The Annals of Probability
1984, Vol. 12, No. 4, 1181-1193

STRONG LIMIT THEOREMS FOR MAXIMAL SPACINGS FROM
A GENERAL UNIVARIATE DISTRIBUTION

By PAUL DEHEUVELS

Université Paris VI

Let X, X;, - - - be an i.i.d. sequence of random variables with a continuous
density f. We consider in this paper the strong limiting behavior as n — o of
the kth largest spacing M{" induced by X,, - - - , X, in the sample range.

In the case where f is bounded away from zero inside a bounded interval
and vanishes outside, we characterize the limiting behaviour of M{” in terms
of the local behavior of f in the neighborhood of the point where it reaches its
minimum. In the case where the support of f is an unbounded interval, we
prove that for any k= 1, M — 0 a.s. as n — ® if and only if the distribution
of X, has strongly stable extremes.

1. Introduction. Let X;, X;, --- be independent random variables with
continuous distribution function F. Let

Xl,n < X2,n <...< Xn,n
denote the order statistics of X;, ---, X,,, and let
Sgn)= i+1,n_Xi,m i=19 "‘9n_19

define the corresponding spacings.
Denote the order statistics of 8{”, .-, S, by

MP, <. ...<MP <M?.

Our main goal is to characterize for a fixed k = 1 the limiting strong behavior
of the kth maximal spacing M\" as n — o under various assumptions on F.

In the case of the uniform distribution on (0, 1), the upper and lower strong
classes of M are known (Devroye, 1981, 1982a; Deheuvels, 1982, 1983a) and
given respectively by

P(nM{” > Log n
+ (1/k)(2Logsn + Logsn + --- + Log,—1n + (1 + ¢)Log,n) i.o0.)
= P(nM{” < Logn — Logsn —Log2—¢ i0.) =0 or 1,

according as ¢ > 0 or ¢ < 0. Here, p = 5 is arbitrary, and Log; stands for the jth
iterated logarithm.

On the other hand, very few results are available in the nonuniform case. We
intend to investigate this problem in this paper.

Our motivation for this work comes from the study of the convergence of
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empirical measures. It is straightforward that the maximal spacing corresponds
to the maximal jump of the empirical quantile process. It follows that the study
of questions such as the modulus of continuity of empirical processes is closely
related to the study of the limiting behavior of M}” as n — o,

In particular, it is of a great interest to characterize the distributions for which
M{" tends to zero as n increases indefinitely. We shall show in the following that
these distributions coincide with the distributions with stable extremes (i.e. whose
extreme values Y, = X, or X, , are such that Y, — a, — 0, for a nonrandom
sequence a,).

The principal achievement of this paper is to show that, in general, for
distributions F with a continuous density f, the major influence on the behavior
of maximal spacings is exerted by the behavior of f in the neighborhood of its
minimum.

In Section 2, we present the main results, whose proofs will be given in Section
3 (see also Deheuvels, 1983c).

2. Theorems. We shall assume throughout this section that the following
hypotheses are satisfied. :

(H1) F(x) = P(X; < x) has a continuous first derivative f(x) > 0 on (A, B)
where
A = inf{x; F(x) > 0} < B = sup{x; F(x) < 1}.
We first settle the case of distributions with bounded support.
THEOREM 1. Let (H1) be satisfied. Assume further that:
(H2) The distribution F has bounded support (—o < A < B < +), and there

exists an xo € (A, B) such that, for all x € (A, B), x # xo, f(x) > f(x0) > 0.
(H3) There exists an r, 0 < r +, such that

— I’;»)v_ &) _ g, 0<d <+,

Then, foranyp=5,k=1and ¢ >0,
P(nM{”f (o) > Log n — (1/r) Logsn
+ (1/k)(2 Logen + Logsn + --- + Log,—1in + (1 + ¢)Logyn) i.0.) = 0.

lim infh 10

THEOREM 2. Let (H1) and (H2) be satisfied. Assume further that
(H4) There exists an r, 0 < r < +o, such that

[0+ h) = flxo) _
[h1"

lim supp,o D,, 0<D, < +o.

Then, forany k= 1and ¢ > 0,

n 1 1 reD, .
P(nM§e 'f(x0) < Log n — - Logsn — Logsn — . Log(W) —¢ z.o.) = 0.
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REMARKS.
1. A typical application of Theorem 1 and Theorem 2 is given in the case
where f is 2j times differentiable in a neighborhood of x, with
fP%) =0, 1<i<2j, fP(x)>0.
It follows then that, almost surely,
nM;"f (xo) — Log n

- 51; < lim inf,_.

