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LIMIT THEOREMS FOR CERTAIN BRANCHING RANDOM WALKS
ON COMPACT GROUPS AND HOMOGENEOUS SPACES

BY SVANTE JANSON

Uppsala University

A certain branching random walk, {X;}, on a compact group or a compact
homogeneous space is studied. It is proved that the sums Y6f(X;) are asymp-
totically normally distributed for all nice functions f if and only if the Fourier
coefficients of the transition probability distribution have real parts not
exceeding %.

1. Introduction. We will study a certain branching random walk consisting of a
sequence {X,}7 of random points in a suitable state space. The state space will be a
compact group or, more generally, a compact homogeneous space, e.g. a sphere. In the
somewhat simpler case of a group, G, the exact definition is as follows.

Let X, Y1, Yo, Y3, --+, I, I, --- be independent random variables such that X, has
the distribution » on G, each Y, has the distribution u on G and I, has a uniform
distribution on the set {0, 1, ---, n — 1}, n = 1. Define {X.,.} inductively by

(L1) X,=X; Y., n=1L

Here » and p are two arbitrary probability measures on G. In order to avoid trivial
complications, we will assume that p is not supported on any proper closed subgroup of G.
(We do not impose this condition on »; » may e.g. be the point mass at the identity
element.)

This is equivalent to the following description: First Xj is chosen according to an initial
distribution ». Then, at the nth step, one of X, ... X, is selected at random to be the
parent X; of X,. The daughter X, then appears with a displacement Y,, from its parent.
All displacements are identically distributed and all choices are independent. As an
example, we may assume that every point, from its birth on, generates new points (with
independent random displacements as above) according to a Poisson process with fixed
intensity. (Cf. [1].)

The definition for a homogeneous space is essentially the same, the only difference
being that (1.1) does not make sense, and thus another definition of the displacements is
required. We will discuss this in detail in Section 5. In the particular case of a sphere, we
may simply say that the displacement from a parent point to a daughter has a length
according to some fixed distribution and a uniformly distributed direction.

We may compare the branching random walk with a simple random walk which has
the same definition except that I, = n — 1. It is well-known that, except in degenerate
cases, the distributions of the points, X,,, in a simple random walk converge to the uniform
distribution, i.e. the Haar measure, henceforth denoted by m, [3], [56]. It will be shown
below that the same is true for the branching random walk. Thus Xj - - - X, will be rather
uniformly spread out over the state space (for n large). The purpose of this paper is to
study the fluctuations from the uniform distribution; more precisely we will study the
asymptotic distribution of the sums S,(f), defined by

(1.2) S.(f) =35 fX:)  (fe€ L*m)).

Note that if A is a Borel subset of the state space and x4 its indicator function, S,(x4) =
#hk=n:X,€ A}.
In the trivial case when p = m, {X,,}7 are uniformly distributed and independent. Thus
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910 SVANTE JANSON

S.(f) is a sum of i.i.d. random variables with finite second moments and, by the Central
Limit Theorem, S,(f) is asymptotically normally distributed.

The main result is that this is typical for a large class of displacement measures p, but
not for all of them. In fact (assuming a technical smoothness condition on g, » or f),
n"%(S,(f) — n [ f dm) converges in distribution to a normal distribution—provided that
all Fourier coefficients (omitting the trivial one which always equals one) have real parts
less than %. (This is slightly simplified. In general, the Fourier coefficients are matrices,
see Sections 4 and 5, and the correct condition is that the eigenvalues of these matrices
should have real parts less than %.) Moreover, if the real part of (an eigenvalue of) some
Fourier coefficient exceeds %, this utterly fails: S,(f) will in general have a variance
growing faster than n, and with the correct normalization it may converge to a non-normal
distribution, which furthermore depends on the distribution » of X,. (The borderline case
when the real part of some Fourier coefficient equals ', but none is larger, is intermediate.)
This expresses the intuitive feeling that if the displacements are small, the points will tend
to cluster. The sharp division at Re A = % between weak and strong clustering for various
distributions of the displacements is vaguely reminiscent of phase transitions in statistical
mechanics. (This phenomenon does not occur for simple random walks. A theorem similar
to Theorem 4.3 holds (for the simple random walk on a compact group) for all measures
1 that are not supported on any coset of a proper closed subgroup.)

In Sections 2 and 3 we will only study the technically simpler case of a commutative
compact group, although most of the results will be generalized in Section 4. Section 2
treats S,(f) for characters while Section 3 treats general functions f. Section 4 treats a
general compact group. In Section 5 we apply and adapt the preceding results to homo-
geneous spaces. Section 6 contains some examples.

2. Commutative groups: characters. Throughout Sections 2 and 3, G is a com-
mutative compact group.

We recall the following facts from abstract harmonic analysis. A character v is a
continuous complex-valued function on G such that | y(g) | = 1 and v(gg’) = y(8)y(&'), &
g’ € G, ie. a continuous homomorphism into the circle group. The product of two
characters is a character, and so is the complex conjugate of a character. The set I" of all
characters form a group, the dual group of G. I" is an orthonormal basis in L*(m), thus f
= 3f(y)y with f(y) = [ fy dm for any f € LZ. Similarly, we define ji(y) = J y dyu for measures
u. (For notational convenience we use y and not ¥ here.) A special role is played by the
trivial character 1, defined by 1(g) = 1. Note that [ ydm = [ yT dm = 0 for y & 1. Since
u is a probability measure | p(y) | < 1, y € T" and our assumption that u is not supported on
any proper closed subgroup is equivalent to u(y) # 1 for y # 1.

We will distinguish between real and complex characters and define I, = {yET':y =
7and y # 1}. Let I consists of one character from each pair (y, y), y # ¥. Then T" = {1}
UT,UT.UT.. If y # ¥ then [ y? dm = 0 while [ yy dm = 1; hence [ (Re y)*> = [ (Im y)*
=% and [ Re y Im y = 0. Consequently, {1} UT, U {«/5 Rey,v2 Imy:y € T'.} is areal
orthonormal basis in L2(m).

We will study the asymptotic distribution of the complex random variables S.(y) =
3% v(X.) (y €T) by estimating moments. Therefore we define, form=1land y; --+ yn €
T,

2.1 Foulyi, ««+, ¥m; 2) = 35 2"E(Sa(y1)Snly2) « -+ Sulym)).
This generating function is analytic for | z| < 1. We have
(2.2) Fulyi, -+, ¥m; 0) = E(y1(Xo) « «++ « ym(Xo)) = (y1 + =+ + ym).

By the definition (1.1) of the branching random walk,
Ey(Xn) | Xo « -+ Xn-1) = EG( X )y(Yn) | Xo -« ¢ Xo1)
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(2.3) =E(y(X,,)[Xo -+« Xo1)E(y(Y2))

1 1 "
= n Sn-1(y) J’ y(g) du(g) = 7 Sn—1 (Y)a(y).

Thus,
2.4) Ey(X,) = ES, ()i
(2.5) ES,+1(y) = ESp(y) + Ey(Xos1) = ESn(Y)(l +;L—1_|'_—1 ﬁ(Y))
(1-2) 4 Fi(y; 2) = 3§ n(z" — 2" ES,(y) = ¥§ 2"((n + 1)ES,+1(y) — nES,(y))
2.6) dz

=35 2"(1 + A(MESi(y) = (1 + i(y) F1(y; 2).
This differential equation yields

(2.7) Fi(y; 2) = Fi(y; 0)(1 — 2) 7779 = j(y)(1 — 2)7 170,
We use the binomial expansion

2.8) 1-2=35 <—1)"(‘n°‘)z" =3 ("‘ e l)z".
Hence

2.9) ESa(y) = #(y) (” s (Y))

which asymptotically yields

(2.10) ESu(y) ~ gt

T(im + 1)

THEOREM 2.1. X, converges to the uniform distribution, i.e. for every continuous
function fon G,

. T 1 _
(2.11) lim, .. Ef(X,) = lim, .., nrl ES.(f) = J fdm.

