The Annals of Probability
1983, Vol. 11, No. 3, 817-818

CALCULATION OF THE LAPLACE TRANSFORM OF THE LENGTH
OF THE BUSY PERIOD FOR THE M |G |1 QUEUE VIA
MARTINGALES

BY WALTER A. ROSENKRANTZ!

University of Massachusetts

In this paper we derive a new explicit formula for the Laplace transform
of the length of the busy period for the M | G | 1 queue by a direct martingale
method of independent interest. The method is probabilistic, of general
character and avoids tedious calculations with complex variables.

Let d denote the length of the busy period for an M |G |1 queue whose service time
distribution is denoted by H and the arrival process A (¢) is a Poisson process with intensity
parameter b > 0i.e: P(A(t) =J) = exp(—bt)(bt’/j!),j=0,1,2, - ... We assume of course
that the traffic intensity p = pb < 1, where p = [5y dH(y). Let ¢(a) = E (exp(—ad)) and
Y(a) = [Fexp(—ay) dH(y) denote the Laplace transforms of the busy cycle and service
time distributions respectively and set A (a) = b(¢(a)— 1) + a. Observe that A’(0) = by/(0)
+ 1 = —p + 1 5 0 by hypothesis so A™'(«a) exists in a neighborhood of the origin and in
particular for 0 < a < § > 0. The purpose of this note is to derive, by a martingale method
of independent interest, a new formula for ¢(a), namely ¢(a) = ¢(A"*()). For a different
formula as well as a different proof see Takacs (1962).

Let 2(¢) = (X&% S;) — t where the S; are iid.‘random variables with common
distribution H, so z(t) is a compound poisson process with jump rate b and drift rate equal
to —1. It is well known that if n(¢) is the virtual waiting time process for the M | G | 1 queue
and z(0) = x > 0 then 5(¢ A d) = z2(¢ A d) and in particular n(¢) = z(¢) on the set t < d.
Note that, with this definition of z, we have z(0) = 5(0) = S, which means we are taking
the time origin as the time of a customer arrival who finds the queue empty.

. (1) THEOREM. The process x(t) = exp[—A(a)(t A\ d)— an(t N\ d)] is a martingale.
Before proving this result let us derive the formula ¢(a) = Y(A™*(a)) as a consequence.

If 7(0) = x then x(0) = exp(—ax) and so by the martingale property

(2) E (exp[-A(a)(t A d) — an(t A\ d)]|n(0) = x) = exp(—ax).

Using the fact that p < 1 implies P(d < ) = 1 we see at once that lim, ..t A d = d and
therefore lim, ,.n(t A d) = n(d) = 0. Thus letting ¢t - o« on the left hand side of (2) and
applying the bounded convergence theorem (since a > 0 implies A(a) > 0) yields

3) E (exp(—A(a)d) | n(0) = x) = exp(—ax).
Since 1(0) = So and since S, has the distribution H it follows from (3) that

00

¢(A@) = E (exp(—A(a)d)) = f exp(—ax) dH(x) = y(a)

0
or, taking inverses,

) d(@) =Y\ ().
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Notice that E(d) = —¢'(0) = —y/(0)/N\'(0) = /(1 — p) which is the well known formula
for the expected length of the busy period.

Turning now to the proof of the Theorem 1 we begin with the well known result
concerning compound Poisson processes with drift that

E (exp[—a(z(t + u) — 2(t))]) = exp(au + ub(Y(a) — 1)) = exp(ul(a)).
Since 2 has independent increments, this shows that E(exp[—a(z(¢ + u) — 2(£))]| F () =
exp(uA(a)) where F (¢) = o(2(s); s < t). Hence y(t) = exp(—tA(a) — az(t)) is a martingale
with respect to the o-fields F (¢). Since d = inf{¢ = 0; z(¢) = 0} is a stopping time it follows

at once from Doob’s optional stopping theorem that y(¢ A d) = exp(—A(a)(t A d) —
z(t A\ d)) is also a martingale. But z(¢ A d) = n(¢ A d) and therefore x(¢) = y(t A d). The

proof is finished.
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