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PROBABILITY ESTIMATES FOR THE SMALL DEVIATIONS
OF d-DIMENSIONAL RANDOM WALK!

By PHILIP S. GRIFFIN
University of Washington

Let Xi, Xz, -+ be a sequence of independent, identically distributed
random variables taking values in R? and S, = X, + .-- + X,. For a large
class of distributions we obtain estimates for the probability that S, is in a
ball centered at the origin. Such an estimate would follow from a local limit
theorem if X; were in the domain of attraction of a stable law.

1. Introduction. Let {X}} be a sequence of nondegenerate, independent, identically
distributed, d-dimensional random variables and S, = Y %-; X;. The distribution function
of X; will be denoted by F and its characteristic function by ¢. X will be another random
variable with the same distribution as X;.

Our aim in this paper is to obtain asymptotic estimates for the probability that S, is
contained in a cube (or ball) centered at the origin. Such an estimate is available when X
is in the domain of attraction of a stable law. This is a consequence of the local limit
theorems obtained by several authors [1], [2], [7], [8], [9]. We will derive analogous
estimates to these but in a more general setting. These new estimates should enable some
results, previously known only for random variables in the domain of attraction of a stable
law, to be extended to this more general setting. As one example of this, in a forthcoming
paper [4] we will show how Takeuchi’s integral test for lower envelopes of a symmetric
stable random walk, [10], can be generalized to this new setting. (This test was previously
unknown even for domains of attraction.)

To describe our results we must first introduce some notation. For x > 0 define

1
G@) =P{|X|>x), K@) = |y " dF (y)

|yl=x
(1.1) Qx)=Gx)+Kx)=E|X|A 1~

One readily checks that @ is positive, continuous, decreasing, @ (x) — 0 as x — o and
x2Q (x) increases. Further @ is strictly decreasing on [x,, ) where xo = sup{x: P{0 < | X|
=< x)} = 0}. As a consequence of this, there is an increasing function a, defined for y =

1/Q(xo) by

1
1.2 =,
(1.2) Q(a,) p

For convenience we define a, = a1/9(, if y € [0, 1/Q(x0)].
Our fundamental, underlying assumption will be that

K(x)

(1.3) lim inf,_ »
This is clearly much more general than X being in the domain of attraction of a stable law
of index a, since in that case
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lim K(x) «
TUG(x) 2—a

and a,, defined by (1.2), would then be a correct normalizing sequence for convergence in
distribution to the stable law.

We can now state the probability estimate in the symmetric case. Assume that X is
spherically symmetric (i.e. the distribution of X is invariant under all rigid rotations about
the origin) and (1.3) holds, then there exists Ao such that

}\ d
(14) P(S, € C(0,\)} = <a— A 1)

holds uniformly in A for A = Ao, where C(0, A) is the cube of side length 2\ centered at 0
and a, =~ B8, means that there exists M > 1 such that M ' < a,,/8, < M for n sufficiently
large. One can easily check that this follows from the local limit theorems in the case that
X is in the domain of attraction of a stable law, see Theorem 1 of [9].

The condition that A be sufficiently large arises essentially because we are not distin-
guishing between lattice and non-lattice valued random variables. For example, in the case
of simple random walk the lower bound can not hold if A < 1 since P{|S,| <1} =0ifnis
odd.

The symmetry assumption can be weakened (see Theorem 3.6) but the estimate is not
true under just the assumption (1.3), so some further conditions are needed. If one assumes
only (1.3) then there appear to be two main reasons why the estimate may fail. The first
is that in dimensions two and higher, the spread of S, may vary greatly in different
directions and this causes the estimate to be of the wrong order of magnitude. A good
example of this is when X has independent, symmetric stable components, (Example 3.7).
In Section 2 we will introduce two geometric conditions which arise naturally when
considering domains of attraction of stable laws and which will prevent this from happen-
ing. The second reason is that even in one dimension there is a problem with the centering,
that is, in order that the estimate hold, one may have to center the cubes at places other
than the origin. This is the case with a stable subordinator of index a. Then the cubes need
to be centered at n'/* (Example 3.8). In order that the origin be the correct place to center
we have to impose a restriction on the characteristic function, namely that |Im ¢(¢)| =
o(1 — Re ¢(¢)) as t — 0. The problem of where to center in one dimension will be
completely resolved in a forthcoming paper written in collaboration with Naresh Jain and
William Pruitt [5].