Proor. We note that | i(y) | < 1 for every character y and that ji(y) = 1 if and only if
u is supported on the subgroup { g € G: y(g) = 1}, but for y # 1 this is eliminated by our
assumption on u. Thus, if y # 1, Re i(y) < 1 and by (2.10) (for some C < )

1
By (2.4), also Ey(X,.) = 0, y # 1. Since (2.11) is trivial for f = 1, it holds for all characters.

Thus, it holds for every continuous f by [3, Theorem 3.2.2].
The second moments of {S.(y)} are computed by the same method.

Sn+1(¥1)Sn+1(v2) = Su(y1)Snlyz) + Sn(v1)y2(Xn+1) + 71(Xns1)Sn(y2) + yry2(Xn+1)

anRe’“’”/n—>0=erdm as n— o,

E(Sn+1(YI)Sn+1(Yé) |X1 e Xn) = Sn(Yl)Sn(YZ) + 1 1 Sn('Yl)Sn(YZ)ﬁ(Y2)

n +
(2.12)
1

n+1

R 1 .
+ Sn(y1)Sn(ye)fi(y1) + 1 Snlyrye)it(yryz)
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d
1-2) £F2(71, ¥e; 2)

= Y8 2"((n + 1) E(Sp+1(y1)Sn+1(y2)) — RE(Sa(y1)Sn(y2)))
(2.13) =38 2o((1 + fi(y1) + ((y2)) ESn(y1)Sn(y2) + fi(y1v2) ESn(y1y2))
= (1 + fi(y1) + fily2))Fa(y1, y2; 2) + filyry2) Fi(yiye; 2)
= (1 + fi(y1) + i) Faly1, v25 2) + fiy172)3 (yry2) (1 — 2) 702
using (2.7) for y1y2. Hence

@1d8)  Folys, vo; 2) = flyry) bV (g it
M(Yle) - H(Yl) - I-L(Y2)

. ﬁ("ﬂ);" ﬁ(‘Y2) _ (1 _ z)—l—ﬁ(vl)—ﬁ(‘/z)
flyry2) — fily) — Aly2)

L))

or, when fi(y1y2) = fi(y1) + fi(y2),

(2.14b) Faly1, v2; 2) = = (y1y2)fi(yry2)log(l — 2)(1 — Z)_l_ﬁ("m)
+ Hyye) (1 = 2)7 10w,

Define

_ [(n+=x\_ S I .2 DUE S
(2.15) pn(x)—x< n )—x(l+x)<l+2) <1+n) I‘(x)n'

Then (2.14) and (2.8) yield

Pu(filyry2)) — Palfi(y1) + fi(y2))

2.1 ES,(y1)Sn(y2) =5 — — —
(2.16a) (y1)Sn(y2) = #(y1y2) Fyya) = Q) — Ar2)

or, when fi(yry2) = fi(y1) + fi(y2),
(2.16b) ES,(y1)Su(y2) = #(y1y2) prliilyryz)).

Now, we specialize to the case y2 = 1. Then yiy2 = 1, iyry2) = #(y1y2) = 1 and fi(y1)
+ fi(y2) = 2 Re ji(y1).
We recognize three different cases:

If Re ji(y) < %,
P(1) — pa(2 Re ji(y))

E l Sn(y) |2 = =
(2.17a) 1-2Rejly)
n+1 N n
P — 2Reply)y .
T—2zredn " 2" ) " T3 Resm)
If Re i(y) = %,
1 1
2.17b E|Sy|*=pr@) =p. |1 +=4 ... + —— ) ~ .
(2.17b) [ Su(y) |* = pr(1) p()( 5+ +n+1) nlogn
If Re ji(y) > %, (
w(2Re [i(y)) — pa(1) 1 .
E|S, 2P ] - _ 2Reily)
@170 B =R =1 " CRepq) —DTCReFG) "

Thus, we see the phenomenon claimed in the introduction; E | S.(y) |2 is roughly a constant
times n if Re [i(y) < %, but grows faster otherwise.

We proceed to prove that if Re fi(y) < %, the distribution of S,.(y) is asymptotically
normal.

To begin with, there is a differential equation for F,(y1, - - -, yn; 2), m = 8, corresponding
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to, and proved as, (2.6) and (2.13). For m = 3,

d
1-2) aFS(‘)’l’ Y2, V3; 2)

(2.18) = (1+ i(y1) + g(y2) + f(ys)) Fs(y1, v2, v3; 2) + A(y1yv2) Fa(y1yz, vs; 2)
+ ﬁ(Y1Y3)F2(Y1Y3, Y25 2) + ﬁ(YzYa)Fz(Yl, Y2Y3s 2) + ﬁ(YWZYs)Fl (Y1Y273; 2).

In general, the right-hand side contains the homogeneous term (1 + fi(y;) + --- +
My¥m)) Fn(y1, « -+, Ym; 2) and a linear combination of Fi’s (¢ < m) where a subset of Yiovee
Y= has been multiplied together.

An easy induction proves the following lemma, cf. (2.14).

LEMMA 2.1. Fu(y1, « -, Ym; 2) is a linear combination of terms

(1 —2)77%(—log(1 — 2))#

where B =0, 1, ... and « equals Y,; j([[ics; vi) for some partition Ei, Es, --- of
{1...m}.

The next lemma, generalizing (2.8), is proved in [11, Theorem V.2.31].

LEMMA 2.2.  The Taylor coefficients of (1 — z)™"*(— log(1 — 2))” are
~ (1/T(a + 1))n*(log n)#
asn— o,

Hence, we can for large n ignore all terms in F,, but those for which Re « is maximal
and B is maximal for these a’s.

LEmMMA 23. IfReji(y)) <%, j=1:.- m, then

(2.19) Folyi, « ) ym; 2) = A1 — 2)"7™2 & lower order terms

where A equals (m/2)! times the sum of (1 — 2 Re i(y;))™* « -+ + (1 — 2Re ji(y;,,)) " for
all arrangements of y1 + -+ ynm into m/2 (unordered) pairs (v;,, ¥;,), (v, ¥;,) +++- (Thus, A
= 0 when there is no such arrangement, e.g. when m is odd.) (The “lower order terms”
are (1 — 2)7"%(— log (1 — 2))? with Re a < m/2.)

Proor. The homogeneous part of the differential equation like (2.18) is
(1 —2)(dF/dz) = (1 + ¥ fi(y;)) F with the solution C(1 — 2) '~ 2% one of the lower order
terms. The non-homogeneous terms also are of lower order, except possibly the leading
terms of fi(yiy;)) Fm-1(yiv), - +; 2), yiv; = 1. Now,

Fm+1(1’ Y1 ¢ Ym; z)
=2 2"E(Sa(1) « +++ - Sulyn)) =3 2"(n + DESa(y1) - -+ + + Sulym))

3; (2Fn(y1, -+, Yms 2))

and

% 2(1 = 2)77%(—log(1 — 2))* = (1 + &) (1 — 2)">"(— log(1 — 2))® + lower order terms.

Thus, by induction, each arrangement (y;,, %,), (v,, %,), * -+ contributes to m/2 terms on
the right-hand side; its total contribution is (1 — z) "' times
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m, m— 2 el -1
St — —2— '[lxr (1 — 2 Re A(v,))
- (%)' 172 (1 - 2 Re ify;) T (1 — 2 Re ji(y;))™"

- (1’23 vy ﬁ(y,))(g)z IT (1 — 2 Re ()™

Hence, the leading terms on the right hand side sum to (m/2 — ¥ ji(y;)A(1 — 2)~"™™2,
which confirms the inductive hypotheses.

