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STRONG LAWS FOR INDEPENDENT IDENTICALLY DISTRIBUTED
RANDOM VARIABLES INDEXED BY A SECTOR

By ALLAaN GuT

Uppsala University

For simplicity, let d = 2 and consider the points (n, m) in Z2, with 6m
=<n =< 7 'm, where 0 < 8 < 1. For i.i.d. random variables with this set as an
index set we present a law of the iterated logarithm, strong laws of large
numbers and related results. We also observe that (and try to explain why)
the martingale proof of the Kolmogorov strong law of large numbers yields a
weaker result for this index set than the classical proofs, whereas this is not
the case if the index set is all of Z%, d = 1.

1. Introduction. Let Z%, d = 1, be the positive integer d-dimensional lattice points
with coordinate-wise partial ordering, <. Points in Z% are denoted by m, n etc. Further,
|n| is used for [[%: ni, n — « means that n; — o for all i (cf. Gut, 1978, 1980), the limit
superior of {@.; n € Z%}, lim supan, is to be interpreted as inf,Supy<m@m and similarly for
the limit inferior (cf. Gabriel, 1975, 1977).

Let {Xs; n € Z9} be independent, identically distributed (i.i.d.) random variables and
set Sy = Y x<nXk. The law of the iterated logarithm asserts that

(1.1) lim sup, (lim inf,) Sa = Vd (-Vd) as.
v20?|n| log log [n|

provided EX; = 0 and EX3 = ¢ < » for d = 1 and further that
X2 . (log*| X, |)*!
log™ log™| X,|

The result in this form is due to Hartman and Wintner (1941) for d = 1 and Wichura
(1973) for d = 2. For the converse, which states that, if

(1.2) < o for d = 2.

(1.3) P(lim supni—-—< oo) >0,
v|n|log log|n|
then EX? < » and EX; = 0 for d = 1, see Strassen (1966) and (1.2) holds and EX; = 0 for
d = 2, see Wichura (1973).
As is pointed out in Wichura (1973), it is interesting to note
a) the discontinuity in the moment requirements for d = 1 and d = 2 and
b) that the converse is immediate when d = 2 since

P(|X,| >ev|n|log log|n| i.0.) = 0 for some ¢ > 0

is equivalent to (1.2) (which for d = 1 does not imply that the variance exists).

Furthermore, Theorem 2 of Wichura (1973) implies that if the summation index tends
to infinity along a ray, then the conditions for the law of the iterated logarithm are the
same as in the one-dimensional case. (To be precise, the theorems in Wichura (1973) also
cover more general cases and they are stated as functional limit theorems.)

The main purpose of this paper is to prove the law of the iterated logarithm in the i.i.d.
case when the index set is a sector. This is done in Section 3. For d = 2 this index set
consists of all points with positive integer coordinates “between” the lines y = fx and y =
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07'.x for some 6, 0 < 8 < 1, (a formal definition is given in the next section) and it turns
out that the result is the same as for the index set Z. The proofs are based on estimates
of tail probabilities for partial sums. In Section 4 we point out that these techniques can
be used to prove a law of the iterated logarithm when the summation index tends to
infinity along a ray and we show how the upper class result in (1.1) can be obtained by the
same method when d = 2. Section 5 is devoted to sectorial strong laws of large numbers
and Section 6 to convergence rate results. Section 7, finally, contains a remark on why'the
proof of the Kolmogorov law of large numbers using martingale theory gives a weaker
result compared to the classical proofs when the index set is the sector and why this is not
the case when the index set is Z%, d = 1.

We close this section by mentioning that it follows from the computations below that
the results for the sector remain valid for any index set consisting of all points with positive
integer coordinates in a closed convex cone contained in R% U {0}.

2. Preliminaries. For d = 2 we define the sector (Gabriel, 1977, or wedge Smythe,
1974) T4(of Z4) as
Ti={n=(u, - ,m)EZL0ism<0"'n for i#ji,j=12-..,d)},

where 0 < 6 < 1 (cf. Gabriel, 1977, page 891).
The number of points in this index set is defined by

(2.1) M;(n) = Card{k € T¢; k <n}.
Note also that |n| = Card{k € Z%; k < n}.
In the sequel we shall use 7(j), j = 1 to denote the points (j, 1, 1, ---, 1).

