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CHI SQUARED APPROXIMATIONS TO THE DISTRIBUTION OF A
SUM OF INDEPENDENT RANDOM VARIABLES

By PETER HALL

Australian National University

We suggest several Chi squared approximations to the distribution of a
sum of independent random variables, and derive asymptotic expansions
which show that the error of approximation is of order n™! as n — . The
error may be reduced to n"*? by making a simple secondary approximation.

1. Introduction. The central limit theorem for sums of independent random vari-
ables is of great significance in mathematics and statistics, since it provides a very simple
and tractable approximation to a wide range of complicated distributions. This importance
is reflected in the vast literature on rates of convergence, which supplies information on
the order of the approximation and on the factors which influence its accuracy. For
example, it follows from Chebyshev-Edgeworth-Cramér expansions that if the summand
distribution is skew rather than symmetric then the central limit approximation in a
sample of size n is of order n /2. If the distribution were symmetric then this approximation
could be as accurate as order n~". )

It seems natural to approximate a sum of independent, skewed random variables by
another skewed sum. Such an approximation should be valid even in the case of a discrete
distribution, such as the binomial, provided an appropriate continuity correction is incor-
porated. Perhaps the best known example of a skewed sum is the Chi squared distribution.
Thus, we are led to approximate the distribution of a sum of independent random variables
by a Chi squared distribution. We shall give formal descriptions of several versions of this
approximation, and show that the Chi squared approximation is of order n ! rather than
nV2

Of course, the Chi squared distribution is itself asymptotically normal, and so for very
large samples the Chi squared approximation is close to the normal approximation. Our
thesis is that in many circumstances, the Chi squared distribution provides a good
penultimate approximation to the distribution of a sum of independent random variables.
The concept of penultimate approximations in statistics is by no means new. It was
employed more than half a century ago by R. A. Fisher and L. H. C. Tippett to improve
on the approximation to normal extremes by an extreme value distribution. The point we
wish to make is that in many circumstances, such as the construction of hypothesis tests,
distributional approximations have definite advantages over approximations via asymp-
totic expansions. For example, suppose the distribution of a (standardized) statistic 7.
admits the expansion

(L.1) P(T, < 2) = ®(x) + n™Y(x)b(x) + o(n /%),

where @ is the standard normal distribution function and ¢ = @’. Often we wish to choose
xo such that P(T, < x,) = a, for a fixed, predetermined level a. Direct application of (1.1)
to this problem involves considerable “trial-and-error” computation, to obtain a number
%o satisfying @(xo) + n™"*Y(x0)¢(x0) = a. An indirect but more efficient approach is to
observe from (1.1) that

(1.2) P{Ty=x—n""%(x)} = @) + o(n™""?).
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We could take xo = x; — n™*y(x,), where x,; satisfies ®(x;) = a. However, the approxi-
mation (1.2) does not hold uniformly in x, and can be particularly poor out in the tails,
which is precisely where it is usually required. The distributional approximation suggested
in this paper takes the form P{T, < x.(a@)} = a + o(n~"?), uniformly in a, and does not
suffer the drawbacks cited above.

Our study of Chi squared approximations falls naturally into two parts; first of all, the
case where the third moment of the underlying distribution is known, and secondly, where
it is unknown. These situations are handled in Sections 2 and 3, respectively, and proofs of
results from Section 2 are deferred until Section 4. In both cases we assume that the
underlying variance is known, either because of some parametric knowledge about the
form of the distribution or because of practical experience with the distribution in the
past. This assumption is often satisfied in practice. Indeed, normal approximations (rather
than Chi squared approximations) under this condition are taught in most elementary
statistics courses. See for example Section 9.9, page 230, and Exercises 14-16, page 235 of
Freund (1979). For a different approach to normal approximations, see Hall (1983).

It is worth remarking that our Chi squared approximations are really gamma approxi-
mations, since half a Chi squared random variable on n degrees of freedom is gamma with
parameter %n. However, gamma tables are less readily available that Chi squared tables,
and so it is more practical to study Chi squared approximations.

2. The case where third moments are known. Let Yi, Y, --- be independent
random variables with mean p and variance ¢* (known). Confidence intervals for g, or
hypothesis tests about p, are usually based on the standardized statistic,

2t (Yi—p)/o.