Logsn
(n)
) M f(xo) — Log n_ 2 1
< T = - = —.
< lim sup,,_>°° Logn PRy

In Theorem 4, we shall show that these bounds are optimal.

2. Inthe case where f is infinitely differentiable in a neighborhood of x, with
f9x%) =0, foralli=1,

we get similar bounds as in the case of uniformly distributed random variables.

3. As mentioned in the introduction, the local behavior of f in the neighbor-
hood of the point where it reaches its minimum conditions the limiting behavior
of M, n — . In particular, we have:

THEOREM 3. Let (H1) and (H2) be satisfied. Then, for any k = 1, and for any
0> 0, there exists almost surely an N such that, for any n = N, the spacing interval
(Xin, Xi+1,n) such that M® = Xiv1,n— Xinis included in (xo — 8, xo + ).

Theorem 3 says that the kth maximal spacing must occur in a neighborhood
of the value x, where f is minimal, when n increases.

The bounds in Theorem 1 and Theorem 2 are sharp up to the second term, as
shown in the following.

THEOREM 4. Let (H1), (H2), (H3) and (H4) be satisfied with d, and D, such
that

0<d, =D, <+,
Then, we have, almost surely,

M f(x,) — Log n
Logen

- 1 = lim lnf,,__,co
r

nMi’f(x) — Logn _ 2
Log:n k

. 1
< lim sup,._,‘,o -.
r
REMARKS.

1. It is remarkable that the limits are independent of the explicit values of
d, and D,.
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2. The above results do not enable us to handle the case where f(x,) = 0. This
will be dealt with elsewhere (see also Deheuvels, 1983c).

3. Throughout, we have assumed that x, € (A4, B). In fact, the results remain
valid without modification if xo = A (resp. x, = B), with appropriate definitions
of d, and D,. We must then assume that f is defined on [A, B[ (resp. ]A, B]).

We now consider the case where the distribution has an unbounded support,
which implies that

ming<.<sf(x) = 0.

It can be seen without great difficulty that if A = —», B = +, the study of
the limiting behavior of the spacings can be done by considering the subsamples
of the X’s which fall in (—o, 0) and (0, +) separately. Hence, without loss of
generality, we shall only look at the case where A = 0, B = +. Our main result
is the following:

THEOREM 5. Let (H1) be satisfied with A = 0, B = +. Assume further that

(H5) The function {1 — F(x)}/f(x) is ultimately nonincreasing as x 1 .

Let k = 1 be fixed. Then, My” — 0 a.s. as n — o if and only if X, is strongly
stable, i.e. iff there exists a nonrandom sequence {a,} such that

Xon—a,—>0as, as n— oo,
REMARKS.

1. Geffroy (1958) has proved that the weak stability of X,, , (i.e. the existence
of {a,} such that X, — a, — 0 P (i.e. in probability)) is equivalent to the
condition

1 - F(x) _
@

when f has a derivative f’(x) ultimately nonincreasing as x 1 .

He has also proved that the weak stability of X,, ,is equivalent to the fact that
Sp-1n=Xnn— Xn-1,—0 Pasn— o,

It follows that the condition (H5) does not appear to be severely restrictive.

limxT (-

2. A survey on stability for extreme values is to be found in Galambos (1978),
pages 213-231.

3. There is a great flurry of particular cases whose study may be of interest.
In order to avoid a long discussion, we have limited ourselves to the essential
points.
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3. Proofs of the theorems. The proofs are rather lengthy and are given
here in a condensed form. Details may be found in Deheuvels (1983c).

Proor or THEOREM 1. By (H1), we may assume without loss of generality
that A=0and B=1.

Next, we note that the event {My” > 8} occurs only if there are at least k
disjoint intervals of length 6 in (0, 1) left empty by X, - - -, X,,. Consider one of
these intervals: I = (a, a + ). For né > 3, there exists an i:0 < i < n, such that

it—-1)/n<a<=<i/n
This implies that
i/m<(@—-2)/n+6<(i-1)/n+é<a+d=<1l,
which in turn implies that (i/n, (i — 2)/n + &) is included in I and that
i<l+n—-ni<n-1

We have just proved that (for né > 3) {M{® > 5} occurs only if there are at
least & intervals of the form (i/n, 6 + (i — 2)/n), 0=<i<n + 1— né, left empty
by Xi, - -+, X,. It follows that, for n6 > 3,if N=[n + 1 — néd] = n — 2, we have

PMP >8) s 3o - SN0 [ 1 — (FG + (5 — 2)/n) — F@/n)h"
= X0 -+ Zh-o exp(—n Tji (F( + (5 — 2)/n) — F(ij/n)}).
By (H1) and (H3), there exists a ¥ > 0 such that, for any x € (0, 1),
f(x) = f(x) + min{y, %2 d;|x — x%|"}.