Since submitting this paper, the author has received a preprint by Hall [11] in which he
obtains bounds for the concentration function under assumption (1.3).

2. Geometric conditions. We will now introduce the two geometric conditions
mentioned in the introduction and examine the relationship between them. Both conditions
arise naturally when considering domains of attraction of stable laws. These conditions are
also of importance to us outside of this context in that they enable us to derive a basic
estimate on the characteristic function ¢(¢), for ¢ near the origin, in terms of the function
@ defined by (1.1), see Theorem 2.10.

DEFINITION. A d-dimensional random variable (distribution) satisfies the direction
condition if for every o € S9! there exist constants ¢ > 0 and R, such that for all R = R,

j (x,o)ZdF(x)ch | x| dF (x)
|x|=R

|x|=R

where S9! is the unit sphere in R“.

Observe that this condition is always satisfied in one dimension. We will now show, by
a compactness argument, that the constants ¢ > 0 and R, can in fact be chosen uniformly
ino €S9,
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LEMMA 2.1. If X satisfies the direction condition then there exists constants ¢ > 0
and R, such that for all R = Ry and all 6 € S%*

J’ (x,0)2 dF (x) = cJ’ | x|? dF (x).
|x|=R

|x|=R

PrOOF. Observe that for o, r € S7!

f (x, 0)* dF (x) — J (x, 7)° dF (x)
|x|=R

|x|=R

Sf [(x,0) = (x,7)| dF (x)

|x|=R

Sf [(x,6 —7)| |(x,0 +7)| dF (x)
|x|=R

=2|o— 7| | x|? dF (x).

|x|<R

Thus we see that for each o0 € S?~! there is a neighbourhood N (o) of ¢ and constants c (o)
> 0 and R (o) such that for all r € N (o) and all R = R (o)

J' (x, 7)* dF (x) zc—g’—) | x|? dF ().
|x|=R

|x|=R

Now cover S%! with the open sets N(c). By compactness we obtain a finite subcover
N(oy), +++, N(o,). Set Ry = maxi<i<.R(0;) and ¢ = min;=i=n(c(0;)/2). Then for all
R=R,

f (x,06)? dF (x) = cf | x|? dF (x)
|x|=R |x|=R
for every 0 € S*71.0

The direction condition enables us to derive the following estimate on the characteristic
function.

LEMMA 2.2.
(i) For every random variable X and for every t € R\ {0},
1—Reo¢(t) = 2Q(|%|>.

(ii) If X satisfies the direction condition and lim inf;_, .K(x)/G(x) >0, then there exist
constants ¢ > 0 and t, > 0 such that for all 0 < |t| = &

1 —Reo¢(t) = cQ(ﬁ).

Proor.

@) 1—Reo(t) = J [1— cos(x, t)] dF(x)
Rd

= lJ’ (x, t)2 dF (x) + 2 f dF (x)
2 |x| |¢]=1 |x| |¢|>1

T [ are +20(7) <27y
=— dF(x) + 2G| — | =2Q|— ).
2 M”lsl'x' (=) re1) =29\
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(ii) 1—Reo¢(t) = f [1— cos(x, t)] dF(x)

EES!

=a J’ (x, t)* dF (x)
|%] |¢]=1

2
=01|t|2f (x,i) dF(x)2c2>|t|2f | x|? dF (x)
|=| |¢]=1 ltl ERGES!

for | t| sufficiently small by Lemma 2.1. Hence

1 1
since lim inf,_, . K (x)/G(x) > 0.0

The direction condition arises naturally when considering random variables in the

domain of attraction of a normal law, indeed all such random variables satisfy the direction
condition (Lemma 4.15 in [3]).