We also need results like Lemma 2.1 of Smythe (1974) (cf. also Lemma 2.1 of Gut, 1978,
and Lemma 2.1 of Gut, 1980).

LemMA 2.1. For any random variable, X, the following are true.

(2.2) E|X|"< o0& Yaery|n | .P(|X|>|n|*) < for all a, r > 0.

(log*| X|)™

2, B 177 d m, e e

©3) 10g+10g+|X|<°°=>Znen(loglnl) P(|X|> ¥|n|log*log™|n|) < e,
m=012....

Another tool will be the Lévy-inequalities and an extension of them, the proofs of which
are immediate. For Z%, see Paranjape and Park (1973), Theorem 1, Gabriel (1975) and
Gut (1980), Lemma 2.3.

LEMMA 2.2. a) Let {Xy; k € T} be independent symmetric random variables and set
Sy(n) = Yxerik<nXx. Then

(2.4) P (maxkerik<nSs (k) > A) < 2¢. P(Sp(n) > )

(2.5) P (maxkeryx<a| S (k)| > A) = 2%.P(|S;(n)| > A).

b) Let {Xx; k € T4} be i.id. random variables with mean 0 and variance o’ < w, Then
(2.6) ; P (mazkeryk<nSs(k) > A) < 29 P(Sym) >\ — dov2|n])

2.7) P(maxkeryk<n| So(k)| > ) < 29.P(|Ss(m)| > A — dov2|n]).

REMARK. The last term in (2.6) and (2.7) can be improved to do v2Mjy(n) .

The following result will be our final prerequisite.
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LEMMA 2.3. Let {X,; n € Z%} be iid. random variables and set Sp = Yx<nXx and
S(n) = Y1 X.(,. Suppose that EX; = 0 and EXi= ¢’ < ». If

, (log*|Xy|)¢™!

(2.8) EXl-m

then

2.9) Yaln|7-P(|Sa] > ¢ VIn|log*log™ [n]) < ®, e > 0v2d
and, for c>1and y>0, -

(2.10) Y5174 P(|S([ye’]) | > eVelogTlogTe)) < 0, &> ov2dy.

For d = 1, (2.9) has been proved in Davis (1968a), Theorem 4 and for d = 2 in Gut
(1980), Theorem 6.2. (2.10) follows by using estimates like in Gut (1978, 1980).

3. The LIL in the sector. In this section we shall prove the law of the iterated
logarithm for ii.d. random variables whose index set is a sector as defined above. For
technical reasons, however, we let {X,; n € Z%} be i.i.d. random variables. Further, let
Ss(n) = Ykerik<n Xi, S(n) = ¥ 3-1 Xu(; and set s%(n) = Var Sy(n), whenever 0% = Var X;
is finite. This means for example in view of (2.1) that

3.1) Sy(n) has the same distribution as S (M, (n))
and
(3.2) si(n) = 62 Mym) if o’< .

THEOREM 3.1. If EX:= 0 and 0% = Var X; < o, then

. Sy(n)
(3.3) lim supy =1 as.
V2 sZ(n) log log s?(n)
(3.4) lim inf, So(m) =-1 as
V2 s3(n) log log s%(n)

| Se(n) |

< o with positive probability, then EX;
v'Mj(n) log log Ms(n)

Conversely, if lim supy

=0 and EX%< .

Proor. To prove the sufficiency, it is' clearly enough to prove (3.3). The proof is
related to proofs in Davis (1978a, 1978b) and Gut (1978, 1980). To simplify the proof, we
treat all indices appearing in Sy(-) and S(-) as if they were integers. The technicalities
involved can otherwise be overcome as in the above cited papers.

To demonstrate the idea of the proof, we first prove that the limit superior is finite,
more precisely, less than a constant (> 1), after which the method is refined to obtain the

correct upper class result. _ _
Let ¢ > 1 be given and i, so large that ¢*§%™' > ¢?*"7§?""! + 1 for i = iy. Define

(3.5) Ag(Q) = (k€ T; ¢ V9% = | k| < ¥}, i=1,2,-.-.

