . i
P(F;Fy) = O(W) = O(2’7*P(Fy)) = O(2’~*P(F}))

so that YL P(F;F) = O(P(F})). If k > ki, then the second part of Theorem 5.3 applies
and we have P(F;F;) = O(P(F;)P(F})). Now we may apply the generalized Borel-Cantelli
lemma and the zero-one law to complete the proof.

THEOREM 7.2. Suppose that h < 2/7, ¢(x) 1 and R denotes the range of the process.
Then

P(R N [~p(n), -n]=®i.o.}=(1’ iff Jw(

where A = b/(b — d).

A-1
log x dx < o
log @ (x) xlogx =o

b

Proor. We will assume that ¢(x) < exp{log’c}. One may show that this involves no
loss of generality as in the proof of Theorem 7.1. For the convergent case, we let
x; = exp{e*} and

E, = {R N [—@(xr), —xp+1] = 2}
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w logx \\7' dx logxe \'7' (™ dx
s log ¢ (x) x log x log @ (xk+1) L, X log x

ek A-1
- (log q)(xk+l)> '

k

Then

v

(7.2)

Since for x € [Xi+1, X+2], we have
log x - log Xeve  _ e

3 = = ,
(7:3) log p(x) — log ¢ (xk+1) ¢ log @ (xx+1)

we see by (7.2) and (7.3) that the convergence of the integral implies that log x =
o(log @ (x)). Thus for x sufficiently large,

3logx=logpx) = x*=¢()
so that x°/¢(x) — 0. Thus
@(Xp+1) = Xrvz = @(Xe+1) — Xhe1 ~ @ (Xp1)
and then by Theorem 5.2, the last term in (7.2) is comparable to P(E;m): Since n €
[%r, X+1) implies that
[ (), —n] D [—p(xk), —Xk+1],

an application of Borel-Cantelli completes the proof of the convergent case. For the
divergent case, we let

F, = {R N [—¢(xr), —x2] = T}.

Essentially as in (7.2) we see that the integral over [x:, xx+1] is bounded by a constant
times P(F}). In order to make this estimate from Theorem 5.2, we need to know that
@(xx) = 2x;. There is no harm in assuming this since if ¢ (n) < 2n i.o., then for such n, by
Theorem 5.2 we have

P(RN[—¢(n), —n] =3} = P{RN[-2n,-n] =T} ~A"'>0

so that infinitely many of the intervals [—¢(n), —n] will be empty for n in this subsequence.
Thus we have P(F:) comparable to a piece of the integral so that Y, P(F}) diverges. It
remains to check the supplementary condition on P(F;F;). This seems to be a little harder
in this case and we will have to sum over both j and % in order to obtain the needed bound.
Define I={(j,k):1=j=<k=N} and

m(j) =min{k : x, = @ (x5)}, Gi={(j,hEI:k<m(j)}
G:={(J, ) EI:k=m(j)}, Gs={(,kEI:k>m(j)}.

It is not hard to check that on Gs, Theorem 5.4 applies so that P(F;F;) = O (P(F,)P(F)).
Thus

Ya,P(FiFy) = O((Ti: P(F))?).
Also we clearly have
Yo, P(F;Fy) = L)% P(F).
Finally on G; we note that x, < ¢@(x;) so that F;F; is the event that the interval
[—@(xx), —x;] is missed. By Theorem 5.2,

Y — log x; M — (—RA-1)
P(F;F;) = 0<<m) ) =0(e” 1P(Fk))~
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Now summing first on j gives a bound of order P(F}) so we have
Yo, P(FjFy) = O(Ti-1 P(Fy)).

The generalized Borel-Cantelli lemma and the zero-one law now complete the proof.

Note that the size of the holes in the range is quite different in the two directions.
Thus on the positive axis there will be infinitely many holes in the range of the type
[n, n log log n] but not of the type [n, n(log log n)'*¢]. On the negative axis there will be
infinitely many holes of the type [-n*, —n] for any &. In fact there will even be infinitely
many holes of the form

[—exp{log n(log log n)*~V}, —n].

A partial explanation for this phenomenon in that the process spends much more time on
the positive axis than on the negative axis. Using the scaling property and the asymptotic
behavior of the density, it is easy to see that

2g 1
P(X,=0) = PXi=—hlogt} ~ 51—
as t — o and then
t ¢ 2q t
E j 1(_00’0](Xs) ds = A P{Xs = 0} ds ~ Elog t :
0

Thus the expected proportion of time spent on the negative axis is going to zero like a
constant times log™'¢.

