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GAUSSIAN MEASURE OF NORMAL SUBGROUPS

By T. Byczkowskl AND A. HULANICKI

Wroclaw Technical University and
Institute of Mathematics, Polish Academy of Science

Let (u):>0 be a Gaussian semigroup on a metric, separable, complete
group G. If H is a Borel measurable normal subgroup of G such that . (H) >
0 for all ¢, then p.(H) = 1 for every ¢. If, in addition, u. are symmetric, then
pe(H) > 0 for a single ¢ implies p.(H) = 1 for all ¢.

1. Let G be a separable complete metric group and let (u):>o be a semigroup of
probability measures on G. We say cf. e.g. [5], for locally compact groups, that (u:):>o is
Gaussian if
(1) lim,_o(1/t)u(U°) = 0,

for every open neighbourhood of the identity e of G.

It is known cf. [2], [1], [8] that if G is Abelian and H is a Borel subgroup of G then for
all ¢t > 0 either p,(H) = 0 or p.(H) = 1. If moreover (p.);>o is symmetric then either y, (H)
=0forall¢>0oru(H)=1forall¢t>0.

The aim of this note is to show that this last statement holds also for non-Abelian G
provided H is normal.

Because the measure induced by a symmetric Gaussian process with values in a locally
compact group, on the product group, is embeddable into a Gaussian semigroup, as defined
by (1), such a theorem might be of interest for G being the group of trajectories of a
Gaussian process. Of course, having this application in mind, the assumption that H is
normal is pretty restrictive. Unfortunately, the authors are unable to prove the theorem
without it.

In [8] Tortrat introduced a notion of a p-stable measure on an arbitrary group G. For
. such a measure » he has proved that for a Borel normal subgroup H either »(H) = 0 or
v(H) =1.

We show that for most non-commutative Lie groups G there exists a semigroup of
symmetric Gaussian measures (i):o none of which is p-stable in the sense of Tortrat,
whichever p. As a matter of fact, such a semigroup exists on the Heisenberg group and
since this group is contained in very many non-commutative non-compact Lie groups as a
Lie subgroup, the example is fairly general. The authors do not know of any non-
commutative Lie group G and a symmetric Gaussian measure p on G such that supp p
generates a dense subgroup of G which is p-stable in the sense of Tortrat.

2. Throughout the whole paper, G stands for a separable complete metric group. By
a probability measure . on G we mean a o-additive Borel measure such that u(G) = 1. A
sequence p, of probability measures converges weakly to p if

limnjfd#n=ffdu,

for every continuous bounded function f on G. By C, = C,(G) we denote the subspace
consisting of all left uniformly continuous bounded functions on G.

The main tool used in this note is that of probability operators. For any probability
measure yu on G we define the operator T, on C, by the formula:

T.f(x) = f flxy)u(dy), f€ C..
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686 T. BYCZKOWSKI AND A. HULANICKI
It is easy to see that T,f € C, and T} f— T,f uniformly, for every f € C, if and only if
un —> p weakly. It is clear that
Tp=T,T..
Now, suppose that (p;):>o is a convolution semigroup of probability measures on G, that is
He* s = fhets, forall ¢ s>0.

(pte)e>0 is called continuous if lim,op; = 8.. From what has been said before it follows
immediately that if (g:)e>o is continuous, then the corresponding family (7T},):>o of proba-
bility operators forms a strongly continuous semigroup of contractions acting on C.
considered as a Banach space under the supremum norm. This semigroup is uniquely
determined by its infinitesimal generator N defined on its domain 2(N) which is dense in
C,. It is evident that N commutes with left translations: L.Nf = NL.f for f € 2(N).
Therefore, it is enough to consider the generating functional 4,

Af=(Nf)(e), fE€ Z(N).

If f € 2(N) then Nf = AL.f.
The main tool in the proof of our theorem is the well-known:

TROTTER APPROXIMATION THEOREM. Let T\ be a sequence of strongly continuous
semigroups of operators on a Banach space X, satisfying the condition

" Tt(n) u < eKt,

where K is independent of n and t. Let N, be the infinitesimal generator of T{™. Assume
that lim N,.x exists in the strong sense on a dense linear subspace D. Define

Nx = lim, N, x, x€ D.

Suppose additionally that for some A > K the range of A\I — N is dense in X. Then the
closure of N is the infinitesimal generator of a strongly continuous semigroup T: such
that

Twx =1im,T{"x for x€X.

The other crucial point is the use of L'(u) space for p defined by
n= J' ey, dt.
0

It is easy to check that y is a probability measure. By L' we will denote the space of all
Borel measurable and p-integrable functions on G.

3. We begin with a preliminary result needed in the sequel.
PROPOSITION 1. Assume that (ji)o is @ continuous semigroup of probability meas-
ures on G. (u):o then acts, as a strongly continuous semigroup, on L. If H is a Borel

subgroup of G such that p(H) > 0 then p.(H) —> 1, as t — 0.

