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CONDITIONAL MARKOV RENEWAL THEORY I. FINITE AND
DENUMERABLE STATE SPACE

By S. P. LALLEY
M.S.R.1./Berkeley and Columbia University

A renewal theory is developed for sums of independent random variables
whose distributions are determined by the current state of a Markov chain
(also known as “Markov additive” processes, or “semi-Markov” processes).
This theory departs from existing theories in that its conclusions are required
to be valid conditionally for a given realization of the Markov Chain. It rests
on a peculiar coupling construction which differs markedly from existing
coupling arguments.

1. Introduction. The story begins with a Markov chain {Y,}.-: taking
values in a denumerable state space 2 To each state y € % is assigned a
probability distribution F, on the real line, with (finite) mean u,. A new sequence
{Xn}n=1 is generated by drawing X, from Fy , i.e.,

(1'1) eg()(n+1| {Ym}mal; Xl, X2’ M) Xn) = FY,,“ Vn = O;

the cumulative sum process S, = X; + - - - + X, (Sp = 0) will be called a “Markov
random walk” relative to the “driving process” {Y.}.

When the variables X, are strictly positive they may be interpreted as random
sojourn times which may be pieced together to provide a random time change for
the Markov chain {Y,}. The new process

Z(t) = Ynu, where N(t) = max{n: S,-; < t},

is called a “semi-Markov” process (cf. Smith, 1955, and Lévy, 1954). Notice that
in this context the natural candidate for a “state-variable” is the current value
of the Y-process, while in a very natural sense the X-variables are “subordinate”:
one is led to ask about the limiting behavior of Z(t) for large t.

One may, however, just as well regard S, as the “state variable,” and ask about
the behavior of S, or perhaps the pair (S,, Y,), for large values of n. In this
context the Y-variables are, in a sense, “subordinate”: they serve only as a string
of instructions for the generation of the increments in the state-variable S,. If
one adopts this perspective one will, perhaps, find it natural to ask whether limit
theorems which describe the behavior of (S, Y,) for large n retain their validity
for fixed individual strings y;, y2, - - - of instructions. It is to questions of this
sort that this paper is devoted.

Markov renewal theory, as developed by Smith (1955), Orey (1959, 1961),
Pyke (1961), Cinlar (1969), Jacod (1971), Kesten (1974), and many others, has
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1114 S. P. LALLEY

traditionally been concerned with the study of the renewal measure
U/A, dz2) = Yn-1 P,{S. €E dz, Y, € A}
and the residual lifetime vector (S, — a; Y,@), where
7(a) = inf{n: S, > aj.
The primary concerns of this paper are the analogous conditional quantities
UJfA,dz| &) =a Xn-1 P(S. Edz, Y, EA| F)

and
%((ST(G) - a Yr(a)) I g)’

where
F =ar0(Yy, Y2, )

Naturally it cannot be hoped that the conditional renewal measure is in general
as well-behaved as the unconditional renewal measure: if all of the distributions
F, are degenerate, then the evolution of the process {S,} is completely-determined
by % We shall find, however, that if at least one of the distributions F, is
nondegenerate, then the conditional renewal measure exhibits some of the same
limiting behavior as the unconditional renewal measure (cf. Theorem 1).

Periodicity phenomena may be considerably more complicated in Markov
renewal theory than in the renewal theory for sums of i.i.d. random variables (cf.
Cinlar, 1974, for an extended discussion). Such phenomena are not our concern
here, however, and we will sidestep them by imposing certain restrictions on the
Markov random walks to be studied. Specifically, let

N=N(y)=infln=1. Y, = y};
our assumption is that either
(1.1NA) LN X, | Yy = y) is nonarithmetic forall y € %

or
LN X, | Yy =y') is supported by Z,

(1.1A)
but by no smaller subgroup of R, forall y,y' € %«

The leading result of Markov renewal theory is the
MARKOV RENEWAL THEOREM. Suppose condition (1.1) is satisfied, and that

the driving process {Y,} is aperiodic, irreducible, and recurrent, with mvarzant
measure 7(-). Suppose also that

(1.2) Lyew m(¥) Jl; | x| Fy(dx) <

and
(1.3) 0<pu=a2yee m(y)p < .
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Then for everyy € % every A C % and every h >0 (h € Z* under (1.14)),
(1.4) lim,.Uy(A, [a, @ + h)) = hx(A)p~".