8. Measure of the range in a large interval. Since the process has positive
probability of hitting any point, the range of the process will have positive Lebesgue
measure. We have the following result on the growth of the Lebesgue measure of that part
of the range that is included in a large interval.

THEOREM 8.1. Let R denote the range of the process, | - | Lebesgue measure, and
p = q/p. Then as a — o,

(i) |R N[0, a]| log a/a — G in distribution where G is a geometric distribution
assigning measure (1 — p)p’ “ tojforj=1,2, ...
(i) |R N [—a, 0]| log a/a — H in distribution where H is geometric but assigns
measure (1 — p)p’ tojforj=0,1,2, +-- .
@ii)) |R N [—a, a]| log a/a — K in distribution where K assigns measure (1 — p)p’ to
2j+1forj=0,1,2, ...

The Lebesgue measure of the part of the range in each of these three intervals is thus
close to an integral multiple of a/log a, when a is large, with high probability. We first
discovered this surprising result by computing the moments of the distribution, using a
combinatorial identity of Euler, and then applying the continuity theorem for Laplace
transforms. In [12] we gave a more probabilistic proof which gives more intuition about
the result. Here we give an alternative shorter version of the proof of Theorem 3 of [12].
This proof uses techniques that are closely related to those which we will use for the study
of the local behavior of the sample paths in [13]. We state the result as:

THEOREM 8.2. If 7 = Tiow), the first hitting time of [a, ), R[0, 7] = {x:x = X, for
some t € [0, 7]}, then as a — »

@) |R[0, 71 N[0, a]| log a/a — 1 in probability;
(ii) | R[0, 7] N [—a, 0]| log a/a — 0 in probability.
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REMARK. Part (ii) is a consequence of the fact that the process does not usually go
very far in the negative direction before it hits [a, «).

ProoF. The proof is a relatively simple consequence of Lemmas 5.8 and 5.9. Let

a

Zy(a) = | R[0, 7] N [0, a]] = j 1{X; hits {x} before [a, ©)} dx.

0

We can estimate EZ;(a) by integrating the first estimate of Lemma 5.8. The contribution
to the integral from those x in [0, a/log?a] is of order a/log’a which is small compared to
the main term. Thus EZ(a) ~ a/log a. Similarly, using Lemma 5.9 and ignoring the set
where either x or y is in [0, a/log’a] or [a(1 — 1/log’a), a] or where | x — y| < a/log’a, we
obtain

a2
log’a

E{Z\(a)}® ~ ~ {EZ(a)}".
Thus we have that Z;(a) log a/a — 1 in mean square and therefore in probability. If we
consider

Z5(a) = | R[0, 1] N [—a, 0]],

then by the final part of Lemma 5.8 we have EZy(a) = O(a log log a/log’a) so that
Zs(a)log a/a — 0 in L, and hence in probability.

The argument that leads from Theorem 8.2 to the first statement of Theorem 8.1 is
given in [12]. The idea is that R N [0, a] is the union of % almost independent sets where
k is the number of upcrossings from [0, a(1 — 1/log?a)] to [a, ). The integer % is
geometrically distributed and the sets do not overlap substantially so that, as a — o, the
measure of the union is close to the sum of the measures of the pieces of the range obtained
on each pass from [0, a(1 — 1/log’a)] to [a, ). If we consider R N [—a, 0], the second part
of Theorem 8.2 says that the first pass to [a, «) will make no contribution. But now we
consider successive returns to [—a, a/log?a]; the geometric distribution of % remains the
same and now this interval behaves as in the first case. The final case comes from picking
up a set of measure approximately a/log a on the first pass to [a, ) when [—a, 0] does not
contribute anything significant. But on any succeeding passes the process will treat the
interval [—a, a] the same as [0, 2a] and so will pick up a set of measure approximately
2a/log 2a ~ 2a/log a.

COROLLARY 8.3. If X is completely asymmetric (p = 0), then
| R N[0, ]| log a/a — 1 in probability
asa— o,

REMARK. There is a similarity between this corollary and the prime number theorem.
However, we emphasize that there is not almost sure convergence in the corollary.
This is a consequence of Theorem 7.1 which guarantees large values of a for which
R N [a, aloglog a] = <. For such an a,

|RNI[O0, a]l =| R N[O, aloglog a]|

and so both of these cannot be near one after normalization. Nevertheless, if we take our
convergence to be convergence in probability, the random set R has many of the distri-
bution properties of the discrete set of prime integers. It would be of interest to know
which properties of the primes have appropriate continuous analogues for R.
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