The sets {A4(i)} =1 divide the index set into disjoint “curved slices” (cf. Gut, 1980, page
304). The finiteness of the limit superior in (3.3) follows from the Borel-Cantelli lemma
once we have established that

(3.6) Yivi, P(supkea,m | Se(k)/ V2 s2(k) log log s (k) |>e) <o

for some & > 0.
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Ifk € T% and | k| = ¢%“~2¢%", then, by homogeneity, M, (k) = £(6)- ¢~V where g(6)
is a positive function of §, 0 < § < 1, which is independent of c. Thus,
P (supkeas | So(k)/ V2 s§(k) log log s3 (k)| > ¢)
< P(supkea,w| So (k)| > ev2 0%g (6)c™“ "log log 6°g (8)c

d(i—l))

< P(supxeas| So(k)| > € ¢ V2 0’g (6)c ™ Vlog log ¢**7") .

for i =i, = io. .

At this point we need, as in Gut (1978, 1980), a “dominating point,” i.e. some m € T,
such that k < m for all k € A,(i). One such point is (c’, ¢/, - - -, ¢’) and by using this fact
together with the Lévy-inequality (2.7), the last probability above is majorized by

(3.7) 2¢.P(| Sy(c’, -+, )| > ec™1v/20%2 (0)c® D log log ¢™ P — dov2c™).

Since
(3.8) x My(x, -+- ,x) = V), say, asx— »,
we can choose iz = i1, such that
(3.9) cd-0.V(9) = My(ct, -+, ¢) = c®@D. V() forizi,.
Therefore, in view of (3.1), the probability in (3.7) is majorized by
P(maxen. vgyeneetn.vin| S(n) | > ecV2072(B)c™ 7 log log ¢0 » — do2¢%),

which by (the 1-dimensional) extension of the Lévy-inequalities is majorized by
2P (| S(c%*V. V(9))| > ec'V207g(8)c**Vlog log T _ dg/2¢% — av2c7 V.V (9))

= 2.P(|S(c™*P.V(9))| > ec™* V207 ()™ "log log ¢“**?)

fori=i3=1is.
We have thus proved that

Y5, P(supkeam| So(k)/ V253 (k)log log 57 (k)| > €)
<24*1y2, P(|S(c% V(8)| > ec™ V207 (0)c"log log c*),

which, in view of (2.10), is finite for ec ™ g (6)/V(6) > 1.

Since ¢ may be chosen arbitrarily close to 1, this establishes that the limit superior in
(3.3) is at most equal to vV (6)/g(f) > 1 (and thus finite).

We now turn to a refinement of the above argument to obtain the correct upper class
result. To this end we cut all the slices Ay (i) along the hyperplanes x; = 6*"-x; for all i, j
=1 ..-,di#jand k=0,1, ... ,m — 1, where m is some large integer. Each slice Ay (Z)
is thus divided into a fixed number, N, say, of small pieces A¢(i,j) j =1, -+ -, N, such that
M, (n) is “approximately constant” for all n belonging to a given A4(i,j) and approximately
equal to My (n*(i, j)) where n*(i, j) is a point dominating all points in A4 (i, j). The sum in
(3.6) is then majorized by

(3.10) YN, Y5, Psupkea,| So (k)/v2s3(k)log log s5 (k)| > ¢)

and we wish to show that this sum is finite for all ¢ > 1.
Fix j, 1 =j =< N. Since s5(k) = 0®- M,(k) it follows from the arguments preceding (3.10)
that

(3.11) ™Y My(m* (i, j)) < Myp(k) = My (0* (i, /)

for all k € Ay(i,j) and i = i;.
Thus,
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P(supkea,i,| So(k)/v2s3 (k)log log s3 (k)| > €)
=< P(supkea,i| Ss (k)| > ec™271.09*262. My (n* (i, j))log log 62M, (m* (i, 5)))

< P(supkeay(i| So (k)| > ec~¥2720%?™/26*. M, (n* (i, j))log log M, m*(i, j)))

= 2. P(|S(My(m*(i, j)))| > ec™¥*720%*™ 26" M, (m* (i, j))log log M, (n*(i,j)))

for i = is = max{is, is}.
Set n; = My(n*(i, j)). We have thus established that (recall that j is fixed)

T2, P(supkeai| Ss(k)/v2s5(k)log log s5(k)| > ¢)
=232, P(|S(n:)| > e-c™¥27%9%*"26n, log log n.)
which, by (2.10), is finite for all ¢ > c¢%?*%9~%?™ since, by the homogeneity of the

construction, the dominating points lie along a ray and {n;} -, increases geometrically.

