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ON THE SUPREMUM OF A CERTAIN GAUSSIAN PROCESS

By D. A. DARLING

Let W(t), 0 <t <1, be the Wiener process tied down at ¢ = 0, ¢ = 1; W(0)
= W(1) = 0. We find the distribution of supo<c<i W(£) — [ W(¢) d¢ in terms
of the zeros of the Airy function and the positive stable density of exponent %.
This corresponds to the distribution of the supremum of a certain stationary,
mean zero, periodic Gaussian process. It is also the limiting distribution of an
optimal test statistic for the isotropy of a set of directions, proposed by G. S.
Watson.

1. Statement of theorem. Let W(¢), 0 < ¢ < 1, be the “tied down” Wiener process,
W(0) = W(1) = 0. In this paper we find the distribution of the random variable

1
(1.1) G= SUuPo=t=1 W(t) —f W(t) dt.
0
THEOREM. Let0<a; <az< --- be the zeros of the function

(1.2) Jys(a) + J_13(a)
where J, is the standard Bessel function, and let Y(x) denote the density of the positive

stable distribution of exponent %; i.e.,

(1.3) j exp(—Ax)y(x) dx = exp(-A%?), A=0.
0

Then

(1.4) P(G < x) =4—f2;°=1ai¢<‘/§x), x=0.

n \ 3an

This is a reasonably explicit formula, but it seems difficult to get even qualitative
information from it. The writer is preparing a numerical tabulation.

The problem of finding the distribution of G, given by (1.1), was proposed by G. S.
Watson (1976); it is the limiting distribution of an optimal test statistic for the uniformity
of the distribution on a circle.

2. A stationary Gaussian process. With W(¢) as above define
1
(2.1) Y(¢) = W(¢t) — f W(r)dr, 0=t=<1.
0

Then Y (¢) is Gaussian, mean 0, and a straightforward calculation yields for its covariance
E(Y(t)Y(t2)) =r(ti — t2)

where

1 1\° 1

Consequently if Y*(¢) is the process Y (¢) of (2.1) extended periodically over —o < ¢ < o,
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it is seen that Y*(¢) is the stationary, mean zero, Gaussian process with the covariance
(2.2) likewise extended periodically. Plainly G = sup Y *(¢), and the theorem adds another
member to the small list of non-Markovian stationary Gaussian processes for which the
distribution of the supremum is known. According to Shepp and Slepian (1976), there were
two such cases known in 1976, to which these authors added a third.

3. Proof of the Theorem. Let X(¢), ¢t = 0 be the usual Wiener process, with X(0) =
0. We will have occasion to use X(t) “tied down” at 0 and ¢ with respective values a and b.
That is, we consider the process

X(T)=X(T)+a—%(X(t)—b+a), 0O<r=t¢

Since we are only going to evaluate expectations of functionals of X(7) over 0 < 7 < ¢, we
simplify the notation by using X(7) and conditioning these expectations by X(0) = a, X ()
= b. The absence of a condition at ¢ = 0 implies X(0) = 0.

In the definitions of the following functions, the variables x, y, 2, A, ¢t are all non-
negative.

M(t) = supo=-=:X(7), m(t) = info<,<.X(7), I4 = indicator function of the event A

t
(3.1) g(z,5,t) = E<eXp<—>\ J’ (z —X(r)) dT>I(M(t)<z) | X(8) = y)
o

(3.2) h(x,y,t) = E(exp(—}\f X(r) dT>I(m(t)>0) [X(0) = x, X(¢) = y) .
0

By noting that —X(¢) has the same distribution as X(¢), and considering the process z
— X(7) in (3.1), it is seen that
(3.3) gz, y,t)=h(z,z—y,1).

In (3.1), we integrate on z over 0 < z < «; by Fubini’s theorem we can integrate under
the expectation sign. Since

® 1
f exp(—Azt) <z dz = X exp(—AtM(t))
0

we get

(3.4) E(exp(—}\[tM(t) - f X(r) df]) “X(t) = y) =\t f g(z, v, t) dz.
0 0

Hence if we can determine the function g in (3.1) and evaluate the integral on the right
hand side of (3.4), we can find, by setting y = 0 and ¢ = 1, the Laplace transform of G given
by (1.1), i.e., E(exp(—AG)). .

We turn to the function A defined by (3.2), taking its Laplace transform with the
transition density of the Wiener process. Namely, define

” —x)?\ dt
(3.5) r(x,y) = f e h(x, y, t)exp<—u) e
0 2t v2mt
As a function of the variable y, r is the Green’s function of the differential equation
1d%

—§W+}\yr+sr=0, y#X,

i.e., r satisfies the differential equation except at y = x, r vanishes at y = 0, r € L3(0, ), r
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is continuous on 0 =< y < o, but dr/dy has a jump discontinuity of magnitude 2 at y = x.
Such a solution exists and is unique. For these points and a general account of the
distribution of functionals of the form [% V(X(7)) dr see M. Kac (1949, 1951), Darling and
Siegert (1956).

The Sturm-Liouville system

d2
(3.6) —57}+Ay¢= —sp, O0sy<o; @O0 =0, €& L0,
is known to have a discrete spectrum {si, sz, - - -} with
AZ/3
(3.7) Sp = — W On

where o, is the nth zero of the Airy function

(38) J1/3 (g 0’3/2) + J_1/3 <§ 03/2)

0 < o0; <03 < ... in which J, is the standard Bessel function. See E. Titchmarsh (1946),
Section 4.12, where this example is worked out in detail. If 1, s, - - - are the corresponding
normalized eigenfunctions of (3.6) (given explicitly in Titchmarsh, 1946), the Green’s
function is given by

=Yy, @n(X)Pn(y)

(3.9) r(x, y) P,

This series converges absolutely and, as a function of either variable, uniformly; Titchmarsh
(1946), Section 2.13 et seq., Kac (1951). Since (s — s,) " is the Laplace transform of exp(ts,)
we obtain from (3.5) and (3.9)
e Nowr (y —x)°
h(x, y, t) = Yn-1 €“"pu(x)p.(y)V2rt exp )
If we set y = 0, x = z and use (3.3), (3.7) we get

2/3

8(2,0,t) = h(z 2,t) = V2ut Yn-1 exp(—t}\zl/:")qﬁ(z),

and if we integrate on 0 < z < =, recalling that the @, are normalized eigenfunctions, we
obtain

o 2/3
f £(2,0,t) dz = V2at ¥ r-1 exp(—i}\——o-'i) .

1/3
o 2

Setting here ¢ = 1 and using (3.4), (1.1)

1
E(exp(—}\[M(l) - J’ X(7) d‘T]) 'X(l) = 0)
o

(3.10)
)\2/30n
= E(exp(—=AG)) = AvV27m Y71 exp| — 57 ) -

To conclude the proof of (1.4) we note that A E(exp(—AG)) is the Laplace transform
of the function P(G < x) while exp(—A%*%q,,/2/?) is the Laplace transform of the density of
02T/ /2, where T has the density ¥(x) determined by (1.3). From (3.8) we have a, =
(%) 62/%, where a, are the zeros of (1.2). Thus (3.10) yields

f e™P(G < x) dx = V27 3% E(exp(—}\&x" T))
o V8
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and finally

J; e™MP(G<x)dx =21 37T fo exp<%)¢(x) dx

4 e 1 V8 x
="3—J; e"21a—n¢<3an)dx

so that we obtain (1.4).
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