LEMMA 24. IfReji(y)) =%, j=1..- m, then
(220)  Fulyi, « -, ym; 2) = A(=log(1 — 2))™%(1 — 2)"'"™2 + lower order terms

where A equals (m/2)! times the number of arrangements of v - -+ ym into pairs (y;,, ¥;,)

PrRoOF. Similar to Lemma 2.3.

THEOREM 2.2. Suppose that Re [i(y) < %.
(i) If yis real,

(2.21) n=28,u(y) —a N(O, (1 - 2i(y))™)
(ii) If y is complex,
(2.22) n~"%(Re Sy(y), Im S,(y)) —a N (0% (1-2Re ﬁ(y))_l(}l 2)) '

The joint distribution of several n™'2S,(y;) (Re ji(y:) < %) converges to a normal
distribution with independent components.

Proor. (i) By Lemmas 2.3 and 2.2,

2k)!
(2.23) Fuly, 0,7 9 = R (1= )™ML= 27 4 e,
2k)!
(2.24) E(S, () ~ 2 (1 = 2i()n*
and
(2.25) E(Sn(y))2k+1 = o(n**7?),

Thus, the moments of n"/2S,(y) converge to the moments of N(0, (1 — 2{i(y))™'), whence
the distribution converges.

(ii) Similarly
(2.26)  Farly, -+, 7,7, ++7) =kE (1 —2Re iy)) A1 —2) " * + ... (ky:sand 7:5).

Thus, n*E((S:(y))*(S.(¥))*) — k! (1 — 2 Re ji(y))~*, while all other mixed moments of
n"%(Su(y), Sa(¥)) tend to zero. Thus, the moments of n"%(Re S,(y), Im S,(y)) converge
to the moments of the given normal distribution.

Lemma 2.3 also shows that mixed moments of S,.(y:1), S.(y2), -+ converge to the
corresponding products of moments, which proves the statement for joint distributions.

THEOREM 2.3. Suppose that Re [i(y) = .
() Ifyisreal, (nlogn)™28S,(y) >4 N(O, 1).
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1
(i) If y is complex, (nlog n)™*(Re S.(y), Im S,(y)) = N<0,§ ((1) 2)) .
The joint distribution of several (n log n)™/2S,(y:) (Re fi(y:) = %) converges to a normal
distribution with independent components.

Proor. As for Theorem 2.2, using Lemma 2.4.

Let us finally briefly consider the case Re fi(y) > %. The leading term of F.(y, - -+, y; 2)
now is C,(1 — 2) 7'~ Hence, all moments of n S, (y) converge, but there are several
complications: Unless fi(y) is real or #(y) = 0, En "*A"S, (y) will oscillate, and n "R (S, (Re
¥), Sn(Im v)) does not converge. The limits of the moments depend on fi(y), fi(y?), - - - and
on #(y), #(y?), . - .. Different S,(y) do not have to be asymptotically uncorrelated.

If y is real (y® = 1), crude estimates show that the sequence of limits of the moments
determines a unique distribution. Hence, n"“”S,,(y) converges in distribution. A straight-
forward computation of Fi ... F, shows that the first four moments of the limiting
distribution are (with i = ji(y))

(y) 24 35(y)(1 + fi)

TG+’ (@-Dr@i+1’ @G-orea+n o0d

(2.27)
24420 + 24 — 1)

@h—1)*4i - DT4a+ 1)

No simple pattern is seen and we have not been able to identify the asymptotic distribution.

3. Commutative groups: general functions. Throughout this section we assume
that Re [i(y) = % for every y # 1.

We will study S.(f) for a real function f € L*(dm). If the Fourier series f = er(y)y
happens to have only a finite number of non-zero terms, S,(f) is asymptotically normally
distributed by Theorems 2.2 and 2.3. When G is finite, every f is such a finite sum, but
when G is infinite, some further argument is needed. It is clear that a convergence theorem
requires some extra smoothness condition on £, u or ». One reason is that the distribution
of X,, may be singular with respect to m while f may be defined only a.e. Also, it is possible
to have Refi(y) < % for every y # 1, but sup Re ji(y) = %. Then o in Theorem 3.1 below
may be infinite even for a continuous f.

LEmMA 3.1. (i) Suppose that Re [i(y1), Re [i(y2) < %, Then

3.1) n7 ESu(y1)Sn(y2)| = C|v(y1v2) | (1 — Re fi(y1) — Re fi(y)) ™"
(ii) Suppose that Re ji(y1), Re ji(y2) = %. Then
(3.2) (n log n) Y ESu(y1)Su(y2)| = C|#(y1y2)| (n=2).

Proor. By (2.16),
(8.3)  |ESu(y1)Suly2)| = | #(v172) | supose=1| pr((1 — £)ilyry2) + t(i(y1) + f(y2))) |-
If | x| = 2 and Re x = 0 we obtain (for n = 2)

Dn(X) 2_ 2_ N 2Rex |x|? N 4 2 Rex
% =Tt (1+ % +k2 =TI} 1+Z§ 1+ %

X

=TI |1+3

| =

2Rex
=CIIt (1 + ) = C(n + 1)*R*
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(3.4) |pa(x)| = C| x| nBe*

(3.5) |pr(x)| =

Pal0) T — !

| =z

= | pa(x) | (m +37 E) = Clog nnF**

These estimates hold also for Re x < 0, | x| < 2. This follows e.g. by the identity p.(x) =
(x/n) pr-1(x + 1).

(3.2) follows from (3.3) and (3.5). To prove (3.1), let « = 1 — Re (y1)) — Re fi(y2). If
Re ji(y1y2) =1 — a/2, (3.3) and (3.5) yield

nTE | Su(y1) Su(y2) | = C|#(y1y2) | log nn™2 = C|#(y1y2) | @),
and if Re fi(y1y2) > 1 — a/2, (2.16a) and (3.4) yield
E|Su(y1)Snly2)| = C|#(y1y2) | (nRefrr2) 4 pRei)+Reitedy s (5/9) < C|5 (yry2) | 0/ at.
THEOREM 3.1. Suppose that Re i(y) < % for y # 1 and that f € L*(m) is real. Let
0% =Y. | f)[*(1 — 2 Re i(y)) ™. Suppose further that either
@ TIFWI1—2Rep(y)™ < oo, 0r
(i) 0% < o and v is absolutely continuous with dv/dm bounded, or

(iii) p is absolutely continuous with du/dm bounded.

Then
(3.6) n‘m(Sn(f) -n f fdm) —4 N(0, 6?).

ProOF. By subtracting a constant, we may assume that f (1)=ffdm=0. Denote the
characters such that f(y) # 0 by v1, vz, - - - and let fi be the partial sum >y Fyi)y:. We
assume that every complex vy, is immediately followed (or preceded) by its conjugate.
Then, restricting attention to a subsequence, we may assume that fx is real. By Theorem
2.2,

n"Y28,(fv) —a N(0, 0%) as n — oo,

where o% = 3V | F(y)2(1 — 2 Re ji(y) 7L

Since 0% — o? and thus N(0, 6%) — N(0, ¢?) as N — o, the theorem will follow from
[2, Theorem 4.2] once we have showed that n™/2S,(fy) converges in probability uniformly
in n to n72S,(f) as N — .

We study the three cases separately.