Since we have convergence for each j it follows that the sum in (3.10) converges for all
&> c¥2*%9~4/? and since c can be chosen arbitrarily close to 1 and m arbitrarily large, the
desired conclusion follows.

We have thus proved the upper class result, i.e. we have established that the limit
superior in (3.3) is =< 1.

For the lower class result, i.e. the opposite inequality, we note that

Sy(n) Se(n, n, ---,n)

= lim supn—o .
V2sZ(n)log log sZ(n) V2si(n, --- ,n)loglog s2(n -+, n)

(3.12) lim sup,

Now, by interpreting Sy(n, - -+ , n) as a sum of all X:es preceding (n, --- , n) which are
inside T'¢ and of zeroes for all points in Z%\T'§ we can apply Wichura (1973), Theorem 1,
to conclude that the last limit superior equals 1 and we are done.

To prove the necessity we observe that the assumption in particular implies that

Isd(29""2)| <°°)>0.
VM,(27, ..., 2")log log My(2", - - ., 27)

(3.13) P(lim SUPr— o

Set Yp(n) = Sp(2", -+, 2" — Sp(2"7, -.., 2" ), n=1,2, ... . It follows that
| Yo ()| <00>>0,
VM, (2", .- -, 2™)]og log Mp(2", - - - , 2")

P (hm SUP7 o

and hence, by independence and Borel-Cantelli, that

Sn=1 P(| Yo(n)| > evM, (2", ..., 2")log log M, (2", --- , 2")) < o for some ¢ > 0

and finally, since My(2", -- ., 2") < 2™, that
(3.14) Y1 P(| Yo(n)| > e v2"log log 2*%) < o for some & > 0.

Now, suppose that the variables have a symmetric distribution. It follows from (3.8)
that

(3.15) 27(M,(2", -+, 2") — My(2"7Y, -+, 277Y) > V(0)-(1 - 27%) as n— .

This, together with the ii.d. assumption, the symmetry and Lévy’s inequality, imply, for
large n, that

P(] Ys(n)| > ev2"log log 2%)
=P(|S(M,(2", ---,2") — My(2"7", ..., 2"7"))| >ev2"log log 2")
= Yo P(SUPh<My2. .. 2 My, 22| S(B) | > e v2™¢log log 2nd)
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= % P(supr=a/2v@)-a-2-2+¢| S(k) | > e v2"log log 2™
= % P(supe=@/svez| S (k) | > ev2"log log 2)

= % P(supkeam| S (k) | > ev2™log log 2™)

= % P(supreac| S (k)/VE log log k| > &),

where A(n) = {k; 3/8-V(0).2"7V < k< 3/8.V(f)-2").
In view of (3.14) we therefore conclude that

(3.16) Y -1 P(supream|S(k)/Vklog log k| > &) < o for some & > 0
and thus, by the Borel-Cantelli lemma that
(3.17) P(|S(k)| >evkloglog kio.) =0,

which implies that EX,) = 0 and EX%) < « (and hence that EX; = 0 and EX < ») by
the converse to the law of the iterated logarithm (Strassen, 1966) applied to {S.}7-1.

This terminates the proof of the necessity in the symmetric case. The desymmetrization
is standard (cf. Gut, 1978, 1980) and is omitted.

4. Two remarks on the LIL. One consequence of Wichura (1973), Theorem 1 (see
also Pyke, 1972, Theorem 5) is a law of the iterated logarithm when n tends to infinity
along a ray, i.e. when we only consider points (in Z2 or in T') of the form

(kni, kng, ++« ,kng), k=1,2, ... with ny, ..., ny fixed.

(To be precise, only the sufficiency parts are included in Wichura, 1973.)

The upper class results can alternatively be proved by the methods of the previous
section. Note also that the limit superior along a ray in T is at most equal to the limit
superior in (3.3).

The necessities follow just as in the previous section. Note that, in fact, the necessity in
Theorem 3.1 was proved via the “diagonal ray”.

