GAUSSIAN MEASURE OF NORMAL SUBGROUPS

By T. Byczkowski and A. Hulanicki

Wroclaw Technical University and Institute of Mathematics, Polish Academy of Science

Let $(\mu_t)_{t>0}$ be a Gaussian semigroup on a metric, separable, complete group G. If H is a Borel measurable normal subgroup of G such that $\mu_t(H) > 0$ for all t, then $\mu_t(H) = 1$ for every t. If, in addition, μ_t are symmetric, then $\mu_t(H) > 0$ for a single t implies $\mu_t(H) = 1$ for all t.

1. Let G be a separable complete metric group and let $(\mu_t)_{t>0}$ be a semigroup of probability measures on G. We say cf. e.g. [5], for locally compact groups, that $(\mu_t)_{t>0}$ is Gaussian if

(1)
$$\lim_{t\to 0} (1/t)\mu_t(U^c) = 0,$$

for every open neighbourhood of the identity e of G.

It is known cf. [2], [1], [8] that if G is Abelian and H is a Borel subgroup of G then for all t > 0 either $\mu_t(H) = 0$ or $\mu_t(H) = 1$. If moreover $(\mu_t)_{t>0}$ is symmetric then either $\mu_t(H) = 0$ for all t > 0 or $\mu_t(H) = 1$ for all t > 0.

The aim of this note is to show that this last statement holds also for non-Abelian G provided H is normal.

Because the measure induced by a symmetric Gaussian process with values in a locally compact group, on the product group, is embeddable into a Gaussian semigroup, as defined by (1), such a theorem might be of interest for G being the group of trajectories of a Gaussian process. Of course, having this application in mind, the assumption that H is normal is pretty restrictive. Unfortunately, the authors are unable to prove the theorem without it.

In [8] Tortrat introduced a notion of a p-stable measure on an arbitrary group G. For such a measure ν he has proved that for a Borel normal subgroup H either $\nu(H)=0$ or $\nu(H)=1$.

We show that for most non-commutative Lie groups G there exists a semigroup of symmetric Gaussian measures $(\mu_t)_{t>0}$ none of which is p-stable in the sense of Tortrat, whichever p. As a matter of fact, such a semigroup exists on the Heisenberg group and since this group is contained in very many non-commutative non-compact Lie groups as a Lie subgroup, the example is fairly general. The authors do not know of any non-commutative Lie group G and a symmetric Gaussian measure μ on G such that supp μ generates a dense subgroup of G which is p-stable in the sense of Tortrat.

2. Throughout the whole paper, G stands for a separable complete metric group. By a probability measure μ on G we mean a σ -additive Borel measure such that $\mu(G) = 1$. A sequence μ_n of probability measures converges weakly to μ if

$$\lim_{n} \int f \, d\mu_{n} = \int f \, d\mu,$$

for every continuous bounded function f on G. By $C_u = C_u(G)$ we denote the subspace consisting of all left uniformly continuous bounded functions on G.

The main tool used in this note is that of probability operators. For any probability measure μ on G we define the operator T_{μ} on C_{u} by the formula:

$$T_{\mu}f(x) = \int f(xy)\mu(dy), \quad f \in C_u.$$

Received September 1982.

AMS 1970 subject classifications. Primary 60B15; secondary 22E30.

Key words and phrases. Gaussian semigroups of measures, Trotter approximation theorem.

It is easy to see that $T_{\mu}f \in C_u$ and $T_{\mu_n}f \to T_{\mu}f$ uniformly, for every $f \in C_u$ if and only if $\mu_n \to \mu$ weakly. It is clear that

$$T_{\mu*\nu}=T_{\mu}T_{\nu}.$$

Now, suppose that $(\mu_t)_{t>0}$ is a convolution semigroup of probability measures on G, that is

$$\mu_t * \mu_s = \mu_{t+s}$$
, for all $t, s > 0$.

 $(\mu_t)_{t>0}$ is called continuous if $\lim_{t\to 0}\mu_t=\delta_e$. From what has been said before it follows immediately that if $(\mu_t)_{t>0}$ is continuous, then the corresponding family $(T_{\mu_t})_{t>0}$ of probability operators forms a strongly continuous semigroup of contractions acting on C_u considered as a Banach space under the supremum norm. This semigroup is uniquely determined by its infinitesimal generator N defined on its domain $\mathcal{D}(N)$ which is dense in C_u . It is evident that N commutes with left translations: $L_xNf=NL_xf$ for $f\in\mathcal{D}(N)$. Therefore, it is enough to consider the generating functional A,

$$Af = (Nf)(e), f \in \mathcal{D}(N).$$

If $f \in \mathcal{D}(N)$ then $Nf = AL_x f$.