(i) fv — f uniformly and thus S.(f~) converges to S,(f) in square mean. By Lemma
3.1 (i), ES.(y)]?= Cn(1 — 2 Re ji(y)) ", whence

I1Sa(Fll = IZ F@dSatydle = T | F@ 1Sl
=Cn2Y |7 (y)(1 — 2 Re fi(y) V2
Applying this to f — fy we obtain
Sups |2 728u(f) — n72Su(fw)lle = supan ™2 (| Su(f = fi )l
= CT5Half() (1 - 2Re i) 2

Since the last sum tends to zero as N — , we have proved the sought uniform convergence
in square mean, and hence in probability.

3.7)

(ii) First we assume that » = m. Then, every X,, is uniformly distributed and S,.(fv)
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converges to S,(f) in square mean as N — «. By Lemma 3.1 (i),
38 EIS{OP =3r 5 fNFGIES,(0)S:") = e |F)PES.(0)S. ()

= Cn r|f)P(1 = 2Re fy)) " = Cna®
For an arbitrary » satisfying the condition, this yields

Elsn(f)|2=fE(|Sn(f)|2|—X0) dr (Xo)
(3.9)

av 2 v ,
= sup%j E(lSn(f)l |XO) dm(XO) = Cnsup%O .
Again, we apply this to f — fn.
sup,E (n7V2S,.(f) — n7%8.(fv))* < Csup Bd,—-; (62 —o0%) > 0as N— oo,
This completes the proof as in case (i).

(iii) Since p € L2 ji € I* and sup, «1Re fi(y) < %, which implies that o2 < oo,

We may, by conditioning on X,, assume that Xj is constant. We separate X; - - - X, into
different branches, each one comprising the progeny of a single daughter of X,. Let B, be
the number of branches and Ni, N, - .., Np the numbers of elements in the branches.
Thus YF*N;=n.Also EB,=E# {(k<n:I,=0} = Y7 (1/k) <logn + 1 and

(3.10) EB2 = (EB,)* + 25‘% (1 - %) = 2(log n + 1)%
The branches develop independently of each other and each branch is a process of the
type studied in this paper with initial distribution »" = X,u. Note that »’ satisfies (ii).

Let S$’(f) be the sum of f (X) for the first m points of the jth branch, and a., = ES{(f).
Thus S.(f) = f(Xo) + 28 Sy (f). By (3.9).

(3.11) E(SP(f) — an)* = ESYP () = Cmsupg:—noz.

Since the branches are independent,

E((ZP (SR) — an))?| B, Ny +-- Ng) = $P E((S)) — an )’ | N;)
(3.12) ’

=C Y N;sup Z—Vmaz = Cn sup dp 2,

dm°
Put k = sup{0, Re ji(y) : y # 1}. By (2.9) and Plancherel’s formula

lanl = |2 FNESP W) = | 3 f(y)ﬁ’(y)<m ~1+ ﬁ(w)’

m-—1

< C T F@)# W) m™ < Cm¥| £ || di"/dm |

(|| || denotes the norm in L) Thus,

(3.13) |2f~ an,| = CIIf|| || dp/dm| £~ Ny.
By Holder’s inequality,

(3.14) 2P Ny = (S N)EP ) = n'Bi

and, by (3.10),

(3.15) ESP N9? = n*EBX™ = n™(EB2)'™ = 2n*™(1 + log n)* ™.
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By (3.13) and (3.15), n'E | Y P an, P = C||f |’, where C depends on p only. We combine this
with (3.12) and obtain

nE(Su(f) — f(X0))* = n'E (X" S))* = Co.

The same argument as for the other cases shows that n™/*(S.(f) — f(Xo)) —>a N (0, 6%
as n — . Since n""%f(X,) =, 0, this completes the proof.

REMARKS.

1. It follows from the proof that ES,(f) = n [ f + o(n™/?) and Var S,(f) = no® + o(n).
(In case (iii) this requires the extra assumption E (f (Xo))? < .) Similar remarks apply to
later theorems.

2. If sup, . Re fi(y) < %, then 6® < » and (i) reduces to }, | f(¥)| < ®. On the unit circle,
this holds e.g. if f has a bounded derivative.

If some Re [i(y) = % we have the following substitute.

THEOREM 3.2. Suppose that Re i(y) < % for y % 1 and that f € L*(m) is real. Suppose
further that either

@ TIFl<o,or

(ii) » is absolutely continuous with dv/dm bounded, or

(iii) p is absolutely continuous with dy/dm bounded.
Then

(nlog n)_l/z(Sn(f) - J fdm) —a N(0, Yrei=1/2 IF&)P).

ProoF. As for Theorem 3.1, using Lemma 3.1 (ii).

Note that only f(y) for y such that Re fi(y) = % matter. Thus, even if f; -+ f» are
linearly independent, (n log n)™'(S.(f1), -+, Su(fx)) may converge to a degenerate
distribution. In fact, the rank is at most the number of y € I" such that Re fi(y) = %. (This
number is often, but not always, finite.) This does not happen when Re ji(y) < % for every
Y# 1.

4. General compact groups. In this section we adapt the preceding arguments to
non-commutative groups. Instead of characters, we will work with the more general
concept of group representations. The following facts on representations of compact groups
may be found e.g. in [8]. See also [4].

A representation of G is a continuous homomorphism of G into the group of unitary
operators on some finite-dimensional complex vector space V. We will not distinguish
between an operator and the corresponding matrix for some fixed orthonormal basis. Thus,
we may equivalently say that a representation is a continuous matrix valued function R (g)
= (r4(g)) ;=1 such that R (g) is unitary and R (g1&2) = R(g1)R (&), &1,8:€ G. Thus R g™
=R(g)'=R(g* _

We define the conjugate representation as R(g) = (ry (g)) &-1-

Two representations are equivalent if they differ by a change of coordinates only, i.e.
Ry(g) = URi(g)U™" for some fixed unitary matrix U. Equivalent representations can be
considered identical for all purposes. A simple but important example is the trivial
representation in a one-dimensional space defined by R(g) = I, the identity operator.

Given two representations R; and R, in V; and V; of dimensions d; and d;, respectively,
we may form new representations R; @ R; in the d; + d»-dimensional space V: © V; and
R; ® R; in the d:d:-dimensional space V; ® Vs. In coordinate form

(4.1) (R1 ® Ro(@)irsi = rP(&)r ().
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A representation is irreducible if the space V does not contain any proper subspace, W,
which is invariant for every R(g), e.g. R(g)(W) C W. Every representation is equivalent
to a direct sum of irreducible representations; equivalently V is a direct sum of some
invariant subspaces V; such that R |v,is irreducible. (If G is commutative, the irreducible
representations are one-dimensional and given by the characters, cf. Section 2.)

For a representation R in V, we define f(R) = JF(&R(g)* dm(g) (for fE L'(m)) and
A(R) = [ R(g) du(g) (for a measure u); these are operators on V.

We let {R.}océ = {(r§)} be a complete set of irreducible representation (i.e. every
irreducible representation is equivalent to exactly one R,), and let d, be the dimension of
R.. Then Us{ds*r$}%_, is an orthonormal basis in L?(m). Thus, we have the Fourier
series expansion

42) f(8) = a3 dul f, r)r(8) = T du By F(RY)r3( )
= Yo d.Tr(f(R)R.(g)

and the Plancherel formula

4.3) IIP = S do| (R s,

where | f|| denotes the normal in L?(m) and | ||us denotes the Hilbert-Schmidt norm,
I(@s)lifs = X lay [

Returning to the branching random walk, we define for each representation R, S.(R)
= Y¢ R(Xs). This is a matrix-valued stochastic variable with components (Su(R))y =
S,,(rij).

For representations R; --- R, in Vi ... V,,, respectively, we define

(4.4) Fn(Ry, « -+, Bm; 2) = 3§ 2" E(Su(R1) ® Sp(R2) ® ++ - ® Su(Rn)).