Furthermore, there exists a probability distribution G on R* X % (on Z* X &
under (1.1A)) such that for everyy € % every A C % and every h >0 (h € Z*
under (1.1A)),

(1.5) limg .o P){S:@) — @ = h; Y. € A} = G([h, ») X A).

NoTE. It should be understood that in the arithmetic case the limits in (1.4)
and (1.5) are taken as a — « through Z. When the increments X, are always
nonnegative, the limit distribution G is given by

G(dh X A) = Yyea w(y) J:>h} F,(dx) - dh (h>0)

in the nonarithmetic case, and by
G({x} X A) = Tyea w(y) o= F({x'}) (x € Z7)

in the arithmetic case (cf. Proposition 2.3). In the general case the limit distri-
bution G is not so easily described.

In the case of nonnegative increments X, (the “semi-Markov” case) the
Markov renewal theorem was first proved by Smith (1955) (Smith’s assumptions
and conclusions differ somewhat from those given above, however). Smith noticed
that the “excursions” between successive visits to a fixed state are i.i.d., and thus
reduced the problem to an application of Blackwell’s renewal theorem for i.i.d.
variates. Much of the subsequent work in Markov renewal theory has been
concerned with Markov random walks for which the driving process {Y,} takes
its values in an uncountable state space: in such situations there are no obvious
sequences of regeneration points, hence Smith’s approach fails (cf., however,
Athreya, McDonald, and Ney, 1978b). The most general results available at
present seem to be those of Kesten (1974). The Markov renewal theorem as
stated above is a (very) special case of Kesten’s Theorem 3 in the nonarithmetic
case, when the invariant measure =« (-) is finite.

Our first result is a “weak” conditional version of the Markov renewal theorem.

THEOREM 1. If the hypotheses of the Markov renewal theorem are satisfied,
then for everyy € % A C % and h> 0 (h € Z" in the arithmetic case)

(1.6) UJA, [a,a + h)| F) —p, hr(A)p™
and
1.7 PSS, — a = h; Y, € A| F) —p, G([h, ®) X A),

(as a — o through Z in the arithmetic case), provided at least one of the
distributions {F,: y € %'} is nondegenerate.

This theorem is evidently nontrivial even in the case of a finite state space.
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Unlike the Markov Renewal Theorem, it cannot be proved by isolating an
embedded renewal process and appealing to Blackwell’s theorem. Nor does it
seem to be amenable to attack by any of the traditional approaches to the renewal
theorem. The proof given here (Section 3) is unlike any published proof of the
renewal theorem known to the author; it ties together the three most well-known
“first-moment” theorems of random walk theory (to wit, the renewal theorem,
the law of large numbers, and the Chung-Fuchs-Ornstein theorem) in an unusual
way.

Theorem 1 immediately prompts one to ask whether the convergence in (1.6)
and (1.7) holds almost surely. The answer: sometimes. Counterexamples are
given in Section 4; although these are simple, they illustrate that almost sure
convergence depends on a rather delicate balance between the “regularity” (or
lack of it) in the assignment y — F, and the rate of mixing in the driving process
{Y,}. We have no definitive solution to the problem of determining the “right”
conditions which guarantee almost sure convergence in (1.6)-(1.7). However, we
have discovered some “reasonable” sets of sufficient conditions.

THEOREM 2. If the state space % is finite, and if each of the distributions F,
is supported by (0, ®) (thus X, > 0 w.p.1), then under the hypotheses of Theorem
1 the convergence indicated in (1.6) and (1.7) holds almost surely.