The second condition that we will consider, and which is satisfied by all random
variables in the domain of attraction of a stable law of index « < 2 (Lemma 4.14 in [3]), is
the cone condition.

DEFINITION. A d-dimensional random variable satisfies the cone condition if for every
o € S9! there exist constants ¢; > 0, ¢c; > 0, Ro and 8 < 7 such that for all R = R,

P{|X| >R} = cP{|X|> &R, X € Ki(0)}

where

Kg(d) = {x (S Rd: c0sg< |(x’ U)l}
2 x|

is the union of two cones of angle § with axes in the directions of ¢ and —o.
Again this condition is always satisfied in one dimension and a compactness argument
shows that all of the constants may be chosen uniformly in ¢ € S¢7%,

LeEmMA 2.3. If X satisfies the cone condition then there exist constants ¢1 > 0, c2> 0,
R, and 0 < « such that for all 6 € S* and all R = R,

P{|X|>R}=cP{|X]|>cR, X E K0)).
ProOF. Observe that if 0 < 6; < 6; < 7 then K (1) D Kj (o) for all 7 € 847" such that
(o, T) > cos Y (62 — 01)

Thus there is a neighbourhood N (o) of ¢ and constants ci(c) > 0, c2(6) > 0, R(0) and
62(0) < 7 such that for all R = R (c) and all + € N(o)

P{|X|> R} = ci(0) P{| X| > c2(0) R, X € Ky,)(7)}.

Now cover S?~! with the open sets N (o). By compactness there is a finite subcover N (1),
«e+, N(0,). Set

€1 = MaX1=i=xC1(0:), €2 = MiNi=;=nC2(0:)
Ry = maxi<;<.R(0:), 6 = maxi=i=n0:(0;).
Then for all 6 € S¥ ' and all R = R,
P{|X|>R})=cP{|X|>c:R,X€E Ky(0)}.0O
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DEFINITION. A random variable X is genuinely d-dimensional if the distribution of X
is not supported on a (d-1)-dimensional hyperplane (not necessarily through the origin).

The cone condition is more intuitive geometrically than the direction condition. As well
as being of interest in its own right, it can be used to verify the direction condition. We will
show that if X is a genuinely d-dimensional random variable then the cone condition
implies the direction condition under the assumption that lim inf,_, . K (x)/G(x) > 0. We
first need two preliminary lemmas. In these lemmas for i = 1,2 and x > 0

Gi(x) = P{Y:>x}, Ki(x) =xi2 |¥1? dFi(y), Qi(x) = Gi(x) + Ki(x)

lyl=x

where Y7 and Y, are nonnegative real valued random variables with distribution functions
F; and F, respectively. We will be assuming as always, that Y; # 0 and Y, # 0.

LEMMA 2.4. Assume that there exist positive constants ci, s, €3, ¢4 and xo = 0 such
that ¢;Gz(c2x) = G (x) = ¢3Ga(cax) for all x = xo. Then there exist positive constants cs
and cg such that for all x = 0

c5Qa(x) = Q1(x) = cs@2(x).
Proor. We first observe that the relationship between G; and G: still holds if we

replace ¢; by ¢z \/ 1 and ¢4 by ¢4 A 1. Hence there is no loss of generality in assuming that
c2=1and ¢s = 1. Now for x > xo

x%Q:(x) = f 2sGy(s) ds= f
0

0

X

2sGy(s) ds + c:;f 25G2(cy8) ds

*o

*o

c4x

=xi+ 2—3 25Gs(s) ds < x2 + = 2sG2(s) ds
-3+ 2 x2Qq(x) < %o x2Q2(x)
S 2Q @ ?
since x2Q,(x)1. If 0 < x < x, then
Q:(x) = Q» ( )Qz(x)

since @1(x) = 1 for all x = 0 and @2(x) is nonincreasing for x = 0. Thus we have shown the
existence of a positive constant c¢ such that for all x =0