Therefore we may simplify our problem by considering the random variables X; =
(Y; — p)/o, i = 1, instead of the Y/’s. The X/’s have zero mean and unit variance. Let us
assume that they also have finite fourth moment y, = E(X*), and set ps = E(X?®). (Here X
is a random variable with the same distribution as X;.) In this section we shall assume that
s is known. Without loss of generality we may take p; = 0, since the contrary case may be
handled by replacing X; by —X; for i = 1. We define S, = Y% Xj, and let ¢ denote the
standard normal density function.

The usual normal approximation to n consists of regarding n~"/2S, as normal
N(0, 1). The Chi squared approximation is carried out as follows. Let » = »(n) = [8n/u}],
which can be taken as either the integer part of 8n/u} or the integer nearest to 8n/u3.
Consider n /%S, as having the same distribution as T, = (2v)™/*(x2 — »), where xZ has the
Chi squared distribution on » degrees of freedom. In the case y; = 0, corresponding to » =
o, T, is taken to have the standard normal distribution. Let z; (a) be the upper (1 — a)-
level critical point for T'; that is, P{T, < z;(a)} =1 — a, for 0 < a < 1. Write z = z(a) for
z3(a), the upper (1 — a)-level critical point of the standard normal distribution. The order
of the Chi squared approximation is described by the following theorem, which covers the
case of a smooth distribution.

—1/2n

THEOREM 1. Suppose E(X*) < o and ps = 0, and that the distribution of X satisfies
Cramér’s continuity condition,

(C) lim sup, ... | E(e™®) | < 1.
Then

Pn’S, =z} (@)} = (1 — @) + n™"(Ys)2(2% — 3)(3uf — 2us + 6)(2) + o(n™?)

uniformly in0 < a<1,asn— oo.

Interestingly, in the special case a = 0.04163+, corresponding to z(a) = +/3, it follows
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TABLE 1
Approximations to the value of x satisfying P{xz(\) < x} = 1 — a. (The approximations xa, xp, xn,
xnc are defined following Theorem 1; x, is the exact x.)

a = 0.10; A small:
10 15 20 25
A 2.935 3.599 4.161 4.658
Xo 20.483 27.488 34.170 40.647
XA — Xo -0.113 —-0.124 0.099 0.074
Xp — Xo 0.712 0.609 0.545 0.501
XN — Xo —-0.325 —-0.347 —0.360 —0.368
XNC — Xo 0.183 0.152 0.132 0.119
a = 0.10; A large:
10 15 20 25
A 9.432 11.189 12.677 13.992
Xo 29.588 37.697 45.315 52.620
Xa — Xo —-0.149 —0.057 0.050 -—0.045
Xp — Xo —0.160 —0.604 0.759 0.493
XN — Xo —-0.415 —0.424 —0.428 —0.431
XNC — Xo 0.154 0.134 0.121 0.111

from Theorem 1 that
P{n'28, =27 (a)} = (1 — a) + o(n7?).

Under the slightly more severe moment condition E(| X |°) < «, the remainder o(n ') in
Theorem 1 may be sharpened to O(n%/?).

As an application of Theorem 1 we shall derive a central Chi squared approximation to
the noncentral Chi squared distribution. If x2(A) denotes a variable with the noncentral
Chi squared distribution on r degrees of freedom and with noncentrality parameter A, we
may write

xa(A) — (n + N}/{2(m + 2N} 2 =n"2 Y1 X,

where the X/’s have zero mean, unit variance and third moment p; = 2%2(1 4+ 3A/n)(1 +
2)\/n)~*2. An application of the preceding theory suggests the approximation

P{xi(\) =x} =P[x20) <v+ (n+ 2N (n + 3N) " {x — (n + N)}],

where » = [(n + 2A\)*(n + 3A)"?]. This differs from the commonly used Chi squared
approximation, which is due to Patnaik (1949) and takes the form

P{xi(A) = x} = P{x%(0) = (n + A\)(n + 2\)"'x},

where »' = n + [A*(n + 20)71].

