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A transition kernel p = (u,),ey between Polish spaces X and Y is
completely orthogonal if there is a perfect statistic ¥: X — Y for g, i.e. the
fibers of the Borel map ¥ separate the u,. Equivalent properties are: a)
orthogonal, finitely additive measures p, g on Y induce orthogonal mixtures
uP, u? on X; b) the Markov operator defined by u is surjective on a certain
class of Borel functions.

In [4] R. D. Mauldin, D. Preiss and H. v. Weizséicker give a systematic study
of various notions of orthogonality for transition kernels, their classification and
interrelationships. For a transition kernel (u,),cy between standard measure
spaces (X, o7), (Y, 4) the following two concepts may be the most important
among them

(I) (uy)yey is completely orthogonal, if there is a Borel map ¢: X — Y such
that u,(P7(y)) =1forally€ Y.

(II) (uy)yey is orthogonality preserving if for any pair (p, q) of orthogonal
probability measures on (Y, %) the corresponding mixtures u? =
Jy myp(dy) and p? = [y u,q(dy) are orthogonal too.

(for more details on origin and applications of these notions, see [5]). In [4] it is
shown that completely orthogonal kernels are orthogonality preserving and that
the converse holds if the set {u,, y € Y} is narrowly ¢-compact but not in general.
However—as I will show below—there is a stronger orthogonality preserving
property which always characterizes completely orthogonal kernels. This differs
from II in that not only o-additive measures, but also finitely additive measures
are involved.

THEOREM. For a probability transition kernel (u,)yey from the standard meas-
ure space (Y, #) to (X, ) the following are equivalent

a) (uy)yey is completely orthogonal
b) For any pair (p, q) of orthogonal, finitely additive and positive measures on
(Y, &) the corresponding mixtures

P = J; wp(dy), p?= L uyq(dy)

are also orthogonal.
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c) For every % -measurable function g, 0 < g < 1, there is a &/-measurable
function f,0 < f <1, with

g(y) = f f@)uldz) forall y €Y.
Consider the Markov operators associated with (u,):
(1) T: ba(Y, #) - ba(X, &), Tp= f uyp(dy)

2 S: B(X, &) —» B(Y, %), Tf(y) = f f(x)p(dx)

where ba(X, /) denotes the Banach space of finitely additive measures on
(X, &7) with the variation-norm and B(X, /) the Banach space of </-measur-
able functions on X with the sup-norm.

REMARKS. 1) If (p,) is completely orthogonal then the operator f — (Sf) o ¢
is a H-sufficient statistic as defined by Dynkin ([1], page 711) for the set
{1y, ¥ € Y}. Hence d) gives a criterion for H-sufficient statistics in terms of
surjectivity. In particular, if (ue)<ex defines a H-sufficient statistic, then this
kernel cannot have strong smoothing properties.

2) In the language of operator theory, condition b) says that T is a Riesz
homomorphism and ¢) means that S is interval-preserving or has the Maharam
property. In many situations these concepts are dual to each other (see [2], [3]).
Since ba(X, o7) is the Banach space dual of B(X, 2/) and T is the adjoint of S,
the following proof is a variation of this theme.

PROOF. a) =>c¢) If ¢: X — Y is the separating map and g is given, choose
[f=Pog.

¢) = b) Since T in (1) is a quotient map, it follows from the Hahn-Banach
theorem that T' = S’ is an isometric embedding. It is well known that
D, q € ba(Y, &) are orthogonal if and only if [ p + q|| = || p — q||. Hence the
isometry T satisfies b).

b) => a) First we show for Ux={f€EB(X, &):0<f=<1}:

(3) S(Ux) is II-IIm-dense in Uy.

Otherwise, by the Hahn-Banach theorem, there are h € Uy, u € ba(Y, £) =
B(Y, #)* and o € R with

4) : w(h) > a = u(Sf) forall fe€U,.
But from T'= S’, b) and (4) a contradiction results:
p*(ly) = p*(Slx) = (Te*)() = (Tw)* (1)
= sup{(Tu)(f): f € Ux} = a < p(h) = p*(1y).
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From (3) we obtain
5) For any B € 4 there is some A € &/ with Sx4 = x5.
Indeed, choose a sequence f, € Ux such that
Zn=1 Ixe = Sfalle < o
Put g, = sup,anf, and observe that
xB Z XB * S(&m) Z SUPrzmxs - S(fs) = x5
and
x5 - S(8m) lo = | xB(Zr=m Sfa) | = Zn=m | x8:(Sfn — xB) |0 —=>m—scc 0.

Together with the monotone convergence theorem it follows that Sg = lim,Sg.
= xp where g = inf,, g,. For A = {g # 0} we have 1 = Sx4 = x5. On the other
hand, we have

n-gAN12xs for n—o, SngAN1l)=<xs

and it follows again from the monotone convergence theorem that Sx, = x5.

Finally, in order to construct the separating map ¥, we choose a generating
sequence B, € % and then A, € o/ with Sx,, = x5, by (5). The measurable
map

b: Y- {0, 1}, by = (XB,,(y))neN
is injective and therefore—since (Y, 4) is a standard measure space—the inverse
b7': b(Y) — Y is measurable too. Let a be the measurable map

aX— {0’ 1}N9 a(x) = (XA,,(x))nEN
and define

_ Jb Y a(x)) for x € a'(b(Y))
o) = {yo otherwise

where y, € Y is arbitrary and fixed. Then ¢ is measurable and for all y € Y we
have

@71({y}) D {x: b(y) = a(x)} = N{A,: y € B} N N{AS: y & B,}.

Since x 5,(¥) = Sxa,(y) = n,(A,) we only intersect sets with u,-measure equal to
1. Therefore u,(¥~*(y)) = 1.0
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