The main tool in the proof of our theorem is the well-known:

TROTTER APPROXIMATION THEOREM. Let $T_t^{(n)}$ be a sequence of strongly continuous semigroups of operators on a Banach space X, satisfying the condition

$$||T_t^{(n)}|| \leq e^{Kt},$$

where K is independent of n and t. Let N_n be the infinitesimal generator of $T_t^{(n)}$. Assume that $\lim N_n x$ exists in the strong sense on a dense linear subspace D. Define

$$Nx = \lim_{n} N_n x, \quad x \in D$$

Suppose additionally that for some $\lambda > K$ the range of $\lambda I - N$ is dense in X. Then the closure of N is the infinitesimal generator of a strongly continuous semigroup T_t such that

$$T_{\cdot x} = \lim_{n \to \infty} T_{\cdot n}^{(n)} x \quad \text{for} \quad x \in X.$$

The other crucial point is the use of $L^{1}(\mu)$ space for μ defined by

$$\mu = \int_0^\infty e^{-t} \mu_t \ dt.$$

It is easy to check that μ is a probability measure. By L^1 we will denote the space of all Borel measurable and μ -integrable functions on G.

3. We begin with a preliminary result needed in the sequel.

PROPOSITION 1. Assume that $(\mu_t)_{t>0}$ is a continuous semigroup of probability measures on G. $(\mu_t)_{t>0}$ then acts, as a strongly continuous semigroup, on L^1 . If H is a Borel subgroup of G such that $\mu(H) > 0$ then $\mu_t(H) \to 1$, as $t \to 0$.

PROOF. Let f be a nonnegative Borel function on G. We then have

$$\int T_{\mu_s} f \, d\mu = \int_0^\infty \left\{ \int f(xy) \mu_s(dy) e^{-t} \mu_t(dx) \right\} dt = \int_0^\infty \int f(z) (\mu_t * \mu_s) (dz) e^{-t} \, dt$$

$$= \int_0^\infty \int f(z) \mu_{t+s}(dz) e^{-t} \, dt = \int_s^\infty \int f(z) \mu_t(dz) e^{-(t-s)} \, dt \le e^s \int f \, d\mu.$$

Consequently,

$$||T_{\mu_s}||_{L^1,L^1} \leq e^s$$
.

By the continuity of $(\mu_t)_{t>0}$ we have that $||T_{\mu_t}f-f||_{C_u}\to 0$, as $t\to 0$, for all $f\in C_u$. Since C_u is dense in L^1 and the uniform convergence is stronger than L^1 convergence, $T_{\mu_t}f\to f$ in L^1 , for all $f\in L^1$, as $t\to 0$.

Suppose now that $\mu(H) > 0$. Then we have

$$\mu_t(H)\mu(H) = \int_H \int 1_H(xy)\mu_t(dx)\mu(dy) = \int_H T_{\mu_t} 1_H d\mu \to \int_H 1_H d\mu$$

$$= \mu(H), \text{ as } t \to 0,$$

which gives the desired conclusion.

Now, suppose that $(\mu_t)_{t>0}$ and H are as in Proposition 1 and, additionally, that H is normal. Let π be the canonical homomorphism of G onto G/H. Endow G/H with the measurable structure induced from G by π . Let $\lambda_t = \pi(\mu_t)$. We have the following:

COROLLARY. Assume that $(\mu_t)_{t>0}$ and H are as above. Then

$$\lambda_t = \pi(\mu_t) = \exp tc(\gamma - \delta_H), \quad c \ge 0,$$

for a certain probability measure γ on G/H. Hence

$$\lim_{s\to 0}(1/s)(1-\mu_s(H))$$
 exists.

PROOF. λ_t is a semigroup of probability measures on G/H. Since $\mu(H) > 0$, $\mu_t(H) \to 1$, as $t \to 0$. Therefore, $(\lambda_t)_{t>0}$ acts on the space of all Borel measurable and bounded functions on G/H as a uniform semigroup:

$$\begin{aligned} \|T_{\mu_t} f - f\|_{C_u(G/H)} &= \sup_{x \in G/H} \left| \int f(xy)(\lambda_t - \delta_H)(dy) \right| \le \|f\|_{C_u(G/H)} \|\lambda_t - \delta_H\| \\ &= \|f\|_{C_u(G/H)}(\lambda_t|_{H^c} + (1 - \lambda_t|_H)) \\ &= 2(1 - \mu_t(H)) \|f\|_{C_u(G/H)}. \end{aligned}$$

This concludes the proof.