Suppose it is desired to find x such that P{x%(\) < x} = 1 — «, for predetermined « and
A. The approximation described by Theorem 1 suggests taking x =xa=n+A+ (n + 3\)(n
+ 20)7(¢ — »), where P{x3(0) = § =1 — a; Patnaik’s approximation suggests x = xp =
(n + 2\)(n + M) "'y, where P{x%(0) < #} = 1 — a; the normal approximation suggests x =
xv=n+ A+ {22\ + n)}%¢, where ®() = 1 — a; and the normal approximation with
correction for skewness (see (1.2)) suggests

x=xnvc=n+ A+ {2(n+20)}%¢ + {2(n + 3N)/3(n + 20)} (2 - 1).

There is little to choose between these methods from the point of view of simplicity. Their
performances are compared in Table 1, which suggests that the approximation x. is
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superior to the other three. (In Table 1, exact values xo equal the upper 2.5% points of
x2(0) in the case of small A, and 0.1% points in the case of large A. The A values were taken
from power tables for the Chi squared test prepared by Haynam, Govindarajulu and Leone
(1970).)

High orders of approximation may be achieved for many other distributions, provided
we make a simple secondary approximation. This is demonstrated by the following result.

THEOREM 2. Assume the conditions of Theorem 1, and let is = ju(X1, - -+, X,) be an
estimate of ps which satisfies
2.1) P(|fis— pa| >8) =o0(n")

as n— o, for all § > 0. Then for each ¢ > 0,
(2.2) P{n™’S, = z}(a) + n ' (Ys)2(2> — 3) (24 — 3ui—6)} =1 —a+o(n7")

uniformlyine<a<1—¢ asn— o,

Again, the term o(n™') may be sharpened to O(n~*?) under more stringent moment
conditions. One candidate for the estimator fi, is fis = n™' Y7 X}, and then it follows from
Theorem 27, page 283 of Petrov (1975) that condition (2 1) holds if E(X?) < oo, Inc1denta11y,
(2.2) remains true if z = z(«) is replaced by z; ().

Perhaps the best illustration of the use of the Chi squared approximation for us known
is the case of the binomial distribution. In this situation the summands are distributed on
a lattice, and condition (C) no longer holds. We must set up a little more theory. Since a
continuity correction should be incorporated into the normal approximation in the case of
a lattice distribution, it is necessary to state the lattice results slightly differently from
Theorems 1 and 2.

Assume that X takes values only in the set a + dZ, where « is a real number, d > 0 is
the maximal span of the lattice and Z = {.-., =1, 0, 1, -+-}. Then n~"/2S, takes only
values of the form x = (na + md)/n"?, where m € Z. We continue to assume that X has
zero mean and unit variance, and set » = [8n/p3].

THEOREM 3. Suppose E(X*) < ® and u3 = 0, and that the distribution of X is lattice
as defined above. Then

P(n 28, <=x) = {(21/)'1/2()( -y =x+ dl/z}
(2.3) 2

+ n'lx{ d? + — (x — 3)(3u3 — 2uq + 6)}¢(x) +o(n™t)

1/2, where m € Z, as n — .

uniformly in x of the form (na + md)/n

The term d/2n'/? appearing on the right hand side of (2.3) is the correction for
continuity; see Yates (1934) and Pearson (1947, page 147). As an example, suppose { p(1
— p)}%8, + np is binomial Bi(n, p), where 0 < p < %. Then s = (1 — 2p)/{ p(1 — p)}*/
=0, = (1-3p+3p?)/p(1 —p),d=1/{p(l — p)}'/? and the expansion (2.3) becomes

P(n72S, = x) = P{ @) A(xt - =x+ —m2r:1 }

-1 1 2 -1
+n mx(x 1o(x) + o(n™").
To illustrate the application of this result, let us calculate P(Y =< 2) where Y is binomial
Bi(10, 0.1). The exact probability equals 0.9298, the normal approximation with continuity
correction gives 0.9431, and the Chi squared approximation gives 0.9276. Other lattice
distributions to which this approximation can be applied include the Poisson, the negative
binomial and the Pascal.
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3. The case where third moments are unknown. We adapt the notation intro-
duced in Section 2, and so we regard X, X1, Xy, - - - as independent, identically distributed
random variables with finite fourth moment j, zero mean, unit variance and third moment
pa. In this section we assume that y; is unknown, and we estimate it using

fa=n""31 (X; — X)?,
where X =n"' Y1 X;.
Let —z;(a) be the lower (1 — a)-level critical point for (2v)*/*(x2 — v). That is,

P{@) ™ x:—v) =—2; (@)} = a

Define the integer-valued random variable N by N = [8n//i3], and set zn(a) = z}(a) if fis
= 0; zn(a) otherwise. Recall that z = z(a) is the upper (1 — a)-level critical point of the
standard normal distribution. Our next result is an analogue of Theorem 1.