The hypothesis that F,((0, «)) = 1 for each y € % is extraneous (the weaker
hypothesis that u, > 0 for each y € % is sufficient, and probably even this is
unnecessary). However, it simplifies the proof considerably.

When the state space is infinite, the situation is complicated enormously.
Some degree of mixing in the driving chain {Y,} seems to be crucial, but how
much is necessary seems to depend on the amount of variability in the tail
behavior in the collection {F,: y € %2'}. When all of the distributions F), have
finite second moments, relatively weak mixing conditions are sufficient. Let

o2 = var(F,) = f (x — wu,)?F,(dx).

THEOREM 3. Suppose that each of the distributions F, is supported by (0, «).
Iffordlly e &

(1.8) E,N(y)* < o,
(1.9) E(ZNY uy)® < o,
and

(1.10) E, TXY 6%, < o,

then under the hypotheses of Theorem 1 the convergence in (1.6) and (1.7) holds
almost surely.

The astute reader will notice that the conditions (1.8)-(1.10) are appropriate
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sufficient conditions for
(S, — nup)n~"? = normal;

this plays no role in the proof, however. The important “second moment” tool is
the Hsu-Robbins (1948) theorem, which provides a rate of convergence in the
law of large numbers. It is somewhat curious that such second moment conditions
would arise in connection with a renewal theorem, and the reader may feel that
they are unnecessarily strong. However, it is possible to construct (i) a driving
chain {Y,} and associated distributions {F,} such that the variances o2 are
uniformly bounded, E,exp{0N(y)} <  for some 6 > 0, E,(3]™ uy)*™ < « for
any ¢ > 0, for which almost sure convergence in (1.6)-(1.7) fails (cf. Example 1,
Section 4); and (ii) a driving chain {Y,} and associated distributions F, all
supported by the interval [1, 3], such that E,N(y)>™ < « for all ¢ > 0, and such
that a.s. convergence in (1.6) and (1.7) fails (cf. Example 2, Section 4). Thus
when the variances are bounded, conditions (1.8) and (1.9) are apparently needed.

The assumption (1.10) is by no means necessary for almost sure convergence
to obtain in Theorem 1. However, certain restrictions on the tail behavior of the
distributions in the family {F,} seem to be necessary; the author’s best efforts to
articulate appropriate restrictions have led to various unwieldy L'-quasicom-
pactness hypotheses, which will not be described in this paper. There is a special
case which deserves mention, though, to wit, that where all of the distributions
F, are members of the same translation family.

THEOREM 4. Suppose there exist constants 6, = 0 and a probability distribution
F(dx) on (0, ©) such that for eachy € %

(1.11) F,(dx) = F(d(x — 6y)).
Suppose also that for ally € %

(1.12) E,N(y)? <o
and

(1.13) B39 6y < o,

Then under the hypotheses of Theorem 1, the convergence (1.6) and (1.7) holds
almost surely.

Once again Example 1 of Section 4 demonstrates that, within the context of
assumption (1.11), (1.13) is the “right” moment condition.

The problems considered in Theorems 1-4 are all subsumed by the more
general problem of developing a renewal theory for sums of independent but
nonidentically distributed random variables. The best renewal theoretic results
for such processes seem to be those of Smith (1961), obtained by Fourier-analytic
methods, and McDonald (1978), who used ergodic theory for Markov chains.
McDonalds’s results rely on a mixing condition which is somewhat obscure and
evidently stronger than the hypotheses of Theorems 2-4. Smith’s theorems do
not overlap with those of this paper: his hypotheses (cf. Theorem 6, especially)
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require a certain uniformity in the sequence of distributions which will never be
present in the sequence Fy,, Fy,, --- if at least two of the means u, (y € %)
are distinct. Despite the lack of overlap, Smith’s results and techniques do shed
a certain amount of light on those of this paper (at the very least they should
impress on the reader the difficulties of the Fourier-analytic approach, and the
complexities of the periodicity problem).

Many of the results of this paper have extensions and analogues for Markov
random walks whose driving processes {Y,} take values in nondenumerable
spaces. These are considerably more difficult to establish, however, and so we
defer all discussion of the uncountable case to a subsequent paper.