This generating function is an analytic function on {2:|z| < 1} taking values in the space
of linear operators on Vi ® ... ® V,,. Its components are generating functions for mixed
moments E (Sy(r{})Sa(r{)) ++-) (cf. (4.1)). By the definition,

(4.5) Fn(Ry, +++, Ry 0) = E(R{(X0) ® ++- ® Rn(Xo)) =3/ (R ® ---® R,,).

We obtain differential equations for F as in the commutative case,

E(R(X.)|Xo +++ Xp1) = E(R(X1)R(Y,)| Xo -+ Xni)

(4.6)
=15 (RER®T) =Ls ®i®)
n n
1
-2 L F(R; 2) = T 2°(n + DESun(R) — nES.(R)
(4.8) dz

= Fi(R; 2)(I + i(R)).

We will soon solve this equation. Formally, Fi(R; z) = 3(R)(1 — 2)~T#®), Similarly, we
obtain for F,

Sp+1(R1) ® Sps1(Rs) = Su(R1) ® Su(Rs) + Su(R1) @ Re(Xs1)
+ Ri(Xn+1) @ Su(R2) + R: ® Ro(X,41)

E(Suii(R) ® Spar(R2) = E(Sa(R) ® s,.(R2>)(I F o I® (R + — (R ® I)

1 )
(4.9) +—— ES\(R: ® R)A(R, ® Ry)
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1-2 a Fo(R1, Ry; 2) = Fo(R1, Ry; 2)(I + ((R) @ I + I® fi(R,))
(4.10) dz

+ Fi(R: ® Ry; 2)i(R1 @ Ry).

For m = 2 we obtain similar equations. We give the differential equation for F3 in
coordinate form, cf. (2.18).

d
(1-2) E Fs5(R1, R:, Rs; z)i,izi,,j,j,j:,

= (F3(Ry, Re, R3; )T + f(R) @ IQ I + I® i(R2) ® I + IQ I®fi(R3)));iziasisise
+ (F2(R: ® R3, Ry; 2)(i(R1 ® Ry) ® I)),,30,5, 05
+ (Fo(R1 ® Rs, Ro; 2) (i (R:1 ® R3) @ I));55,5150s0
+ (F2(R2® Rs, Ry; 2)(i(R2 @ R3) ® I))iisirjojoss
+ (Fy(Ry ® Ry ® Ry 2)fi(R: ® Re® Ro))iijinie

4.11)

To solve these equations we will use the following facts on Jordan’s normal form of a
matrix, see e.g. [7].

Let A be a linear operator. Then there is a basis (not necessarily orthogonal) such that
A decomposes as a direct sum of Jordan boxes, i.e. matrices (Ad; + 8;-1). The X’s are
eigenvalues of A and each eigenvalue occurs in at least one Jordan box.

LEMMA 4.1. Assume that A is a matrix with eigenvalues A1 --- A\, and let d; - - - d; be
the dimensions of the largest corresponding Jordan boxes.
(i) Any solution of the homogeneous equation

(4.12) 1-2) i F=FA
dz

is of the form
(4.13) F =Ykt Y%7 Ap(1 — 2)#(— log(1 — 2))”.

(ii) The non-homogeneous equation

(4.14) 1-2) % F=FA+ B(@1 - 2)"(—log(1 - 2)" (m=0,1,.--)

has a solution
(4.15) F=Y",BA;(1 - 2)(—log (1 — 2))/,

where

(a) if a is not an eigenvalue of A, then M = m and A, = (al — A7

(b) if a = A, then M = m + dy and Apin = (m!/(m + n))(A — al)"'Pr,n =1, --- dy,
where P, is the projection (defined by the Jordan decomposition) onto ker(A — al)*.

ProoF. (i) Choose a basis such that A is of Jordan form. The equation decomposes
correspondingly. Hence it suffices to prove (4.13) when A is a Jordan box. Furthermore,
since (4.12) is equivalent to (1 — 2)(d/dz)(F(1 — 2)%) = F(1 — 2)*(A — al), we may assume
that the eigenvalue is zero. Thus A = (8;-1) &1 and (4.12) becomes (1 — z) dFy/dz = F;;1,
i,j=1-..d,orwith x=—log(l — 2), dF;;/dx = F;_;, which implies that F'is of the stated
form.

(ii) It suffices to prove this for B = I. (Thé resulting equation may be left-multiplied by
B.) As in part (i), we may assume that A = (8;-1)¢;—1. Then (d/dx)Fy; = Fy_1 + e~x™8;,
,j=1...d.
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If « # 0, the equation may be written (d/dx)(F + (A — a)'e**x™) = (F +
(A — a)'e™x™A + m(A — a)'e™*x™ . (a) follows by induction.

If a = 0 then one solution is F; = (m!/(m + j — i + 1))x™"/~*', j = i. This proves (b).

We will in the sequel denote the eigenvalues of fi(R) by Ax(R), 2 =1,2, ---, and the
dimensions of the largest corresponding Jordan boxes by dx(R). We assume that they are
ordered so that Re A;(R) = Re As(R) = ...

Lemma (4.1) (i) and (4.8) yield

(4.16) Fi(R; 2) =Y THE ™ A(1 — 2)7 B (— log(1 — 2)) ™

for some Ay;. This gives, using Lemma 2.2, the asymptotic behaviour of ES,(R). If we for
simplicity assume that Re A;(R) > Re A2(R) we obtain

ES.(R) ~ n*®(log n)“®)-14,
for some matrix A. If Re A;(R) > %, it follows from the lemma and (4.10) that the leading

term of Fo(R, R; 2) is
B(1 — 2)12RAMB) (_ Jog(1 — z))2hR)-2
and thus
ES.(R) ® S.(R) ~ n™ReMB)(1og p)2®)-2, g

for some matrices B and B;, which furthermore may be shown to be nonzero. We obtain
the same misbehaviour as in the commutative case.

Another consequence of (4.16) is that Theorem 2.1 holds verbatim for non-commutative
groups, the proof being the same except for simple modifications. (The assumption on p is
equivalent to Re A1(R) < 1 for every non-trivial irreducible representation.)

Now, we are prepared to study the well-behaved case in detail. Assume that R; and R,
are two representations such that Re A1(R:), Re Ai(Ry) < %, k=1, ---. Let P be the
orthogonal projection of V1 ® V; onto {x € Vi ® Vo:R; ® Rox = x}. Since R; ® R,
restricted to ker P decomposes into a direct sum of non-trivial irreducible representations,

4.17) MR ®R,) =P

and

(4.18) Pii(Ri® Ry) = Pi(R, ® R,;) = P.

Using (4.8), Lemma 4.1 (i) and the decomposition V; ® V, = im P @ ker P we obtain
(4.19) Fi(R, ® Ry; 2) = P(1 — 2)"2 + lower order terms.

Since the eigenvalues of I + i(R:) ® I + I ® i(R;) are {1 + Ax(R:) + A(R2)} which by
assumption have real parts smaller than 2, (4.10), (4.18), (4.19) and Lemma 4.1 yield

(4.20) F(Ri, Ry;2) =PI — ((R)® I — I® ji(R2)) (1 — 2)~% + lower order terms.
We specialize to the case R; = R; = R and define

(4.21) 2 (R) = (owu(R)) = PI — G(R)® I — I® i(R))™.
Then (4.20) implies

(4.22) ES.(R) ® S.(R) = = (R)n + o(n).

This can be written

(4.23) ES,.(rj)Su(r) /n — 6ui(R), n— .