- Next, we shall indicate how the upper class result in (1.1) can be deduced from the
methods above and estimates made in Gut (1980).

Thus, {Xn; n € Z%} are i.i.d. random variables with mean 0 and variance o> < o, S, =
Y k<nXx and Var S, = |n|-¢%

Let ¢ > 1 be given and define i so large that ¢'*' > ¢’ + 1 for i = iy. As in Gut (1980),
page 303-304, we define

(4.1) E; = E;(c) = {k; exactly j of the components are < c¢®},j=0,1,---,d
and
4.2) A ={kc '=s|k|<c}fori=12....
Then (cf. Gut, 1980, page 305)
Y i, P(supkeawns,| Si/ V|| log log [k || > ) ‘
= 3%, P(supkeawns,| Sx| > eve™ log log ¢™?)
=241 32, (%L P(|S([c™*])| > e-c Ve log log ¢"),

which, under the conditions of the theorem, is finite for ¢ > c*35y/2d in view of (2.10).
By treating the sums corresponding to Ei, .-, E4 similarly one obtains sums of the
same kind but with lower powers of ¢ (since the problem essentially has been reduced to
fewer dimensions), cf. Gut (1980), page 306.
Thus all relevant sums converge for ¢ > c¥3gv2d and, since ¢ may be chosen arbitrarily



SECTORIAL STRONG LAWS 575

close to 1 it follows that
(4.3) P(S, >¢v|n|loglog |n| io.) = 0 for e > 6v2d
and the upper class result has been established.

5. Strong laws of large numbers. In this section we shall present a sectorial
Marcinkiewicz strong law of large numbers. For the sectorial Kolmogorov strong law, see
Gabriel (1974, 1975, 1977) and Smythe (1974) and for corresponding results in Z4, see
Smythe (1973), Section 2 (r = 1) and Gut (1978), Theorem 3.2, (0 <r < 2, r # 1). The proof
given below is related to the proof in Section 3 and to Gut (1978), Section 5, and is
therefore only sketched.

THEOREM 5.1. Let {Xa; n € T4} be iid. random variables with E|X:1|”" < ©,0<r
<2and EX;=0ifl1=<r<2. Then

(5.1) |n|™".Sp(m) = 0 a.s. asn —> oo,

Conversely, (5.1) implies that E | X1|” < .

REMARK. In analogy with Z%, d = 1, the normalization in (5.1) should be (M, (n))'/",
but because of the homogeneity of the index set (cf. Section 3) (5.1) is equivalent to
(My(n))™".Se(n) — 0 a.s. as n — oo,

Proor. For the sufficiency we assume without restriction that {X,; n € Z4} are ii.d.
random variables satisfying the given assumptions.
Suppose first that the variables have a symmetric distribution and define

(5.2) By(n) = (k € T§; 29 V9% < | k| < 299"}, n=1,2,-...

The conclusion follows from the Borel-Cantelli lemma once we have established that
(5.3) Yo = Tn-1 P(supkep,n| Se (k) /| k|*"| > &) < o for all € > 0.
Computations like those of Section 3 and Gut (1978), Section 5, yield

Yo=2 T2 P(|S@2™)| > e (2*) ')

1 " . .
=2 0 27— T) Y50k 2P(| S (i) | > e1-274/7. (2904 D) 1/r)
1
= 44+1 Y1 % P(|S(n)| > e2-n'’"),

where e = £,-27Y" = g(991.479) /",

Now, under the conditions of the theorem, the last sum is finite for all &, > 0 by
Theorem 3 of Baum and Katz (1965), which proves the theorem in the symmetric case.
The desymmetrization is standard (cf. Gut (1978), Theorem 3.2).

Proor. (Necessity). Exactly as in Gut (1978), Theorem 3.2, (5.1) implies that
YneriP(| X1| > |n|") < o, which by Lemma 2.1.a is equivalent to E | X;|” < .

6. Convergence rates. Several results on convergence rates in the law of large
numbers and the law of the iterated logarithm have been extended to the index set Z%, d
= 2, in Gut (1978), Sections 4-6 and in Gut (1979, 1980). All the results given there (except
for Theorem 3.5 of Gut, 1980) also hold if the index set is 7'¢, d = 2, and in all cases
without “extra logarithms”. In this section we state one of these extensions.