The main architectural features of the paper are as follows. Section 2 is a
collection of ergodic theorems which will be used in the proof of Theorem 1:
these are obtained by familiar arguments which are of no great interest in their
own right. The reader may wish to merely note the statements of the results, and
move on to Section 3, which contains the proof of Theorem 1. This proof is based
on a coupling construction which is the essential “technical” feature of the paper;
the reader may find it more interesting than the theorems for which it was
designed. The proofs of Theorems 2 and 3 are given in Sections 5-7; they are
increasingly subtle variations on the main coupling argument presented in
Section 3. The counterexamples alluded to earlier are collected in Section 4.

In many of the proofs the differences between the arithmetic and nonarith-
metic cases are small enough that we have omitted the details of the nonarith-
metic case. In proving Theorems 2 and 3 we only consider the convergence (1.6),
since the arguments needed to establish (1.7) are virtually identical. We assume
that the reader is comfortable with Markov chains on denumerable state space,
especially in Section 2.

2. Ergodic theorems for Markov random walks. The approach to
renewal theory developed in Section 3 relies on certain variants of the ergodic
theorem: the purpose of this section is to catalogue these results. Throughout
this section the notation and terminology established in Section 1 will be retained,
and the assumptions of the Markov renewal theorem will be in force.

Let y denote the initial state of the Markov chain {Y,}.-: (i.e., P,{Y; = y} =
1), and let Ny = 1, N1, N;, - - - be the instants of successive visits to y:

(2.1) No=1, Njjzy=min{fn>N;: Y,=y}, j=0.

Since {Y,} is recurrent, each of the random variables N; is finite and well-defined.
Furthermore, the successive “excursions” from y are i.i.d., by the Markov prop-
erty: in particular, if f: 2 X R — R is any function, then

(2.2) SN (Y, X)), i=0,1,2, ... areiid
under P,. Important special cases are
f(y', %) =%, f(y', %) =ny, and f(y', x) = o3

Since the Markov chain {Y,},-; is aperiodic, irreducible, and recurrent, there
is an invariant measure w(.) which is unique (up to constant multiples). It is
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well-known (cf. Derman, 1954) that an invariant measure A(-) is specified by

(2.3) MA)=E, 3, 1Y, €A}, AC %;

by the essential uniqueness, it follows that for any invariant measure (. ),
(2.4) AMA)=7(A)/n(y), AC %

Consequently, under the hypotheses of Theorem 1

(2.5) E, 0, ny, = p/7(y),

(2.6) E, 305, | Xa| = E, 304, Jﬂ; | x| Fy,(dx) < oo,

and

(2.7) E, 333, X = By 503, py, = p/m(y).

ErcobpIC THEOREM. Iff: 2 X R — R is any function for which

28) Sres 7() [ 117, 91 Byt <,

then for every A C % with 0 < w(A) < oo,

LAY, X) _ Zres 1) fren (', DFy(ds)
i1 1{Y; € A} m(A)

with P,-probability one, for everyy € % If n(%') = 1, then

(2.9)

(2.10) n7t ¥ f(Y), X)) = Tyew w(y) f o f(y’, x)F,(dx)
with P,-probability one, for everyy € 2%

The result is well known: in the special case where f depends only on y’, it
may be found in Section 1.15 of Chung (1967). The proof given by Chung may
easily be adapted to the general case.

PROPOSITION 2.1. For each initial state y € % each subset A C % with 0 <
m(A) < oo, and each ¢ > 0, there exists an integer M = M(y, A, ¢) so large that
whenever m = M and a = M,

(211) PfIm' Y lfa—m=<S,<a; Y, EAl—7(A)'| >¢l <e.
ProOF. Consider first the special case where 7(%') =1 and A = % In this
case the Ergodic Theorem implies that S,/n — u almost surely P,, for every

y € 2 Consequently for each y € % there exists M, = M,(y) large enough that
whenever m = M,(y),

(2.12) PAIm™ St 140 < S, < m} — u7t| > /2} < ¢/2.