Q1(x) = csQa(x).
The other inequality follows similarly by reversing the roles of G; and G: and the roles of
Q1 and Qz. |:|

LEMMA 2.5. Assume that there exist positive constants ci, ¢z, ¢s, ¢4 and xo = 0 such
that

c1Ga(cax) = Gi(x) = c3Ga(csx)
for all x = x, and that

Ki(x)
lim inf,_, o——— > 0.
im i i)

Then

K,(x)

Go(%) > 0.

lim inf,_, »
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Proor. By Lemma 2.4 of [6], there is an ¢ > 0 such that x°@(x)| for x sufficiently
large.
By Lemma 2.4 there exist positive constants ¢; and ¢s such that for all x = 0

c5Q2(x) = Q1(x) = ceQ2(x).
Pick b < 1 small enough that 5% < cs/cs. For this choice of b pick ¢ so that

We claim that lim inf,_, . K>(x)/G2(x) = c. If not there exists arbitrarily large y such that
Ki(y)/Ga(y) < c. We fix such a y large enough that x°Q,(x)| for x = by. Since x*Ka(x)|, if
x € [by, y] we have that

Kx(x) _y°Ka(y) _ 1 Kao(y) _ ¢
Ga(x) ~ x°Ge(x) ~ B2 Ga(y) ~ B

Thus x*?Q2(x)1 for x € [by, y] by Lemma 2.4 of [6]. Hence
b*Q2(by) = Qa(y).
Since x°Q1(x)| on [by, y] we see that
b@1(by) = Q1(y).

Thus
—e/2 /2

Qalby) = b"Q,(y) =2 Qu(y) = bc5

1

Q1(by) <c_ Q@1(by) by choice of b.
6

But ¢s@2(x) = @1(x) for all x which is a contradiction. O

LEMMA 2.6. Assume that X is genuinely d-dimensional, satisfies the cone condition
and lim inf,_, .K(x)/G(x) > 0. Then X satisfies the direction condition.

Proor. Fix o € S?!. By the cone condition there exist constants ¢; > 0, ¢z > 0, R, and
8 < @, all depending on o, such that for all R = R,
P{|X|>R}=caP{|X|> R, XE K0)).

Let X° = X.1{X € Ky(0)} and G°(R) = P{|X°| > R}. Observe that, by increasing 6 if
necessary, we may assume that X° s 0, since X is not concentrated on a lower dimensional
subspace of R“. Further, if R = R,

G°(R) = G(R) = ¢1G°(czR).

Thus by Lemmas 2.4 and 2.5 there exist positive constants c;, ¢4 and R;, depending on o,
such that for all R = R,

K°(R) = ¢sG°(R)
and

Q(R) = 4 Q°(R).
Hence for R = R,

K(R) = QR) < c:Q°(R) < c<ci + 1) K°(R).
3
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Thus for R = R;

/]
J’ (x,0)2 dF (x) = J (x, 0)? dF (x) = cos?® 3 J | x|? dF (x)
|x|=R |x|=R,x€Ky(o) |x|=R,x€ Kq(o)

2
_ €scos 6/2

= 2dF(x).0
ca(1 + c3) || (=)

|x|=R

REMARK 1. The proof shows that we in fact do not need to assume that X is genuinely
d-dimensional, but only need that X is not concentrated on a lower dimensional subspace
of R4

REMARK 2. The only way in which a random variable X can satisfy the cone condition
but not be genuinely d-dimensional is if X has bounded range in R?.

Our aim in the remainder of this section is to derive an estimate similar to Lemma 2.2
involving | ¢ | instead of Re ¢.

Let X, denote the symmetrized random variable X; — X,. We will use the notation G,
K, and @; where for example Gi(x) = P{|X;| > x}.

LEMMA 2.7. For any nondegenerate random variable X there exist positive constants
¢1 and ¢z such that for all x =0

c1Qs(x) = Q(x) =< c2Qs(x).