The next proposition clarifies somehow the role of the assumption $\mu(H) > 0$.

PROPOSITION 2. Let $(\mu_t)_{t>0}$, μ and H be as in Proposition 1. Assume additionally that for every t, μ_t is symmetric. Then $\mu_{t_0}(H) > 0$ for a certain t_0 implies that $\mu_t(H) > 0$ for all t > 0. Conversely, if $\mu(H) > 0$, then $\mu_t(H) > 0$ for all t > 0.

PROOF. Assume first that μ_t are symmetric and $\mu_{t_0}(H) > 0$. Then for all s such that $0 < s/2 < t_0$ we have

$$0<\mu_{t_0}(H)=\int \mu_{s/2}(x^{-1}H)\mu_{t_0-s/2}(d\dot{x}).$$

Therefore $\mu_{s/2}(x_1^{-1}H) > 0$, for an $x_1 \in G$. By symmetry of $\mu_{s/2}$ we also have $\mu_{s/2}(Hx_1) > 0$, hence

$$\mu_s(H) = \mu_{s/2} * \mu_{s/2}(H) = \mu_{s/2} \times \mu_{s/2}(\{(x, y); xy \in H\})$$

$$\geq \mu_{s/2} \times \mu_{s/2}(\{(x, y); x \in Hx_1, y \in x_1^{-1}H\}) = \mu_{s/2}(x_1^{-1}H)^2 > 0.$$

We have thus shown that

$$\mu_{t_0}(H) > 0$$
 implies $\mu_t(H) > 0$, for all $t > 0$.

This, of course, implies that $\mu(H) > 0$.

On the other hand, if $\mu(H) > 0$ then, by Proposition 1, $\mu_t(H) \to 1$, as $t \to 0$, so it is positive for $t \in (0, \varepsilon]$, $\varepsilon > 0$. However, it is easily seen that the set of all t > 0 such that $\mu_t(H) > 0$ is an additive semigroup. Since it contains $(0, \varepsilon]$, it must coincide with R^+ .

Now, we are able to formulate our main result.

THEOREM. Assume that $(\mu_t)_{t>0}$ is a Gaussian semigroup on G. If H is a Borel measurable normal subgroup of G such that $\mu_t(H) > 0$, for all t > 0, then $\mu_t(H) = 1$, for every t > 0. If μ_t are symmetric, then for a normal Borel subgroup H, $\mu_t(H) > 0$ for a single t > 0 implies $\mu_t(H) = 1$ for all t > 0.

PROOF. Let μ_s^H be the conditional probability of μ_s with respect to H. Since

$$\mu_s = \mu_s |_{H^c} + \mu_s(H) \mu_s^H$$

and $\mu_s(H) \to 1$, as $s \to 0$, μ_s^H converges weakly to δ_e , as $s \to 0$. Next, if we write

(2)
$$(1/s)[\mu_s - \delta_e] = (1/s)[\mu_s - \mu_s^H] + (1/s)[\mu_s^H - \delta_e]$$

then, because of equality

(3)
$$(1/s)[\mu_s - \mu_s^H] = (1/s)\mu_s|_{H^c} - (1/s)(1 - \mu_s(H))\mu_s^H$$

and the corollary, the first part on the right side of (2) is norm bounded, as $s \to 0$. If f is continuous, nonnegative, bounded and f(e) = 0 then

$$(1/s)[\mu_s - \delta_e]f \ge (1/s)[\mu_s - \mu_s^H]f$$
.

If additionally $f|_U = 0$, where U is a certain neighbourhood of e then

$$0 = \lim_{s \to 0} (1/s) [\mu_s - \delta_e] f \ge \lim_{s \to 0} (1/s) [\mu_s - \mu_s^H] f,$$

because $(\mu_s)_{s>0}$ is Gaussian. Because of the equality (3) and the fact that $\mu_s^H \to \delta_e$ weakly, as $s \to 0$, we obtain that

(4)
$$\lim_{s\to 0} (1/s)\mu_s |_{H^c} f = 0,$$

for all continuous, bounded f with the property that f vanishes on a neighbourhood U of e. Since such functions approximate uniformly functions vanishing at e, (4) implies that for all continuous bounded functions f

(5)
$$\lim_{s\to 0} (1/s)\mu_s|_{H^c} f = cf(e),$$

where $c = \lim_{s\to 0} (1/s)(1-\mu_s(H))$. Now, (5) implies that for $f \in C_u$

$$\lim_{s\to 0}(1/s)\mu_s|_{H^c(yf)}=cf(y)$$
, uniformly in $y\in G$.