If furthermore R is an irreducible representation in the space V with the orthonormal
basis e; -+ eq, then Im P is the one-dimensional subspace of V ® V spanned by e; ® e;
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+ ..+ + eq4® eq, and thus
1
(4.24) P= (c_l 3ik3jz) Fra=1

(This follows by the theory of representations, or from the special case u = m in (4.23).)
Hence

oinj(R) = (2 (R)e;® e, & ey)

(4.25) 1 _
=a8ik e  (I-E(R)BI-—IQA(R))'e® e, . ® en).

If i (R) is diagonal, with diagonal entries A; - - - A, this simplifies to

1 _
Oii(R) == 8a Ya 1 (1 =X — A1) e ® 1, 6, @ em)
(4.26) d

= %d (1 -2 Re A,—)‘IS,»kSﬂ.

Similarly, we obtain for higher moment, using the same argument as in Lemma 2.3, the
following result.

LEMMA 4.2. IfRe Ai(R) <% and R = R (i.e. every r; is real), then

F, (R’ R) R} R; Z)l ImJ1e ( ) Z Hh 1 olklla]klk 1 - z)‘l_’n/z
(4.27)

+ lower order terms,

where the sum is taken over all partitions of (1 - - - m) into m/2 pairs (I}, l§) and i} = i,
Jh=Jp, bk =T JE =Jiy.

This lemma implies that
En"8y(ry;) « - Salri,;,) = X1 04254

Thus {n~"2S,(r;)} asymptotically satisfies the relations E by 00 b0, =2 72 E (&6,
(where the sum is taken over all partitions of (a1 -- an) into m/2 pairs (ak, ak)),
characterizing central joint normal distributions [9, Proposition 1.2]. Consequently, if every
ry is real,

(4.28) (n7V28,(ry)} o —>a N(0, 2).

If some r; is complex-valued, we may apply this to R © R (which is equivalent to a
representation with real coefficients) and conclude that {n™?Re S,(r;), n™**Im S,(r;)} is
asymptotically normally distributed.

Finally, for a finite number of representations, we apply this to their direct sum. This
shows that n™/2S,(R,) converge jointly for several representations R,,.

If R, and R; do not contain any common irreducible representation, P = 0 in (4.20).
Thus ES.(R;) ® S.(R2) = o(n).

We have proved the following theorem.

THEOREM 4.1. Suppose that Re A\1(R) < % for all irreducible representations but the
trivial one. Then {n"'2S,(r%)} converge jointly to normal distributions (i.e. convergence
in C* = (R?»").

The covariance structure is given by (4.23). In particular, terms corresponding to non
equivalent, or con]ugate-equlvalent representations are asymptotically independent.
If f € L? is real and f(R) vanishes for all but a finite number of representations, then
n"V2(8,(f) — [ f dm) converges to a normal distribution.
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In order to prove limit theorems for more general functions, we will need uniform
estimates of E | S,(f)|* and not only asymptotical results. We will do that with a somewhat
stronger condition on p. We introduce two further matrix norms; the standard operator
norm || A|| = sup{|| Ax||:||x|| = 1} and the trace class norm || A |lrc = Tr((A*A)"?).If A is
a normal matrix with eigenvalues A1 -+ Ag, | A || = sup| Az, |A|lrc = Z|Ax| and || A [lus =
(2| Ax[*)'2. In particular || R(g)| = 1, whence || i (R)|}, || ?(R)|| =< 1 for every representation
R and the crude estimates

(4.29) IES/(R)| < 38 | ER(X)| =< X3 E| R(X)] =n + 1
(4.30) | E (Sa(R1) ® Su(Ro))|| < (n + 1)°

LEMMA 4.3. Assume that there exist t = 0 and k < % such that
(4.31) [T+ @R) | st +«

for every irreducible representation of G except the trivial one. Then, for all f € L*(m)
with [ fdm =0,

(4.32) () ISa(£) ll2 = Cn'”* St dl F(Ra) || 7c.
(i) If furthermore v equals the Haar measure m,
(4.33) I Sn(F) ll2= Cn'2| 1.
(iii) If v is absolutely continuous and dv/dm € L?,
(4.34) |ES.(f)| = Cn®|| fI| | dv/dm||.
The constants C depend on t and « only.
Proor. (i) First we note that if (4.31) holds for some ¢, it holds for all larger numbers

as well. Let R be a non-trivial irreducible representation acting on the d-dimensional space
V. Then, if n + 1 = 2¢,

1
‘I+—M(R)®I+—I®M(R)”
(4.35) n< I+—p(R)>®I+I®( I+———u(R)>|l
1 1 2 n+1 R 2K
=2 5”,?:1'“(3)“—;7—1 —2—'I+"(R)”<1+T1

By (4.9), (4.35) and (4.29), for n + 1 = 2¢,
| E(Sn+1(R) @ Sns1(R)) ||

1
= | E(Su(R) ® Su(R)) || “I + —M(R) ®I+-——7I® u(R) U

(4.36)

1 S
+——7 1ESZROR) | | MR ® R) |
= 2Kk
=< | E(Sn(R) ® S.(R)) || (1 +m> + 1.
Let p, be as in (2.15) and define

Pr(1) — pr(x)

(4.37) gulx) =2 =L
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Then

(4.38) q(x) =1, Qu(x) = qn(x)(l +ﬁ—1) + 1.

If we assume, as we may, that k = 0, ¢.(2¢) = n + 1. By (4.30) we have for n = 2¢t, with C
=2t+1,

(4.39) I E(Sw(R) ® Su(R)) || = Cgn(2).

But by (4.36), (4.38) and induction, (4.39) then holds for all n.
Let @, --- ag and b; -+ by be complex numbers. Then, with a = Zae, and b = Zb;e,
ev,

E|Su(Saibjry) | = Sin aibj@nbiE(Su(ry)Su(Fu))
=Y a;@(ESq(R) ® Su(R))ajbiby
(4.40) = (E(S.(R) ® S.(R)b® b, a® @)
<a®a| | ES.(R) ® S.(R) ||| b® 5|
= | E(Sx(R) ® Su(R)) || X | @il X | b:[*.

By a well-known property of the trace class norm, there exists for any matrix A = (a;)
numbers A, and a?, bk i, k=1 -.. d, such that

SIh|=Allte, Zilak|?=3:|bf?=1 and a;=Skheafbt.
Then, by Minkowski’s inequality, (4.40) and (4.39),
4.41)  IS«(Tr(AR)) ||z = || Su(ZaMeZyalbiry) || 2= Zu| e || E(Sa(R) ® Su(R)) ||
= C|| A |ITcga(26)"
It follows from (4.37) that (assuming x = 0)
(4.42) @n(2c) = pa(1)/(1 — 2¢) = (n + 1) /(1 — 2x).
The Fourier expansion (4.2), (4.41) and (4.42) yield (for some C depending on « and #)
ISu(£) Il = Zdu|| Sn Tr(ARIR) |2 =< Cr**Zd, || A(R:) [ rc-

(i) We continue to use the same notation. By (4.17) #(R ® R) = P and (using (4.18))
(4.8) and (4.5) are solved by

(4.43) Fi(R®R;z)=P(1-2)72

Consequently ES,(R ® R) = (n + 1)P and (4.9), (4.18) yield, with W denoting ji(R) ® I
+I®uR),

(4.44) E(Sn+1(R) ® Sp41(R)) = E(SH(R) ® Sn(R))<I + nlﬁ W) + P.