PROOF.

Gy(x) = P(|X,| > x} = P{| X: — Xz| > x}
x x x
1
Gi(x) = P{|Xi|= M, | Xz| >x + M) 25 G(2x)
if M is fixed large enough that P{|X| = M} = % and x = M. Hence for x = 2M
1
2G,2x) = Gx) = 2Gs<f).
2 2
The result now follows from Lemma 2.4 since X, # 0.0

LEMMA 2.8. Assume that X is genuinely d-dimensional, then for any o € S there
exist constants ¢ > 0 and R, such that for all R = R,

J’ (X,,0)2dP = cJ' (X, 0)? dP.
|X.|<2R

| X|=R

Proor. Fix o € S? L. If E(X, 0)? < = then the result is immediate since E (X, 0) >

0, (this is where we use that X is genuinely d-dimensional). Thus we may assume
E(X, 0)? = . Now

f (Xi — Xp,0) dP = J’ (X: — X;,0)* dP
| Xi—X,|=2R | Xi|=R,|X:|<R

2
=2(1-G(R)) (X,0)*dP —2 (f (X, 0) dP) .
|X|=R |X|=R
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Thus it suffices to show that

(f (X, o) dP) =0 (f (X, 0)? dP) as R — oo,
|X|=R |X|<R

Given n € (0, 1) set
1/2
S= n(f (X, 0)? dP) .
IX|<R

Then using Holder’s inequality we have

f (X, 0) dP' = f (X, 0) dP+f (X, 0) dP}
|X|=R | X|=S S<|X|=R

1/2
=S+ G(S)‘”(f (X, 0)? dP)
| X|=R

1/2
= (f (X, 0)? dP) (n + G(S)"?).
|X|=R

This inequality together with the observation that S — © as R — o completes
the proof. 0

LEMMA 2.9. Assume that X is nondegenerate and lim inf,_, K (x)/G(x) > 0, then
lim inf,_, « K;(x)/Gs(x) > 0. If in addition X is genuinely d-dimensional and satisfies the
direction condition, then X, also satisfies the direction condition.

ProoF. Assume that lim inf,_,.K(x)/G(x) > 0. In the proof of Lemma 2.7 we saw
that for x sufficiently large

% G.(2x) < G(x) < 2G, <-’2f)

Thus by Lemma 2.5

K,(x)
Gi(x)
Now assume that in addition X is genuinely d-dimensional and satisfies the direction

condition. Fix o0 € S¢!. Then using Lemmas 2.7 and 2.8, we see that for sufficiently large
R

lim inf, > 0.

J' (X1 — X5,0)*dP = ¢ f (X, 0)? dP
|Xi—X.|<R |X|<R/2

zc2j |X|? dP = e(R/2)°Q(R/2) = 2 R*Q(R)
|X|=R/2 4

ZC4R2QS(R)EC4 |X1—X2|2dP
|X—X:|<R

Thus X, satisfies the direction condition. [

REMARK. In all cases of interest to us, X satisfying the direction condition forces X to
be genuinely d-dimensional. In particular if E|X|? = o and X satisfies the direction
condition then X must be genuinely d-dimensional. Of course if E | X|* < o, then X is in
the domain of attraction of a normal law and the estimate (1.4) is well known in that case.
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THEOREM 2.10. Assume that X is genuinely d-dimensional, satisfies the direction
condition and lim inf,_, . K(x)/G(x) > 0. Then

1
1—|e@)|= Q(m> as t— 0.