Now we appeal to the Markov renewal theorem. This asserts that there is a
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probability distribution G on (0, @) X %2 such that the pair (S,q) — a, Y.q)
converges in law to G as a — ® (a — o through Z in the arithmetic case) under
each P,, y € % Therefore for each y € % there exist constants K(y) < oo, M(y)
< o such that for all @ > 0,

(2.13) Py{S.) — a = K(y) or My(Y.(0) = Ma(y)} <¢/2.
If M(y) = My(y) + K(y) is chosen large enough that

Moy | L)
M(y)—K](“ +2) N

a9 <
M(y) - K)\* 2) # ’

then (2.12) and (2.13), together with the Markov property of (Y., S.), imply
(2.14) P{im?' Y lfa—m=<S,=m}—p'|>ef<e

for all @ = m = M(y). This proves (2.11) in the special case A = %} #(%') = 1.
The general case of (2.11) will be deduced from the special case by the device
of isolating an appropriate embedded Markov random walk. Without loss of
generality assume that 7(4) = 1 (the invariant measure can always be renormal-
ized) and let T(0), T\(1), - - - be the times of successive visits to A by {Y,}, i.e.,

T(0) = min{n = 1: Y, € A}
T(j + 1) = min{n > T(j): Y, € A}.

and

Set
Yirr = (Yrwer, Yowsz, -+, Yroen), E=0
Sk = Stw, k=1
(2.15) 0o=10
and
X = 8 — Sp-1.

It is easily verfied that {¥,}.=1 is an aperiodic, irreducible, recurrent Markov
chain, and it follows from (1.1) that

g(XI&lIXl’ tety Xk; {Yj}jal) = FY,.(,,,+1 * Fyﬂ,,,,,2 ¥ oo ¥ Fymﬂ, =a FY/M

so {8y} is a Markov random walk with respect to the driving process {Y.}.
Moreover, it follows from the ergodic theorem (applied to the original process
(S., Y,)) that S,/k — u almost surely. Finally, {Y,} is positive recurrent: its
stationary distribution

(Y1, oo+ ¥r) = Dyeea 7(Yo) 25 p(yi, Yirr)
(here (y1, ¥z, - - -, ;) is a finite sequence from % with y, € A) has total mass 1.
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Consequently the result (2.14) may be applied to the derived process Sk, V3): in
particular, for each possible initial state y of {Y}}, there exists a constant M( )
such that a = m = M(y) implies

(2.16) Pilm* Y lfa—m=S,<sd—p?'|>¢<e
Since
Sewlfe—-m<sSi<a=Ymlla—m=<S8,=<aqa; Y, €A}
(2.11) follows from (2.16) by an easy argument. ]
COROLLARY 2.2. For each initial state y € % each subset A C 2 with 0 <

m(A) < o, and each ¢ > 0, there exists an integer M = M(y, A, ¢) large enough
that whenevera=m = M,

PAE(m™ Sy lfa—m=S,<a; Y, €A} F)

(2.17)
- w(A) | > e <e

PROOF. Suppose Z is a random variable on a probability space (2, %, P) and
¢, 6 € R are constants for which

P(|Z—-c|z6)<6 and |EZ—c| <.

Then an easy argument based on the triangle inequality shows that

E|Z—c| =3s.
Consequently, if 7 is any sub-o-albegra of 4,
(2.18) P(|E(Z| ) —c| >e¢) = 30/,

by Markov’s inequality, for all ¢ > 0.
Returning to (2.17), recall from Proposition 2.1 that AM; = M;(y, 4, ¢) large
enough that a = m = M, implies

PAlm™ S la—m < S, <a; Y, €A} — u7'w(4) | > 8} < 4.