It follows that, for0<x=x+ h <1,
h 1
F(x + h) — F(x)>hf(xo)+—;—1mm Y o dr|x+h—xol’,§dr|x—xol’ ,

and likewise, for 0 < i/n < 6 + (i — 2)/n < 1, that
rlo+ 55) - #()
n n

2<6—%)(f(x0)+—%—imm{ d|6+————g—x0|,%

This implies that

PMP > 5) < exp(—nk<6 - %)f(xo)){Pl + P, + P;},
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where
P, = n"exp —nk(a—g Y
! n/r+1)/)
P,=312% -+ Xib exp|—n|6 — 2 Tk ——xor
! * 2(r+1) = ’

i — 2
b+ 1—=—x
n

P3 = ZZ;% M 23}.—0 exp<_n’(6 2) 2(’_ + 1) 2)‘1 )'

The evaluation of P, and P; can then be made by using the fact that Riemann
sums can be approximated by integrals, which gives

400 k
P = nkO{[@ exp<2( nidl) x| > },

i=23 6—-0, né—>xo ndé=0(Logn).

It follows that
P; = 0f{n*(né)™"}, i=1,2,3,n— .
Combining these results, we see that
P(M{” > §) = Ofn*(nd) ™ exp(—nkéf (x))}.
Taking
nf(x0)8 = Log n — r 'Logzn + k~'{2Logen + Logsn + --- + (1 + ¢)Logyn},

we obtain the following lemma.

LEMMA 1. Under the hypotheses of Theorem 1,

P( M{”f(xo) > Logn — = Logzn
+ -’1; {2Logen + Logsn + --- + (1 + e)Log,,n})

1

a O((Log n)*(Log;n) --- (Logy-1n)'™ )

The proof of Theorem 1 is now complete since (see Deheuvels, 1983b, Lemma
1) it is enough to apr:}y Borel-Cantelli to the events in Lemma 1 for the

subsequence n; = [exp(Vj)] and arbitrary ¢ > 0. This follows from the fact that
ifu.(n) =n"'Logn—r 1Logzn + k~'{2Logen + Logsn + --- + (1 + ¢)Logyn}),

"then

U 2(ny) = U (nj+1)

for large j.
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PROOF OF THEOREM 2. In the proof, we consider the spacings generated in
the interval (xo — h,, xo + h,), where h, = a(Log n) /.

By a result of Hall (1982, Theorem 2), it can be shown that the number N, of
terms among Xj, - - - , X, which fall into (xo — h,, xo + h,) is such that P(B¢ i.o0.)
= 0, where

N,

B. = { hof (o)

Our next argument is based on a simple remark. Let Yy, - - - , Yx be independ-
ent random variables with a common density h(-) on (a, b). Let H(x) =
Ji h(t) dt. Since H(Y;), ---, H(Yn) are iid. random variables uniformly
distributed on (0, 1), if u; stands for the kth maximal spacing generated by
H(Y,), -+, H(Yy) and if A, stands for the kth maximal spacing generated by
Yy, .-+, Y, inside (0, 1) and (a, b) respectively, we have

mm%+mo—n%—hnL41<2{u@n}W}

Me = Ap SUDa<i<bh(x).
If we consider in particular the spacings generated by N (nonrandom) random
variables among X, X;, - . - falling into (xo — h,, xo + h,), we have
f(x)
F(x0+hn)_F(x0—hn).
It follows that if A{” denotes the kth largest among these spacings and if

usY denotes the kth maximal spacing generated by a sample of N uniformly
distributed random variables on (0, 1), then

F(xo + h,) — F(xo — h,) Log N
®n N

h(x) =

P@@s (l—wHN>

Log N

< P<u§¢M < a- aN)>,
where
¢n = sup{f(x); | x — %o| =< hn}
By a result of Devroye (1981, Lemma 3.2), if we take

“ _ LogsN + X\ + Log 2
N LOg N ’
where ) is a constant, we get

T (k-1
= Of(Log:N)**(Log N)*"}, N — o,

If we assume now that B, is satisfied, then

P<u§f” st - aN)) L Nt-vevgyp(—Now)

Log N, = Log N — % Logzn + Log(2af (x)) + 0o(1), n — oo,
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It follows, by some straightforward evaluations, that for ¢ > 0,

Log n — (1/r) Logan — Logsn + Log(2af(x,)) — A\ —Log 2 — ¢ B )
nén. - "
= O{(Logzn)**(Log n)%}, n — .