PrOOF. Let f be a nonnegative Borel function on G. We then have

J' T, fdu =J' {j f(xy)ps(dy)e"/.tt(dx)} dt =J j F(2) (uexps) (dz)e™ dt
0 0

=J jf(Z)ﬂtﬂs(dZ)e_t dt =J jf(z)‘ut(dz)e—(t—s) dt < es‘[ fd[l,
0 s
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Consequently,
N Tl = €

By the continuity of (y.):>0 we have that || T, f — f|lc,— 0, as ¢ — 0, for all f€ C,. Since C.
is dense in L' and the uniform convergence is stronger than L' convergence, T}, f— fin L',
forall f€ L', as t — 0.

Suppose now that u(H) > 0. Then we have

,U«t(H)}I.(H)=f jly(xy)u,(dx)p(dy) =J’ T 1u dp.—)f 1z dp
H H H

=u(H),ast— 0,

which gives the desired conclusion.

Now, suppose that (u).~0 and H are as in Proposition 1 and, additionally, that H is
normal. Let = be the canonical homomorphism of G onto G/H. Endow G/H with the
measurable structure induced from G by . Let A, = 7 (u). We have the following:

COROLLARY. Assume that (u.):>0 and H are as above. Then
Ay =m(u) = exp te(y — 8x), ¢=0,
for a certain probability measure y on G/H. Hence
lim,_,0(1/8)(1 — ps(H)) exists.
PROOF. A,is a semigroup of probability measures on G/H. Since u(H) > 0, p,(H) — 1,

as t— 0. Therefore, (A ):>0 acts on the space of all Borel measurable and bounded functions
on G/H as a uniform semigroup:

ff(xy)(h = 0u)(dy) | = || fllcuc/m IAe — 8u ||

| T, f = fllcuc/my = supsec/u

= “f"C.,(G/H)O\t |ge+ (1 — Ale))
=21 — pe(HD| £ lle, /2

This concludes the proof.
The next proposition clarifies somehow the role of the assumption u(H) > 0.

PROPOSITION 2. Let () e>0, p and H be as in Proposition 1. Assume additionally that
for every t, u. is symmetric. Then p, (H) > 0 for a certain t, implies that p.(H) > 0 for all
t > 0. Conversely, if u(H) > 0, then p(H) > 0 for all t > 0.

PrOOF. Assume first that p, are symmetric and . (H) > 0. Then for all s such that 0
< 8/2 < ty we have

0 < p(H) = f Bor2(x T H )y —s/2(dX).

Therefore p,2(x7'H) > 0, for an x; € G. By symmetry of w2 we also have ws/2(Hx;) > 0,
hence

ps(H) = posaxpsa(H) = pss2 X ps2({(x, ¥); xy € H})

= o2 X po2({(x, y); x € Hxr, y € 217" HY) = poja(a'H)* > 0.
We have thus shown that
wi,(H) >0 implies u.(H) >0, forall ¢>0.

This, of course, implies that u(H) > 0.
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On the other hand, if w(H) > 0 then, by Proposition 1, u.(H) — 1, as ¢ — 0, so it is
positive for ¢ € (0, €], ¢ > 0. However, it is easily seen that the set of all £ > 0 such that
p(H) > 0 is an additive semigroup. Since it contains (0, €], it must coincide with R™.

Now, we are able to formulate our main result.

THEOREM. Assume that (i)eo is @ Gaussian semigroup on G. If H is a Borel
measurable normal subgroup of G such that p.(H) > 0, for all t > 0, then p.(H) = 1, for
every t > 0. If i, are symmetric, then for a normal Borel subgroup H, u.(H) > 0 for a
single t > 0 implies p.(H) = 1 for all t > 0.

ProOOF. Let pZ be the conditional probability of u, with respect to H. Since
fo = s | e + po(H)pd'

and p(H) — 1, as s — 0, p& converges weakly to 8., as s — 0. Next, if we write

2) (1/8)[ps — 81 = (1/9)[ps — i1 + (1/9)[s — &c]
then, because of equality
(3) (1/8)[ps — pF1 = (1/8)ps |- — (1/8)(1 — po(H))ed'

and the corollary, the first part on the right side of (2) is norm bounded, as s — 0. If fis
continuous, nonnegative, bounded and f(e) = 0 then

1/8)[ps — 81f= (1/s)[ps — pé =1f.
If additionally f|v = 0, where U is a certain neighbourhood of e then
0= lin)s_.o(l/s)[lo'«s - se]f2 ljlns—>0(1/s)[l-‘fs - I‘i?]f’

because (us)s>0 is Gaussian. Because of the equality (3) and the fact that ¥ - 8, weakly,
as s — 0, we obtain that

4) limgo(1/8)s |- f = O,

for all continuous, bounded f with the property that f vanishes on a neighbourhood U of
e. Since such functions approximate uniformly functions vanishing at e, (4) implies that for
all continuous bounded functions f

(5) lim;_o(1/8)us |- f = cf (e),
where ¢ = lim,_,o(1/5)(1 — ps(H)). Now, (5) implies that for f € C.
lim,_o(1/8)pis |7+, f) = ¢f (¥), uniformly in y € G.
Since the same is true for (1/s)(1 — u(H ))p,f, we ﬁnally obtain that for all f € C.,
(6) lim,_o(1/8)[ps — ps1Gf) = uniformly in y € G.