By (4.38) and the fact that E(So(R) ® So(R)) = #(R ® R) = P, (4.44) is solved by
(4.45) E(Su(R) ® Su(R)) = Pgn(W).
Let = = (£;) be a d X d matrix and set f = Y¢,-; £,7;. Then, by (4.1), (4.45), (4.24),
E|Su(f)* = Ty £y ESu(r)SnlFey)
=Y &:&/E(Sa(R) ® Su(R))iryy = ¥, £y (PgulW))isrsje

-1 1 -
= Yinw iy 7 8ii Orw @n( W) = 7 ik Eilir QW) aayy



CERTAIN BRANCHING RANDOM WALKS 925

We define, for any linear operator Ton V® V,

(4.46) o(T) = gllzzﬂk o€ Trmt.
Thus
(4.47) E|S:(f) |? = 9r(gn(W)).

If A = (a;) and B = (b;;) are operators on V, then

1 - 1
(4.48) ¢(A® B) = i Yirbi Euribr = a Tr(ZA’‘BE*).
Hence, using standard matrix norm inequalities and (4.3),

1 -
lo(A®@B) | =S I = lus | AN BIIE" |lus
(4.49)

IZNEsIANNBI=1F1*1ANIBI.

1
d
By the definition of W,

(W™ | = '"('") (AR ® (R | = '"(”‘) SR IR 1™ 1 11
(450) lor(W™) [ =35 |, Jor(id fi( | =253 JIEETIER) ™1

= ('Z) IAR) 1 NAR) ™ 112 = 2" | a@®) 1™ £ 11
By (4.38), g» is a polynomial with positive coefficients. If g.(x) = Z¢c,x™, (4.47) and
(4.50) yield
E|S:(£)]? = r(gn(W)) = (T cnW™) =3 cnpr(W™)

=X enIAR) D™ I = gu@I AR D I F1I*.

This yields good estimates if || i(R) | < , i.e. if £ =0 in (4.31). In general, we modify the
calculation as follows. Since 2¢tI + W = (tI + i(R)) ® I + I® (¢I + i(R)), we obtain exactly
as (4.50), using (4.31)

| pr((2tT + W)™) | < 27 | el + @(R) | ™| FII2 =< 27t + 0™ | 1%
Set §gn(x) = qn(x — 2t). Thus Go(x) = 1 and

(4.51)

2t X
4.52 In =g, - .
(4.52) Grt1(x) q(x)(l n+1+n+1>+1

Define g, by
2t

1-—

n+1

x
+ + 1.
n+1

Let §n(x) = Zénx™ and (fn(x) =3&,x™ Itis clear by (4.52) and (4.53) that | é.| = &.. Thus
E|Su()1? = @r(gn(W)) = @p(Gn(2t] + W)) = Y, Enepr (2L + W)™)
=T |2t + )" || fI2 <X En2t + 2™ || FII2 = §n(2t + 2) || FII*

We may assume that k = 0. Then §n(2f + 2«) = ¢.(2¢) = 1. If C1 = SUPn=2:Gn(2t + 2k)/Gn(2t
+ 2k), it follows from (4.52) and (4.53) by induction that g,(2¢ + 2x) < C1§.(2¢t + 2«) for all
n = 0. Hence

(4.53) Go(x) =1 and 5n+1<x)=5n(x)(

E[Su(f) "= C1gn(2t + 20) | f||* = Cign(2e) || "
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By (4.42), E|S.(f)|* = Cn|| f||* for functions of this type. In general, decompose f by (4.2)
as 3¢ f, where f, = d, Y51 f(R.);irs. If a # B, then R, ® R does not contain the trivial
representation and #(R, ® R;) = 0. It follows that ES,(R.) ® S.(Rz) = 0, a % 8. Thus, if
a# B,

ESu(£2)Su(fz) = Sin du f(R®)j: dg F(RP) 1 E(Su(r§)Su(71)) = 0.
Consequently,
E|Su(f)|? = ZE|Sulfe) I’ =< CnZe || £u])® = Cn| f*

and (4.33) is proved.
(iii) By (4.7), for n > ¢,

| ESns1(R) || s < || ESa(R) || 1s

1 K
I+——iR)||=1+——] || ES.(R .
n+1“( )n ( n+1)" (R) s

We obtain by (2.15) and induction as above
| ES#(R) || 1s = Cpn(k) || ESo(R) ||us = Cn” || #(R) || us

(a slight modification is needed if ¥ < 0).
(4.2) and (4.3) now yield

|ESn(£) | = | Z duTr( AR)ESu(Ro))| < Z du| f(R) | 1s ]| ES(Ra) || 1
= Cn*Z da || F(R.) ||us || #(Re) s
= Cn*(Z do || FR )2 dull 5(R.) [2)72 = Cr*|| f]| || dv/dm | .
The proof is complete.
The substitution ¢ = 1/t > 0 shows that (4.31) is equivalent to | I + €i(R) | = 1 + ex.

Now, suppose that the Hermitian matrix %({i(R) + {i(R)*) has no eigenvalues exceeding
k < %. Then,

I I+ ei(R)||*= || (I + &i(R)*(I + efi(R)) || = | I + efi(R) + efi(R)* + e®A(R)*i(R) |
=T+ e(@(R) +iR)*) || +e> =1+ 2 + &>

Taking ¢ small enough, we see that (4.31) holds with « replaced by some k’ < %. Also, note
that if (4.31) holds,

[t+ MR =|t+ MR | =t+«
and thus Re A{(R) =k < %.

REMARK. In fact, (4.31) implies Re((R)x, x) < k(x, x), which is equivalent to the
above condition on %({i(R) + fi(R)*). Another formulation is that the numerical range of
A(R) is contained in {z: Re z = «}. It is well-known that this is strictly stronger than just
assuming the eigenvalues not to exceed « (cf. Theorem 4.1).

After these preparations, the following theorem is proved as Theorem 3.1.

THEOREM 4.2. Suppose that there exists a k < % such that the eigenvalues of Y%(ji(R)
+ {i(R*)) are less than « for every non-trivial irreducible representation. Let f be a real
function in L*(m). Suppose further that either

() Zada || F(Ra) [l rc < o, or
(ii) » is absolutely continuous with dv/dm bounded, or
(iii) p is absolutely continuous with du/dm bounded.
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Then
n“/z(Sn(f) -n J fdm) —q N(0, 0°),
with
o® =3, di Tim (F, r5) (ria, Flomu(Re) < co.
REMARKS.

1. We have assumed that (4.31) holds uniformly in R. It is possible to obtain similar
results also when ¢ and « are allowed to depend on R, cf, Theorem 3.1.
2. If every ji(R,) is diagonal, (4.26) yields

0 = Yo d. Yy (£, 75)*(1 — 2 Re(fi(R.));) ™
=Y d. Y | F(R*)y]%(1 — 2 Re i(Ro)i) .

There are similar results when the real part of some Fourier coefficient equals %. We
state two theorems, omitting the proofs which are similar to the preceding ones (although
the combinatorics gets more complicted when d; below exceeds one).

THEOREM 4.3. Assume that R is a real representation with Al(R) = Y%, Let d be the
dimension of R and d, the dimension of the largest Jordan box of i(R) for any eigenvalue
with real part Y. Then, for some Z # 0,

(n(log n)*™~*)7V2S,(R) —4 N(0, ).

If the eigenvalues of ((R) with real parts % are A, - - - A, with corresponding projections
Py, so that Pyi(R) = i(R)Pr. = ArPr + Ny, Ny, nilpotent, T is given by

1
d(2d; — 1)((d: = D)

8 Eiz=1 (PrN§$"e;, PxN§ e; ).

Oy =

THEOREM 4.4. Suppose that there exist t = 0 such that || t + W(R) || < t + Y% for every
non-trivial irreducible representation. Let P, be the projection commuting with ji(R.)
onto the eigenspace ker(fi(R,) — %I). (P, = 0 is possible.) Let f € L*(m). Suppose further
that .