Here we have used the fact that M\” = A{” when N = N,,.
It remains to evaluate ¢,. By (H4), we have

én =< f(%) + D,(1 + 0(1))h}; = f(x0) + D,(1 + 0(1))a’(Log n)™", n — oo,
It follows that

Log n _ Log n — {D.a’/f(x%)}(1 + 0o(1))
n¢n - nf (xO) ’
Therefore we obtain the lemma:

P(M},"’ <

—> 00,

LEMMA 2. Under the assumptions of Theorem 2, we have, for any ¢ > 0, as
n— o, .

P(J i < Logn = (1/r)Login — Logn + Log(af(xa)) = (Dra'/f(xo)} = A —e} A Bn>
| nf (x0)
= 0{(Logzn)*~*(Log n)*"}.

Noting that B, occurs finitely often with probability one, Theorem 2 is proved
if we chose a in Lemma 2 in order to minimize Log(af (x,)) — {D,a"/f(x,)} (whose
minimum is —r~*Log(reD,/{f(x,)}"*")) and use a Borel-Cantelli argument based
on subsequences M{? with n; = [exp(j¥)], 0<a<%.

For this, note that

Y& (Logan)*'(Log nj)* < o if 2ae > 1.

Furthermore, if v,(n) = n~'{Log n — r"'Logsn — Logsn — C — ¢}, ¢ > 0, and if
n; = [exp(j*)], 0<a <, we have

V(1) = v (1)

for large j.
Finally A > 0, ¢ > 0 can be chosen arbitrarily small with (2)e™ < a < 1, hence
result.

PROOF OF THEOREM 3. Theorem 3 follows from Theorem 1 and Theorem 2,
by considering separately the maximal spacing outside (xo — 8, xo + 6) and the
kth maximal spacing inside (xo — 6/2, xo + 6/2), and by letting 6 | 0.

PRrROOF OF THEOREM 4. The proof is based on the same arguments as in
Deheuvels (1982) or Deheuvels (1983a). Hence, details will be omitted.

We consider the stopping times »;, where ; is the jth value of n where M
decreases. Let A} = (X;., Xs+1,,) be the (unique w.p.1) interval such that

(n)
k
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Xsi1n — Xzn = M¥. We prove successively that:

1. Without loss of generality, it is possible to define on the same probability
space as X;, X5, .- an ii.d. sequence w;, ws, --- of exponentially distributed
random variables such that

Vigr — V; = [wj/{—LOg(l - Px(X € U?=l Afvl)))}] + 17 j = 1) 27 ttty
where X is distributed as X; and independent of X;, X,, - - - .

2. Asj— o, we have, almost surely

wi(1 + 0(1)) 2wi(1 + o(1))
= |1+ ST Logi — Logy = 220000,

and

Log?; = gkl (1 + o(1)).

3. We have almost surely for infinitely many j’s:

w; > Log j + Logyj > 2Log,v;.

4. Let uj= M. Put v} = v, —1. By Theorem 2, we have almost surely for
e>0andj— oo

S Log v; — ((1/r) + ¢)Log.y;
& vif (x0) '
If now j is such that w; > 2Log.»;, we have then (for large j)
Log v} + ((2/k) — (1/r) — ¢ + o(1))Logzv}
> - .
v} f(x0)

This proves that the upper bound of Theorem 4 is reached. A similar argument
can be used for the lower bound.

M(u}') —
[ U]

PROOF OF THEOREM 5. We shall make use of the function
Gw)=Q-F)"u)=supjx;1 - F(x)>u}, 0<u<l.

Without loss of generality, it is possible to assume that X, ,= G(U,,,) where
U, .= min,;<,U;, and where U, U,, - - - is an i.i.d. sequence of random variables
uniformly distributed on (0, 1). By the characterization of the almost sure upper
and lower classes of U, , due to Barndorff-Nielsen (1961) (see Devroye, 1982b,
pages 237-238), we have for ¢ > 0, almost surely,

lim inf,_.n(Log n)Uy, = 0, lim,_.n(Log n)**U,, = +x,

and
lim sup,_.n(Logn) U, = 1.
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It follows that a necessary condition for strong stability of X, ,is that
lim inf, o {G(u) — G(uLog(1/u))} = 0.
while a sufficient condition for strong stability of X, ,is that
lim, 0 {G(v) — G(uLog(1/u))} = 0.