Since the same is true for $(1/s)(1-\mu_s(H))\mu_s^H$, we finally obtain that for all $f \in C_u$

(6)
$$\lim_{s\to 0} (1/s) [\mu_s - \mu_s^H](yf) = 0, \quad \text{uniformly in } y \in G.$$

Now, let N be the infinitesimal generator of $(\mu_t)_{t>0}$ and let N_s^H be the infinitesimal generator of the semigroup $\exp((t/s)[\mu_s^H - \delta_e])$. We have just proved that for all $f \in \mathcal{D}(N)$

(7)
$$\lim_{s\to 0} N_s^H f = Nf \text{ strongly on } C_u.$$

We now prove that the above fact implies that $(\mu_t)_{t>0}$ is concentrated on H. To show this, we use once more the space L^1 . In the proof of Proposition 1 we obtained that $(\mu_t)_{t>0}$ acts as a strongly continuous semigroup on L^1 and $||T_{\mu_t}||_{L^1,L^1} \le e^t$. Similarly we can easily verify that also the family μ_s^H acts on L^1 and

$$||T_{u^H}||_{L^1L^1} \leq \mu_s(H)^{-1}e^s.$$

Using these facts we have the following estimate:

$$\| \exp((t/s)[T_{\mu_s^H} - I]) \|_{L^1, L^1} \le \exp(-t/s) \exp((t/s)\mu_s(H)^{-1}e^s)$$

$$= \exp((t/s)(\mu_s(H)^{-1}e^s - 1)).$$

Since $\lim_{s\to 0} (1/s)(\mu_s(H)^{-1}e^s - 1) = 1 + c < \infty$, the family of semigroups

$$T_t^{(s)} = \exp((t/s)[T_{u^H} - I]), s \in (0, 1]$$

has the property:

$$||T_t^{(s)}||_{T^{1}T^1} \leq e^{Kt}$$

for a K > 0, independent from s.

Let now \mathcal{N} and \mathcal{N}_s^H be infinitesimal generators of $(\mu_t)_{t>0}$ and $(\exp(t/s[\mu_s^H - \delta_e]))_{t>0}$, respectively, considered on L^1 . Let \bar{N} be the closure of N in L^1 . By a standard trick $\bar{N} = \mathcal{N}$. Indeed, $\bar{N} \subset \mathcal{N}$ and since for a $\lambda > 0$ both $\lambda - \bar{N}$ and $\lambda - \mathcal{N}$ are invertible and map $\mathcal{D}(N)$ onto L^1 , $\bar{N} = \mathcal{N}$. Moreover, by (7)

(8)
$$\lim_{s\to 0} \|\mathcal{N}_s^H f - Nf\|_{L^1} = 0 \quad \text{for} \quad f \in \mathcal{D}(N).$$

Since also for a $\lambda > 0$, $(\lambda - N)(\mathcal{D}(N))$ is dense in L^1 , (8), by the Trotter Approximation Theorem, gives

(9)
$$\lim_{s\to 0} \|T_{\mu}f - \exp((t/s)[T_{\mu}H - I])f\|_{L^{1}} = 0.$$

Putting $f = 1_H$, since $\exp((t/s)[\mu_s^H - \delta_e])$ are all concentrated on H, by (9) we get

$$\mu_t(H)\mu(H) = \int_H \int 1_H(yx)\mu_t(dx)\mu(dy) = \int_H 1_H d\mu = \mu(H).$$

Hence

$$\mu_t(H)=1.$$

4. A symmetric measure μ on a group G is called stable with the exponent p (p-stable) in the sense of Tortrat [8], if for the mapping

$$\sigma_n: G \ni x \longrightarrow x^n \in G$$

we have

$$\mu(\sigma_{n'}^{-1}M) = \mu^{*n''}(M)$$
 for all Borel M in G ,

with $n' = n^{\ell}$, $n'' = n^m$ and $p = m/\ell$.

The Heisenberg group H is defined as $C \times R$ with the multiplication given by

(10)
$$(z, s)(z', s') = (z + z', s + s' + 2Im\overline{zz'}).$$

It follows from (10) that

(11)
$$(z, s)^n = (nz, ns) \text{ for } n \in \mathbf{Z}.$$

Let X, Y be the elements of the Lie algebra of H which correspond to the one-parameter subgroups

$$\mathbf{R} \ni x \longrightarrow (x + i0, 0) \in \mathbf{H}$$

 $\mathbf{R} \ni y \longrightarrow (0 + iy, 0) \in \mathbf{H}$,

respectively.