Proor. By Lemmas 2.2 and 2.9
1-|o(®)|*= Qs<i>
[¢]
since | ¢ |? is the characteristic function of X;. The result now follows from Lemma 2.7 and
the observation that

L—|o@®)?=1—o@®DA+ o)) = 1—|o(2)] O

3. The probability estimates. In this section we will prove that under certain
regularity conditions (see Theorem 3.6) the fundamental estimate

}\ d
P{|S.|=A} = <a—/\ 1)

holds uniformly in A for A sufficiently large.
The proof will involve the use of the following inversion formula,
1
(@)

J’ P(S, € C(x — y,\)}a’H(ay) dy
3.1) R

1
=3 —utx) o n _1
(2m) Lm’a) € o™ (t)k(A\t)h(a™'t) dt

for a > 0 and A > 0 where

1-cos y;
H(y)= g= s y=(y5"') d)
1 ‘ny? 1 Y

i

ht)y =TI @ =6, t=(t, -, ta)

sin t;
k() = [
t;

and
Cly,a)={z€R% |yi—z|<a for i=1,.--,d}.
Since it will be needed in the next lemma, we define
B(y,a)={z€ R |y — z| = a}.

In what follows we will be assuming that lim inf,_, . K(x)/G(x) > 0. Thus by Lemma
2.4 of [6] there exists A > 0 and ¢ > 0 such that x°@(x) decreases for x = A. To put this
another way, r“Q(1/r) increases for r € (0, A™). We will fix such an ¢ and an a € (0,
A7'd™'/?) small enough that the estimate from Lemma 2.10 holds.

LEMMA 3.1. Assume that X is genuinely d-dimensional, satisfies the direction con-

dition and lim inf,_,. K (x)/G(x) > 0. Then there exist positive constants c¢; and c; such
that for every p € (0, 1] there exists an no such that for alln = no and all A >0

1 (7 © o
f [o™(t)| dt = —df e r‘ dr.
C(0,a)\CO,a53) An ) (c/py

Proor. Fix p € (0, 1]. Choose n, large enough thata,,, < a. Then for all n = n,
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J’ |¢"(t)| dtsf e—n(1—|¢(t)|) dt
C(0,a)\ C(0,a;) C(0,a)\ C(0,a;1)

= J e W1 gt by Lemma 2.10
C(0,a)\ C(0,a;,)

=< j e—can(l/ItI) dt
B(0,ad'*\ B(0,a;1)

adV/?
=c3 J e emQWn pd=l g (spherical coordinates)

-1
Apn

adl/2 1
=c3 J e~ Qe d=1 ) gince r“Q(—) 1
r

-1
Apn

adl/?
= C3f e—m(l/p)a,,,.r rd—l dr

-1
Qpn

176\ ¢ [*®
=a (p ) j e " r*ldr
@n ) J (eupr

00

C1 N .
= e r*ldr since x°Q(x)|.0
an 1/¢
(c2/p)

LEMMA 3.2. Assume that X is genuinely d-dimensional, satisfies the direction con-

dition and lim inf, _, . K (x)/G(x) > 0. Then there exists a positive constant c such that for
alln, all A >0 and all x € R¢

f eﬂ%”¢%nkanhm*n¢u}slg.
C(0,a) Qn

Proor. By Lemma 3.1 there exist constants ¢; and n, such that for all n = n,

C1 2 4
LHS. = |o"(¢)| dt + dt=—+—.
C(0,a)\C(0,a;")

C(0,a;") n  Gn

For n < no just choose ¢ large enough that the estimate holds for each individual n. O
We will now obtain a comparable lower bound for the integral, but first we need,

LEmMMA 3.3. Assume that|Im¢(t)| = o(1 — Re ¢(¢)) as t — 0. Then for all p > 0 there
is an no such that for all n = ny and all t € C(0, a,)

Re ¢"(¢) = % |¢"(?)].
PrOOF. Write ¢(¢) = | ¢(¢)| e**"“). Then
[Im ¢(t)| = |¢(¢)|| sin 8(8)| ~ [$(t)||0(¢)| as t— 0.
Thus we see that | 8(¢)| = o(1 — Re ¢(¢)) and so we may write
0(¢) = &(¢)(1 — Re ¢(2))
where &(t) — 0 as t —» 0. Now

Re ¢"(t) = |¢"(2)| cos nf(t) = |$"(t)| cos[ne(t)(1 — Re ¢(¢))].
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But by Lemma 2.2 for all ¢ € C(0, ap.)