If we assume that (H5) is true (i.e. {1 — F(x)}/f (x) is ultimately nonincreasing
as x 1 ), then both conditions are equivalent, since then G(u) — G(uLog(1/u))
is nonincreasing as u | 0. This last result follows from the inequality

d B 1 1__1[ u _uLog(l/u)—u}
” JlG(u) G<uL°g<u))[ T T u |f(Gw) ~ f(G(uLog(1/w)))

- fufuenl2) - w0} =0,

where ¥ (u) = u/f(G(u)), and ¥(1 — F(x)) = {1 — F(x)}/f (x).
Therefore we obtain the lemma:

LEMMA 3. Under (H5), X, . is strongly stable iff
lim, o {G(v) — G(uLog(1/u))} = 0.
REMARKS.
1. If X, .is strongly stable, then X,,,— G(1/n) — 0 a.s. as n — o,
2. A typical example of distribution such that X, , is strongly stable is given

by the normal distribution. A counterexample is given by the exponential distri-
bution.

Next, we consider an i.i.d. sample of uniformly distributed random variables
on (0, 1) and the corresponding order statistics
O = Uo,n < Ul,n <...< Un,n <1l= Un+1,n-

Let us assume, without loss of generality, that X, = G(U,-i+1,), 1 =i < n.
We have then

M = M” = max<i<n-1{G(Uin) — G(Uir1n)}-
Since there exists almost surely an n, such that, for n = n,,

2L .
Uirn — Uip < (:lgn’ Osi=n+1,

it follows that there exists almost surely an n, such that for n = n;:

2
MP <M < supul.nsusl-{G(u) - G(u + —I‘j’zﬁ’)} < A + Ay + A,
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where, for0<c <1,
2L
A= supcsuq{G(u) - G<u + —Png—n)},

. A2 = SUPp-Logn=u=c {G(U) - G(3U)},

Az = SUP,-1Log 2n=u=n"'Logn {G(U) - G(UL034(1/U))}-
Note that

u+ 2Log n < 3Log n < uLog“<l)
n n u

for n™'Log™%n < u < n"'Log n and large n.

Here, we have used the characterization of the upper class of the uniform
spacings given in Section 1, and the bounds (see Barndorff-Nielsen, 1961),
satisfied almost surely as n — oo:

n~'Log™%n < Uy,,.

If we assume now that (H5) is satisfied and that X, , is strongly stable, then
by Lemma 3, it follows that for a fixed ¢ € (0, 1), A; > 0 and A; —» 0 as n — oo,
Since we can also choose ¢ such that A is arbitrarily small, we have proved that
M — 0 almost surely as n — .

Conversely, if we assume that M
have

M 0 almost surely as n — o, then we must
minlsisk{Xiﬂ,n - Xi,n} —0as, n—ono

It is well known (Malmquist, 1950, see David, 1981, page 21) that for i = 1,
.-+, k, the ratios

Ju. ! .
Ein= {U,-H,,J , 1=i=n,

are independent and uniformly distributed random variables on (0, 1).

LEMMA 4. Let k > 1 be fixed. Then, almost surely for infinitely many n, we
have

minlsfskff,n < 1/L0g n.

Proor. We define a sequence of random stopping times by
mo =k, m; = min{n > m;; Upn < Uim}, j=1,2, ---.
Let
7j = Mili<i<pEim;.

It is easily seen that #;, 72, - - - is an i.i.d. sequence of random variables with
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distribution given by
Ppi>u)=01-u), 0<u<l, i=12 ---.

By Borel-Cantelli, it follows that 5; < 1/2ki infinitely often with probability
one.
Next, we remark that if we define the sequence of record times by

nm=1n=min{n>n; U1, < U}, j=1,2, ---,
we have
mis<ng, j=1,2, ...
It is well known (Renyi, 1962, Deheuvels, 1983d) that, almost surely as j — o,
n; = exp(j + O({j Logzj}'/?)).
It follows evidently that, almost surely as i — o,
Log m; < ki + O({i Log,i}*?).
This in turn implies that, infinitely often with probability one,

#; = min Em = 1 < 1
m 1=sskSom; = oki Log m;

for large i, a.s. This completes the proof of Lemma 4.

PROOF OF THEOREM 5 (continued). If we assume that
miny<i<k {Xiv1,n — Xin} = mini<i{G(Uinéin) — G(Uin)} — 0,
we must have by Lemma 4
lim inf,;o{G(u(Log(1/u))*) — G(u)} = 0,

which implies that the condition of Lemma 3 is satisfied and completes the proof

of Theorem 5.
Note here that (by the change o!" variables u = v(Log(1/v))"™®), if

lim, ;o {G(u(Log(1/u))®*) — G(u)} =0, s#0,
then we have equivalently
lim, o {G(u(Log(1/u))") — G(u)} = 0 for all r.

4. Acknowledgments. The author thanks the referee for some valuable
suggestions.
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