Throughout this section, {X»; n € T'§} are ii.d. random variables.
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THEOREM 6.1. Suppose that EX; = 0 and EX% = 0% < w. If
log™| Xi|

6.1 2, o =771
©.1) EXi log*'log"°|X1|<

then
(6.2) Snerg|n|log |n|-P(| Sy(m)| > e VM, (n)log log My(n)) < o for e > 20

(6.3)  Yners|n|'-log|n|- P(maxkersk<n| Ss(k) |> evMy(n)log log My(n)) < o fore > 20
(6.4)  ¥5-1)7" P(supxeri,j=x|| So(K)/ VM, (k)log log My(k)| > &) < % for e > 20.

Conversely, if one of the sums is finite for some € > 0, then so are the others, EX; =0
and (6.1) holds.

Proofs of such theorems are rather straightforward modifications of the proofs given in
Gut (1978, 1980). However, since no extra logarithms are involved in the moment assump-
tions, one can sometimes proceed as in Baum and Katz (1965) for the converses (which

makes that part easier).
We also remark that one can also reduce some of the proofs to the one-dimensional

case.
It is also possible to obtain results on the number of boundary crossings and last exit

times, which for the case of the law of the iterated logarithm are
Na = YnersI{|Su| >ev|n|loglog |n|} and
Ly =supneT§{|n|; | Su| >¢ev|n|loglog|n]}.

(6.5)

Corresponding results for Z%, d = 2, are obtained in Gut (1980), Section 8, see also Gut

(1979), Section 6.
As a final result we mention another convergence rate result, sometimes called a

dominated ergodic theorem.

THEOREM 6.2. Letr =2. For EX; = 0 the following statements are equivalent:

log*| Xy|

2 . — r .
(6.6) EX; log+log+|Xl|<oozfr—2andE|X1| <oifr>2
X "
(6.7) E supneri| ——————
Vin|loglog |n|
(6.8) E supnery ———SL—
v|n|loglog|n|

Note that the method of proof requires Theorem 3.1 for the step (6.7) = (6.8) (cf. Gut
(1979), where the case Z4 is proved).

A similar result can be obtained for the strong laws of large numbers For r = 1 and
positive summands, this has been done;in Theorem 6 of Gabriel (1977). For Z%, see Gut
(1979), Theorem 3.2.

7. Strong laws via martingales. A “modern” way of proving the strong law of large
numbers for i.i.d. random variables is to use martingale theory—the point being that the
sequence of arithmetic means constitutes a reversed martingale. This method also works
in Z%, d = 2 (see Smythe, 1973, and Gut, 1976). For the sector the method works too, but
one does not obtain the best result. In this final section we shall try to see why this is the
case.

When the index set is Z%, d = 1, the necessary and sufficient integrability condition for
the strong law of large numbers is L (log L) %! (see Smythe, 1973). This is also the correct
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integrability condition for (reversed) martingales, see Cairoli (1970), Gut (1976). Now, for
the strong law of large numbers and for (reversed) martingales in the sector, the correct
integrability conditions are L' and L (log L)~ respectively; see Gabriel (1977), Theorem
3 (i.e. Theorem 5.1 above with r = 1) and Gabriel (1977), Section 5. Therefore, one has to
use a condition which is stronger than necessary to prove the law of large numbers in the
sector via martingale theory.

In Smythe (1974) the strong law of large numbers is proved for more general indéx sets
and the integrability condition there is EM(| X|) < %, which for the index set Z% yields
L(log L) ! and for the index set T'¢ yields L'. The integrability condition is here linked
to the size of the index set.

The proofs of convergence results for martingales depend on a maximal inequality (see
Cairoli, 1970, Theorem 1), which is proved by induction on the dimension, thus yielding
one logarithmic factor for each of the d — 1 iterations. For Z% as well as for 7' this yields
L(log L)?". Here, however, the integrability condition is linked to the dimension of the
index set.

It is thus “a coincidence” that the martingale proof of the strong law of large numbers
yields the correct result when the index set is Z 4 d =1 and “quite natural” that this is not
the case when one considers sectorial laws.

Acknowledgment. I wish to thank Svante Janson for constructive criticism.
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