1—Reo(t) < 2Q<ﬁ> =2Q(d*ay,) since Q(x)]
512)—: since x%Q(x)1.

Hence if we choose n, large enough that (2d| ¢(¢)|/p) < (n/3) whenever t € C(0, a;,}0 ,

we see that for all n = ny and all £ € C(0, ap,
Re ¢™(¢) = %|¢™(¢)|.0
LEMMA 3.4. Assume that X is genuinely d-dimensional, satisfies the direction con-

dition, lim inf,,.K(x)/G(x) > 0 and |Im ¢(t)| = o(1 — Re ¢(t)). Then for every
p € (0, 1] there is an no such that for all n = no and all A € (0, a,.]

f Re ¢™(t) k(A h(a™'t) dt = —
C(0,a,)

ay
where c is independent of \, p and n.

Proor. Fix p € (0, 1] and choose n, large enough that for all n = ny and all ¢t €
C0, am),
|op(t)| =%, Reo¢™(t)=%|¢"(¢t)| and h(a™'t)=%.
This choice is possible by Lemma 3.3 Since £(At) = (sin 1)¢ for t € C (0, ap) if A < apn, we
see that for all n = n,

J Re ¢ (kA h(a™'t) dt = f Re ¢"(t) dt= c, J |o™(2)| dt
€0, az!

cO.a C0,a:)
=cy e~ art=lk@D gp

B(0,a;7)
=c, e~ amRU/1E) gy

B(0,a7)

—c,.nQ(l/r)rd—l dr

a,T,.'
=Cs e
0
an'
> cs f e—an(I/r)rd—l dr
o
- c
~ad
since0 < Q(1/r)<1/nfor0<r=<a;'.0

LEMMA 3.5. Assume that X is genuinely d-dimensional, satisfies the direction con-
dition, lim inf, K (x)/G(x) > 0 and |Im ¢(¢)] = o(1 — Re ¢(t)). Then there is a p €
(0, 1] and an no such that for all n = no and all A € (0, ayn)

J $"(OR(\Dh(a't) dt = —
C0,a) a

n
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where c is independent of A and n.

Proor. Since the L.H.S. of (3.1) is real, the above integral is also real. Thus by
Lemmas 3.1 and 3.4, there is a p € (0, 1] and an no such that for all n = n, and all
A E (O, apn]

f " (Ok(A)h(a™'t) dt = f Re ¢"(®)k(At)h(a"'t) dt
c0,a) c

(0,a)

= f Re ¢™(t)k(At)h(a't) dt
C

0,am)
- f | p™(2)| dt
C(0,a)\C(0,a;))
e ¢ (7
1 2 —rf —
= a4 —a e T I"d ! dr
ar 2 Jcy/ppe
- c
~al

if p is chosen small enough. O

With the estimates from Lemmas 3.2 and 3.5 we are now ready to prove our main result.
The hypotheses of the theorem include the direction condition but of course, in view of
Lemma 2.6, the result remains valid if this is replaced by the cone condition.

THEOREM 3.6. Assume that X is genuinely d-dimensional, satisfies the direction
condition and lim inf, ,.K (x)/G(x) > 0. Then there exist positive constants c¢; and Ao
such that for all A\ = Ao, all n and all x € R?

A d
P{(S,.eCx,\N)}=a <;z_/\ 1) .

If in addition | Im ¢ (t)| = o(1 — Re ¢ (t)) then there exist further positive constants c: and
A1 such that for all A =\, and alln

A d
P{S.€ C(0,A)} = @(a—/\ 1) .