THEOREM 4. Suppose E(X®|log|X||*"") < for somen >0, and the joint distribution
of (X, X®) satisfies Cramér’s continuity condition,

lim sups|+(¢—w | E exp(itX + isX®) | < 1.
Then
(3.1) P{n72S, = zn(a)}
=(1—a) + n7'(48)2(3(z* — 3)ui + 2(32° — 1)(ms — 3)}¢(2) + o(n™")

uniformlyin0<a<1,asn— .

Note that in the case of any distribution with zero skewness and kurtosis, the term of
order n ™" in (3.1) vanishes. Therefore the Chi squared approximation will not be seriously
in error when the underlying distribution is, in fact, normal.

We should comment on the moment condition imposed in Theorem 4. In a sense, the
expansion (3.1) is a Chebyshev-Edgeworth-Cramér expansion for a function of a vector of
sums of independent random variables. As such, it could have been derived in part by
using results on asymptotic expansions; see for example Bhattacharya and Rao (1976) or
Bhattacharya and Ghosh (1978). However, this would have entailed very restrictive
moment conditions. To achieve a term of order n™" it is necessary to assume that the
vector has finite fourth moments, and since one element of the vector is Y7 X?, this would
require the assumption that E|X|” < . To avoid this imposition we use a longer
argument, involving non-standard truncations.

If the uniformity in (3.1) is required only on (¢, 1 — ¢), the logarithmic factor in the
moment condition may be dropped, as the following theorem shows. This result is an
analogue of Theorem 2.

THEOREM 5. Assume the conditions of Theorem 4, except that the constraint
E(X%|log| X||**") <  may be replaced by E(X®) < . Then the expansion (3.1) holds
uniformly in e < a <1 — e as n — o, for each ¢ > 0. Furthermore, if jis = fis(X1, -+ -, X,))
satisfies condition (2.1), then

P[n7"8, = zn(a) + n7 (%) 2{3(3 — 2*)if + 2(1 — 32*)(ju — 3)}]1 =1 — a + o(n™")

uniformlyine<a<1—¢ asn— .

If E(X®) < o then (2.1) is satisfied with iy = n™! Y% (X; — X)* The remainders o(n ')
in Theorems 4 and 5 may be reduced to O(n "*?) under more stringent moment conditions.

4. Proofs. The Symbol C throughout denotes a positive generic constant. The proofs
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of Theorems 4 and 5 are rather long, and at the request of the editors they have been
deleted from the present paper, to be published elsewhere (Hall, 1982).

ProoF oF THEOREM 1. The usual Chebyshev-Edgeworth-Cramér expansion of the
distribution of n~'/2S, may be written as
41) P(n™’S,=2x) =®x) + n T 2(%)us(1 — x%)op(x)
+ n 7 (Y2)x{(10x® — x* — 15)u3 + 3(3 — x%) (s — 3)}o (%) + o(n ")

uniformly in x, where ® and ¢ are the standard normal distribution and density functions,
respectively. See for example Theorem 4, page 169 of Petrov (1975). The following lemma,
whose proof is given after the proof of Theorem 1, provides an expansion of z; (a).

LeEMMA 1. Let z = z(a) be the solution of the equation 1 — ®(2) = o, and set
—1/2 2! 2 41 2 —3/2 -
Yn=ynla) =2+ n ?(z—l)+n Ts-z(z—7)+n D1(2) + n7pa(2),

where p, and p, are polynomials. We may choose p, and p. such that for all 8, y > 0, we
have z; (a) = yul@) + OnP ) uniformlyinyn = a=<1-yn*%, asn— .
Let x, = (28 log n)"/? where 8 > 0, and note that
1—P{@2n)*(x2 —n) =x,.} ~1— ®(x,) ~ (478 log n) V*n ="

as n — . (The first asymptotic equivalence follows from a result on large deviation
probabilities; see for example Theorem 1, page 218 of Petrov, 1975). Since 2, () is the
solution of the equation