Now, let N be the infinitesimal generator of ()0 and let N be the infinitesimal generator
of the semigroup exp((¢/s)[uF — 8.]). We have just proved that for all f € 2 (N)

(7) lim,_oNEf = Nf strongly on C..

We now prove that the above fact implies that (u):>o is concentrated on H. To show this,
we use once more the space L'. In the proof of Proposition 1 we obtained that (i):>0 acts
as a strongly continuous semigroup on L' and || T}, ||;: < e’. Similarly we can easily verify
that also the family u¥ acts on L' and

" Tp,f’ "LlyLl = [.Ls(H)_les.
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Using these facts we have the following estimate:
llexp((t/8)[ T, — INpy 1 = exp(—t/s)exp((t/s)u(H) ')
= exp((t/s) (us(H) "¢’ — 1)).
Since lim,_o(1/s) (us(H)"e* — 1) = 1 + ¢ < o, the family of semigroups
T = exp((t/s)[T,= — I), s € (0,1]
has the property:
I T o = €%,

for a K > 0, independent from s.

Let now 4 and A¥ be infinitesimal generators of (u:):>0 and (exp(¢/s[p — 8c]))eso,
respectively, considered on L'. Let N be the closure of N in L'. By a standard trick
N = Indeed, N C 4 and since for a A > 0 both A — N and A — /" are invertible and map
9(N) onto L', N = 4 Moreover, by (7)

8) limg_o|| /¥ — Nf|l,, =0 for fe 2(N).

Since also for a A > 0, (A — N)(2(N)) is dense in L, (8), by the Trotter Approximation
Theorem, gives

9) tim,_o|| Ty, f — exp((¢/$)[ T,z — I fll: = 0.
Putting f = 1, since exp((¢/s)[uZ — 8.]) are all concentrated on H, by (9) we get

pe(H)p(H) = J f 1a(yx)p(dx) n(dy) =f 1z dp = p(H).
H H

Hence
w(H) = 1.
4. A symmetric measure p on a group G is called stable with the exponent p (p-stable)
in the sense of Tortrat [8], if for the mapping
0,:GDx—> x"EG
we have
w(on*M) = p** (M) for allBorel M in G,

withn’ =n’, n” =n™ and p = m/¢.
The Heisenberg group H is defined as C X R with the multiplication given by

(10) (z,8)(2',s)=(z+2',s+s" + 2Im;).
It follows from (10) that
(11) (z,8)" = (nz,ns) for ne Z.

Let X, Y be the elements of the Lie algebra of H which correspond to the one-parameter
subgroups

Rox——> (x+i0,00€H
Roy—> (0+iy,0)€H,

respectively.
Next let

(12) L= (%)(X*+ Y.
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In virtue of G. Hunt theory [7], L is the infinitesimal generator of a semigroup of symmetric
Gaussian measures

(13) (e)e=o0
on H. Moreover, by e.g. [3]
(14) pe(dz, ds) = pi(z, s) dz ds,

where p; is a C* (in fact real analytic cf. [6]) function on H, and dz is the differential of the
Lebesgue measure on C. Let

aH—>CXxR/R=C
be the homomorphism of H onto the additive group C = R? Then

ad ad
da(X) =35 da(Y) Tk

whence
1/8%> a2
L=-|—+
2 (ax2 W)

and, consequently,

(15) fpt(z, s) ds = (1/(2w))exp(—| z [*/2¢).
On the other haﬁd, it is known cf. [4], [6] that

(16) f pi(2, 8) dz = p,(0, s) = (cosh 2s)7".
Forr > 0let

§:HD (2,8) ——> (rz, r’s) e H.
It is clear that 8, is an automorphism of H. Moreover, it is easy to verify, cf. e.g. [3], that
(17) P2, 8) =t 2pi (£ %2, t71s).

ProPOSITION 3. None of the Gaussian measures p:, t > 0, as defined by (13) on the
Heisenberg group H is p-stable in the sense of Tortrat, whichever p.

ProoF. In view of (11) and (14), it suffices to show that for every r, ¢/, t” > 0 identity
(18) r’py(rz, rs) = pi-(z,s) forall (z,s) in H

implies r ='1.
In virtue of (17) we rewrite (18) as

(19) r3t'2p,(t'2rz, t'7'rs) = t"2p, (t""?2, t"'5).

In view of (15), integrating both sides with respect to s we get
r’ exol rlzff] 1 exol — |z
2atr 0| T T2t | T 2wt P T a7 |

(20) rit” =¢.

which implies

On the other hand, by (16), integrating both sides of (19) with respect to z we get

- ors\ Y 25\~
rt’”‘{cosh—|] =t cosh—] ,
t t
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whence
rt ” — tl’

which by (20) implies r =1, ¢’ = ¢”.

Added in proof. In Arnold Janssen, Zero-one Laws for Infinitely Divisible Proba-
bility Measures on Groups, Z. Wahrsch. verw. Gebiete 60 119-138 (1982), the theorém of
our paper has been proved under the assumption that the group G is locally compact.
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