ProoF. We first observe that for A > 0

d
a (1 — cos ay;)
f a’H(ay) dy = (—) j fl=lTydy
T ay;
R\C(0,h) RIN\C(0,h)

< g ‘ ) —_—-4 dz ‘ < _4d
“\x , a’2’ ~ (ahm)?’
Thus by picking 4 large enough we can make

1
f a’H(ay) dy < 3
RN\C(0,h)

For such an A, if A > A then
Clx,A\-h)CClx—yMN)
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for all y € C(0, h). Thus for all x € Re,

j P{S, e Ckx —y,A)}a’H(ay) dy= j P{S, € C(x,\ — h)}a’H (ay) dy

C(0,h)

Z-;—P{S,, € C(x,A — h)}.
Thus by (3.1) and Lemma 3.2, for all A > A and all n
d
P{S,.€eC(x,A\—h)}= 03(%) .

Upon replacing A by A’ + h we see that for all A" > 0

, d
P(S, € Cx,\)} < c;;<>\ : h) ,

n

Thus if we assume A’ > A we have for all r and all x € R?

A \¢
P{S,eC(x,A\)} = Cz( ) .

Qan

For the lower bound we observe that for y € C(0, ) we have C(x, A\ + h) D C(x — y, A).
Thus

J P{S,€C(x —y,A\)}a’H(ay) dy= J P{S, € C(x,\ + h)}a’H(ay) dy

C(0,h)
+ j P{S, € C(x —y,\)}a’H(ay) dy.
RN\C(0,h)

Now set x = 0. By using Lemma 3.5 and the upper bound just derived we see that there
exists no, A; and p € (0, 1) such that for all n = no and all A € [A1\/ A, apn]

A\ A d——dv4d
c“(a_,,) =P{S.€C(0,A + h)} + 02<a—n) (ahm)?’

By choosing 4 sufficiently large we see that there is a Ao > 0 and an no such that for all
n=no and all A € [, @pn)

A\
P{S,.€C(0,A)} = c5<a—> .

In order to remove the condition A < a,, we only need observe that if A = a,, then, using
the fact that x°Q (x)| for sufficiently large x, there is an n; such that for all n = n,

d
P{S. € C(0,\)} = P(S, € C(0, ap)} = c5<ﬁa'ﬂ) = ep¥ = 1.

It is clear that by choosing A, sufficiently large and adjusting the constant we may remove
the condition that n be large. 0

Theorem 3.6 does not apply to all random variables in the domain of attraction of a
stable law, only to those for which |Im ¢ (¢)| = o(1 — Re ¢ (¢)). However it does apply to
many random variables which lie outside of the domain of attraction of any stable law and
this is the most important aspect of the result.

As we remarked in the introduction, Theorem 3.6 is not necessarily true if we drop
either the assumption that X satisfy the direction condition or that |Im ¢(¢)] = o(1 —
Re ¢(?)).
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ExampLE 3.7. Let {Y.} and {Z:} be sequences of i.i.d. symmetric, stable random
variables of indices « and B respectively where a < B. Further assume that the sequences
(Y.} and {Z;} are independent of each other. Set U, = Y%~1 Y and V,, = Y %=1 Z;.. Observe
that X, = (Y&, Z:) is radically symmetric and hence its characteristic function is real-
valued. Set S, = Y71 X; = (U,, V»). Then using the well known estimates

A A
P{U.|=A} = (;TWA 1) and P{|V,|<A}= (n_lf?/\ 1),

which follow from Theorem 3.6, we see that

A i o=a=n"
7 Ve V7B =A==

P{S,.€C(O,N\)} = n_>1\/: if n/f=A=n'/
1 if A=n'~

On the other hand it is not too hard to see that lim inf, ..K(x)/G(x) > 0 ar{d a, = n'? 'in
this example. Thus the conclusion of Theorem 3.6 fails. The reason for this is that X; fails
to satisfy the direction condition.

ExaMPLE 3.8. Let X be a one sided stable random variable of index a € (0, 1). Then
it is easy to see that P{|S.| = A} — 0 with at least a geometric rate since

P{|S,|=A} =P{0=S,=A} = (PO=X=A}"

However lim,_.K (x)/G (x) = a/(2 — a) and a, = n'/*. The reason that this example does
not violate Theorem 3.6 is that | Im ¢ (£)| # o(1 — Re ¢(¢)).
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