1-P{@2n)*(x2 —n) s zi(a)} = a,

then if @ = a, = yn™® we must necessarily have z;(a,) < (28 log n)"/? for large n, and
similarly, z; (1 — a,) > —(28 log n)/? for large n. Therefore

4.2) SUPay<a<i-an | 21 (@) | < (28 log n)*/2

for large n. We may now deduce from Lemma 1 that, if 8 =1 + & for a small positive 8,
+ -1/2 2'/? 2 -1 1 2 —1-
zn(@)=z+n ?(z —-1)+n E—z(z -7 +0n"")

uniformly in a, < « =<1 — a, for some n > 0. On taking x = 2z, (a) in (4.1), and constructing
Taylor expansions of the functions on the right hand side about the point z, we find that
P{n7'28, = z}(a)}
“fo@+ 2 oy e Lo oo - M2 o m ) o)
= Z v 5 4 v 18 2(z d(z 3 v 3 z 2¢(z
—-1/2 1 2 —1/2 212 2 2
+ 7 s (1=2%¢(2) +§» = (z° = 1) p2(z* — 3)p(2)
+n! ;-2- {(1022 —2* = 15)uf + 3(8 — 2?) (g — 3)}¢(z) +o(n™)

=®(z) +n! Zlg 2(2% — 3)(3uj — 2us + 6)(2) + o(n7Y)

uniformly in &, < a =< 1 — a,. This proves Theorem 1 for a, <a <1 — aj.
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To complete the proof we shall treat the case @ < a,. The case a« > 1 — a, may be
handled similarly. Recall that a, = yn™, where 8 = 1 + § > 1. The argument leading to
(4.2) may be repeated to show that z(a,) ~ (28 log n)'/2, and so for all sufficiently large n,

info<q,2(@) > {(2 + 8)log n}*%
Therefore
SUPo<an | @ — 17 (Va8)2(2% — 3)(3u3 — 214 + 6)p(2) | = o(n™")
as n — . And it follows from the expansion (4.1) that for large n,
SUPa<a[1 — P{n72S, < 2/ (2)}] =1 — P[n™2S, < {(2 + §/2)log n}*] = o(n™").
Therefore
SUPacan | P{n 7280 < 27 (@)} — (1 — a) — n™"(Ms)2(2® — 3)(3uf — 2us + 6)¢(2)| = o(n™")

as n — o, completing the proof of Theorem 1.

Proor oF LEMMA 1. By the usual expansion of the distribution function of a sum of
independent random variables,

P{2n)""2(x2 —n) = ¥}

1Y

91/2
(4.3) =d(y) + n'w—é— 1-y%e(y) +n i (11y* — 2y* — 3)¢p(y)

+n72q1(3)9(¥) + n7%q:(y)$(y) + O(n™?)

uniformly in —» < y < 0, as n — «, where ¢; and ¢ are polynomials. Replace y by y, =
2z + y», say, and expand the functions on the right hand side in Taylor series about z. For
example, expanding ®(y,) we obtain

D(yn) = D(2) + yro(2) — Byrzd(2) + %yiti(2) + Youyitts(2) + Yiroys(z + OyL),

where 0 < § < 1 and the functions & all have the form ri¢ for polynomials r;. Now,
&(z + 8y1)/(2) = exp(—fy,z — %6%y)?), and so for any choice of the polynomials p; and
P2, ¢(z + 0y7)/$(2) is bounded uniformly in | z| <log n and | 8| < 1, as n — «. Therefore
for polynomials g3 and g, not depending on ps,

1/2
B(y,) = ®(2) + n'1/2g§—- (22— Do(2) + n* ng (52% — 2z2* — 9)¢(2)

+ 17 p1(2) + ¢3(2)}9(2) + n 72 {P2(2) + q4(2)}¢(2) + O(n™?)

uniformly in | z| < log n. The polynomial ¢, depends on p;, but ¢; does not. Carrying out
an expansion of this type for each of the terms on the right in (4.3), and collecting the
terms, we may deduce that for polynomials ¢5 and g,

P{@2n) 2 (x2 —n) = 3.} =®(2) + n™¥*{ p1(2) + g5(2)}p(2)
+ 17 {p2(2) + g6(2)}9(2) + O(n™"?)

uniformly in | z| =< log n. Neither g5 nor gs depends on p., and only g¢ depends on p;.
Therefore if we define p; = —¢s and p; = —gs, and recall that

@(2) =1— a=P{(2n)*(x} — n) = z1},
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we see that
(4.4) P{(2n)™2(x2 — n) < y»} = P{2n)"*(xi — n) =z} + O(n™"?)

uniformly in values of a for which | z| < log n.