(i) E da " f(Ra) "TC < or,
(ii) » is absolutely continuous with dv/dm bounded, or

(iii) p is absolutely continuous with du/dm bounded.
Then

(n log n)_l/Z(S,,( fl—n f fdm) —4 N0, Zr d. | P.f(Ra) || Es).

REMARK. The assumption in the last theorem implies that the only eigenvalue on the
critical line is %, that d; = 1 and that P, is an orthogonal projection.

5. Homogeneous spaces. In this section we assume that the state space K is a
compact homogeneous space, i.e. there exists a compact group acting transitively on K.
We fix an arbitrary element xo € K and let H = {g € G: gx, = x0} be the subgroup fixing
xo. The mapping 7: g — 7(g) = gxo maps G onto K, and K may be identified with G/H.

The unit sphere S”! in R™ is an important example; we take G = O(n), the orthogonal
group consisting of all rotations of R", and H = O(n — 1). Another example is G = O(n)
and H = O(k) X O(n — k), 1 = k < n — 1, which yields the Grassmann manifolds.
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Let Y1, Ys, -+ be ii.d. random elements of G with the distribution yx and assume that
u is invariant under left and right multiplication by elements of H, i.e. AY,h’ and Y, are
identically distributed when A, A’ € H.

If v is a probability measure on K, let »’ be a measure on G inducing » on K and let X5,

1, +++ be the branching random walk on G defined in Section 1 using »’ and p. The
branching random walk on K then is defined by
X, = n(X3).

Because of the invariance property of u, we may alternatively use the definition of
Section 1, replacing (1.1) by:

If X; =gx,, then X, isdistributedas gY.xo.

A third possible definition could be formulated employing transition probabilities p.(y)
that are invariant, i.e. pg.(gy) = p«(y). Given X; , X, is given the distribution px ().

Denote the Haar measures on G, H and K by mg, mu and mx, respectively. Then =
maps mg to mx and the mapping f — f © = yields an isometry between L*(K, mx) and
{p € LXG, mg) : p(gh) = 9(g) whenh €H} = {p € L*G):p = ¢ * mu}. We define the
Fourier transform on L%(K) by A(R.) —/c>(R ), R, a representation of G. Then AR, =
@(R ) f(R ); in particular, f (R.) = 0 if R, (restricted to H) does not contain the trivial
representation of H.

If f€ L*(K), Su(f) = Si(f ° ), where S;.(p) = 3§ ¢(X/). Thus, we may apply all results
of the preceding section to the branching random walk {X{} on G and obtain results for
S.(f). Note that, by assumption,

(5.1) p=my*p*my, whence MR, =rmu(R.)UR)Mu(R.).

Thus only representations with mz(R,) # 0 are important.

We develop the theory in some detail for the sphere SV, cf. [4], [10]. G = O(N) acts
on the space of spherical harmonics of degree k, 2 =0, 1, - -+, by Of(x) = f(O"'x), x €
S™-1, This yields an irreducible representation Ry of O(N) of dimension d; = (N + 2k —
2)/k)(VEE?). The restriction to H = O(N — 1) of this representation contains the trivial
representation of H exactly once; the corresponding eigenfunction y, of riy is known as the
zonal harmonic of degree k. Since 7ty has rank one, (5.1) implies that ji(Ry) = j(k)ig (Re)
for some real number ji(k). i(k) is given by fi(k)r = i(Re)r = E(Yn(X,) | X1, = x). Thus

(5.2) (k) = E(Yn(X1) | Xo = x0) /Y (x0).

There are other irreducible representations of O(IV), but these can be ignored since they
do not contain the trivial representation of H.

Any fin L? can be decomposed as Y% f: (convergence in L?), where each f; i is a spherical
harmonics of degree 2. It follows by some computations that the operator F(Rx) on the
space of spherical harmonics of degree % is given by (if yx is normalized by || Y| = 1)

f(Ryp = di'” J fo dm yn = di"*(@, fi Y.

Hence
I FRe) llmc = || F(Rw) s = | FRR) || = 2| -

Since di ~ CkY2 as k — o, we obtain the following theorem from the results of Section 4.

THEOREM 5.1. Supppose that sups=1j(k) < % and that f € L*(SN™"). Let f = Y5 [ be
the expansion of f into spherical harmonics. Suppose further that either
(i) TRV full < oo, 0r
(ii) v is absolutely continuous and dv/dms~-1 is bounded, or
(iii) u is absolutely continuous and du/dmow) is bounded.
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Then, if sup ji(k) < %,
n“/2<Sn(f) n f f) a NO,5F (1 2060 A1)
while, if sup fi(k) = %,
ntog (5.0~ n j f) —a NO, Ssr-12 | 1.

6. Examples.

1. Let G = {1, —1} be a group with two elements and let y = pd; + (1 — p)é_:. The
branching random walk is equivalent to the following urn model. (A special generalized
Pélya-Eggenberger model [6].) Begin with one ball, black or white according to the
distribution », in the urn. Draw a ball, replace it and add a new ball, where the new ball
has the same colour as the drawn one with probability p. If f(X) = X, S, = S,.(f) is the
difference between the numbers of black and white balls in the urn when the total number
is n + 1. The only non-trivial Fourier coefficient is p — (1 — p) = 2p — 1. By the results of
Section 2, if p < %, then n™"2S, —4 N(0, (3 — 4p)™"), if p = % then (n log n)~'/2S, —4 N(0,
1) and if p > %, n=%"V8, converges to a distribution whose first four moments are given
by (2.27) (ji=2p — 1). :

2. Let G be any compact group or homogeneous space and let y = pd. + (1 — p)m, 0 =<
p =1 (eis the unit element). Thus, with probability p, X,, equals some previous point, thus
enlarging the “colony” at that point, and with probability 1 — p, X,, begins a new colony at
arandom point. i(R) = p - I for every non-trivial irreducible representation. Consequently,
for f€ L%G) and [ f=0, if p < %, n”'2S.(f) — N, || f||*(1 — 2p)™"), if p = 1/2, (n log
n)"2S,(f) — N(O, || f|I*) and if p > % a stronger clustering occurs.

3. Assume that the points represent N different types 1 - - - IV and that if a parent is of
type k%, all her daughters are of type 2 + 1 (cyclically). Thus G is the cyclic group Z, and
u = 81, a point mass. There are N characters and ji(y;) = e*¥/¥, j=0 ... N — 1. Hence
supixoRe fi(y;) = cos(27/N). Consequently, with Z¥ denoting the number of the first n
points that are of type %, if N < 5 then n™*(Z{® — n/N, ..., Z™ — n/N) converges
to a non-degenerate normal distribution, but if N = 6 then we have to normalize by
(n log n)"? and the limiting distribution is only two-dimensional, and if N > 6, the
distribution is not asymptotically normal.

4. We take the sphere S? in R® and let each daughter have the distance 7/2 from her
parent. (If the parent is at the north pole, the daughter will be uniformly distributed along
the equator.) An explicit computation with the spherical harmonics shows that [i(2k — 1)
=0, j2k) = ("¥/?). Thus, the largest (non-trivial) Fourier coefficient is i(4) = % < % and
n~Y28,(f) is asymptotically normally distributed for every sufficiently nice function f.

5. We keep the sphere but let each daughter be uniformly distributed over the half-
sphere centered at the parent. Then ji(1) = % and ji(k) < %, k£ > 1. Hence, (n log n)"*/28,.(f)
is asymptotically normally distributed for nice functions f. If f is orthogonal to the linear
functions, the limiting normal distribution is degenerate and, in fact, n~'/2S, ( f) converges.
If the daughter is uniformly distributed over a smaller cap, ji(1) > % and strong clustering
occurs. If the cap is larger, sup i(k) < % and we are in the well-behaved case.
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