Next let

(12)
$$L = (\frac{1}{2})(X^2 + Y^2).$$

In virtue of G. Hunt theory [7], L is the infinitesimal generator of a semigroup of symmetric Gaussian measures

$$(13) (\mu_t)_{t>0}$$

on H. Moreover, by e.g. [3]

(14)
$$\mu_t(dz, ds) = p_t(z, s) dz ds,$$

where p_t is a C^{∞} (in fact real analytic cf. [6]) function on **H**, and dz is the differential of the Lebesgue measure on **C**. Let

$$\alpha: \mathbf{H} \longrightarrow \mathbf{C} \times \mathbf{R}/\mathbf{R} = \mathbf{C}$$

be the homomorphism of H onto the additive group $C = \mathbb{R}^2$. Then

$$\partial \alpha(X) = \frac{\partial}{\partial x}, \quad \partial \alpha(Y) = \frac{\partial}{\partial y},$$

whence

$$\partial L = \frac{1}{2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$$

and, consequently,

(15)
$$\int p_t(z, s) ds = (1/(2\pi t)) \exp(-|z|^2/2t).$$

On the other hand, it is known cf. [4], [6] that

(16)
$$\int p_1(z, s) \ dz = p_1(\hat{0}, s) = (\cosh 2s)^{-1}.$$

For r > 0 let

$$\delta_r : \mathbf{H} \ni (z, s) \longrightarrow (rz, r^2 s) \in \mathbf{H}.$$

It is clear that δ_r is an automorphism of **H**. Moreover, it is easy to verify, cf. e.g. [3], that

(17)
$$p_t(z,s) = t^{-2}p_1(t^{-1/2}z,t^{-1}s).$$

Proposition 3. None of the Gaussian measures μ_t , t > 0, as defined by (13) on the Heisenberg group **H** is p-stable in the sense of Tortrat, whichever p.

PROOF. In view of (11) and (14), it suffices to show that for every r, t', t'' > 0 identity

(18)
$$r^3 p_{t'}(rz, rs) = p_{t''}(z, s)$$
 for all (z, s) in **H**

implies r = 1.

In virtue of (17) we rewrite (18) as

(19)
$$r^3t'^{-2}p_1(t'^{-1/2}rz, t'^{-1}rs) = t''^{-2}p_1(t''^{-1/2}z, t''^{-1}s).$$

In view of (15), integrating both sides with respect to s we get

$$\frac{r^3}{2\pi t'r} \exp\left[-\frac{r^2|z|^2}{2t'}\right] = \frac{1}{2\pi t''} \exp\left[-\frac{|z|^2}{2t''}\right],$$

which implies

$$(20) r^2t'' = t'.$$

On the other hand, by (16), integrating both sides of (19) with respect to z we get

$$rt'^{-1}\left(\cosh\frac{2rs}{t'}\right)^{-1} = t''^{-1}\left(\cosh\frac{2s}{t''}\right)^{-1},$$

whence

$$rt'' = t'$$
.

which by (20) implies r = 1, t' = t''.

Added in proof. In Arnold Janssen, Zero-one Laws for Infinitely Divisible Probability Measures on Groups, Z. Wahrsch. verw. Gebiete 60 119-138 (1982), the theorem of our paper has been proved under the assumption that the group G is locally compact.

REFERENCES

- [1] Вусzкоwska, H. and Вусzкоwski, T. (1981). A generalization of the zero-one law for Gaussian measures on metric Abelian groups. Bull. Acad. Polon. Sci. 29 187-191.
- [2] BYCZKOWSKI, T. (1981). Zero-one laws for Gaussian measures on metric abelian groups. Studia Math. 69 159-189.
- [3] FOLLAND, G. (1975). Subelliptic estimates and function spaces on nilpotent Lie groups. Arkiv for Math. 13 161-207.
- [4] GAVEAU, B. (1975). Holonomie stochastique et representations du groupe d'Heisenberg. C. R. Acad. Sci. Paris. Ser. A 280 571-573.
- [5] HEYER, H. (1977). Probability Measures on Locally Compact Groups. Springer-Verlag, Berlin.
- [6] HULANICKI, A. (1976). The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group. Studia Math. 56 165-173.
- [7] Hunt, G. (1956). Semi-groups of measures on Lie groups. Trans. Amer. Math. Soc. 81 264-293.
- [8] TORTRAT, A. (1981). Lois stables dans un groupe. Ann. Inst. Henri Poincare 17 51-61.

Institute of Mathematics Technical University Wybrzeże Wyspianskiego 27 Wrocław 50-370 Institute of Mathematics Polish Academy of Sciences ul. Kopernika 18 Wroczaw 51-617 Poland