The argument which we used to derive the inequality (4.2) may be used to show that
with a, = yn™#, we have z(a,) < (28 log n)*/* for large n. A slightly longer proof will
demonstrate that y.(a,) < (28 log n)"? for large n. Therefore

(4.5) max{ y.(ax), 21 (a:)} < (28 log n)'/?

for large n. Set 8,(a) = z1(a) — ¥Yx(a), and let f, be the density of the random variable
(2n)"*%(x2 — n). Then for each «,

P{(2n)*(x2 — n) < z¥ (@)} = P{(2n)"A(x2 — n) <= y (@)} + S (@) f {un (@)},

where u,(a) lies between z; (a) and y,(a). It follows from (4.5) that u.(a) < (28 log n)'/? for
all @ = a,, and all large n, and similarly it may be proved that u,(a) > —(28 log n)*/* for all
a =<1 — a, and all large n. Consequently

(4.6) Supzxnszxsl—an | 6n(a) | = [Supansasl—an | P{(2n)_1/2(x - n) = Zn (a)}
— P{2n)" (x4 — 1) = yu(@)} | H{infiui<cpionm 2 fo ()} 7

A local limit theorem for f,, such as Theorem 14, page 206 of Petrov (19755, allows us to
deduce that

inf|u|<(Zﬁlogn)l/2fn(u) ~ d){(ZB log n)l/Z} = (27)_1/2n_ﬂ-

When this result is substituted into (4.6), and the result (4.4) used to estimate the
numerator on the right hand side of (4.6), we see that

SUPa=asi-ar | 8n(@) | = O(n ~?),
as required.
PrOOF OF THEOREM 2. Let p.(a) denote the probability on the left in (2.2), let E stand
for the event {|fis — pts| > 8} where 0 < 8 < p4, and observe that if 2(z* — 3) = 0,
P{n~'%8, = z;(a) + n ' (48)2(2% — 3)(2u4 — 28 — 3uj — 6)} — P(E) < pa(@)
= P{(n7V%S, = 2z (a) + n™(Ys)2(2% — 3)(2us + 286 — 3u3 — 6)} + P(E).
Therefore it suffices to prove that
P{n™Y%S, < z}(a) + n " (Ya8)2(2* — 3)(2us = 28 — 3uji — 6)}
=(1-a) +n'(Yas)2(z® — 3)(£28)p(2) + o(n™?)
uniformly in e < a < 1 — ¢, as n — . This may be achieved using the argument in the

proof of Theorem 1. The case z(2? — 3) < 0 is treated similarly.

ProoF oF THEOREM 3. It may be deduced from Theorem 4, page 61 of Esséen (1945)
or Theorem 23.1, page 238 of Bhattacharya and Rao (1976) that

(4.7) P(n7%S, < x) = ®(x) + n V4 (x) + n7 Y, (x) + o(n™!)
uniformly in x of the form (na + md)/n"? m € Z, where

Y1(x) = {%d + Yous(1 — x°)} ()
and

o (%) = a[—(Y2) d? + (Yhe) dus(x? — 3) + Y2 {(10x% — x* — 15)pd + 3(3 — %) (s — 3)} ().
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The expansion (4.3) shows that
P{2»)V(x%? - ») = x + d/2n"?}
=®(x) + nV2{%d + Yus (1 — x%)}(x)
+ n7'x{—%d® + Y2 dus(x® — 3) + (Haa)p3(11x? — 2x* — 3)}e(x) + o(n7!)
uniformly in x, and the desired result follows on subtracting this expansion from (4.7).

Acknowledgment. The paper has benefited from the editors’ suggestions.
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