Moreover, the Markov renewal theorem implies that IM, = M,(y, A) large
enough that a =2 m = M, implies

|Ex(m™ $pe1 lfa—m=S,<a; Y, €EA}) —pu'7(4)| <.
Thus (2.18) implies that if a = m = max(M;, Ms), then LHS (2.17) = 3§/e. By
choosing & < £2/3 we obtain (2.17).0

PrROPOSITION 2.3. Suppose (1.1A) holds (i.e., the Markov random walk
is arithmetic). For each initial state y € % each positive integer x, each subset
A C 2} and each ¢ > 0, there exists a constant M = M(y, A, x, ¢) sufficiently large
that wheneveraz m= M

(219) PfIm™ Yioe—m U{S:y —b=1x; Y0) E A} — G({x}; A) | > ¢} <
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and
PAIE,(m™ 2 Y0 S,y —b=1x; Y,y EA}| &
(2.20) W Ey(m™ X {S: x; Yop HIED
- G({x}; A) | > ¢} < e.

Recall that G(-, -) is the limiting distribution given by the Markov renewal theorem
(cf. (1.5)).

Proor. (2.20) follows from (2.19) by the same argument used to prove
Corollary 2.2; we omit the details.
Define a new process

Zy = (S;) — b; Y.00);

it is clear that {Z;}s=0,,... is Markovian, and takes values in the countable set
{1, 2, ---} X % Furthermore the Markov renewal theorem (specifically, (1.5))
implies that G(-, -) is the unique invariant measure for {Z,}. Consequently, (2.19)
follows by an easy argument from the ergodic theorem (specifically, from (2.10)).
We omit the details. (The usefulness of the “first-passage chain” {Z;} in renewal
theory is well-known; cf. McDonald (1974) for an extended discussion). O

There are analogous results for the nonarithmetic case. Since (2.19) and (2.20)
will only be used in the arithmetic case (cf. Subsection 3A, in the proof of (1.7)),
we refrain from stating the nonarithmetic analogues.

For dealing with Markov random walks in the “lattice-nonarithmetic” case
(cf. Subsection 3B to follow) certain extensions of the results of Propositions 2.1
and 2.3 and Corollary 2.2 will be needed. These are collected in

PROPOSITION 2.4. Suppose (1.1A) holds, and let v = 2 and 0 < n < v be fixed
integers. Then for each initial state y € % each subset A C 2 with 0 < n(4) <
o, and each ¢ > 0, there exists an integer M = M(y, A, ¢, v) large enough that
whenever a = m = M,

@21) PAIE(m™ Yp=1 Ha — m < 8, < a; Y, € 4; S, = n(mod »)} | F)
. = (w)'w(A)| > e} <e.

Furthermore, for each integer x = 0 there exists M = M(y, x, A, ¢, v) such that
whenever a = m = M,
Py{ I E(m_l Za—msbsa;b—aHOmodv I{S.,(b) - b =X Yr(b) € A} I -g.)

(2.22)
- IG(f{x}; A) | > ¢} < e

This can be proved by arguments very similar to those used in Propositions 2.1
and 2.3 and Corollary 2.4.

3. Multiple coupling: proof of Theorem 1. The technique of “coupling”
random processes to prove limit theorems usually proceeds according to the
following simple plan. Two processes, usually independent replicas of the same
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process, but with different initial conditions, are defined on the same probability
space. One is in a “steady state” (i.e., its initial distribution is an invariant
measure), the other is not. Eventually the processes meet (the coupling time)
and coalesce forever after: thus the process which did not begin in steady state
nevertheless approaches it.

(The coupling technique as described above was apparently first discovered by
Doeblin (1939), who used it to establish various limit theorems for Markov chains
on finite state spaces. It was resurrected by Ornstein (1968) in a different context:
Ornstein used it to deduce renewal-theoretic results for random walks on R.
Simple proofs of the renewal theorem based on the coupling technique may be
found in Lindvall (1977) and Athreya, McDonald, and Ney (1978); a more subtle
approach to renewal theory based on coupling, with correspondingly greater
rewards, is expounded by Ney (1981).)

The proofs of Theorem 1-4 which follow all make use of a coupling construc-
tion; this coupling, however, does not weld together two processes, but instead
infinitely many, each with a different initial condition. The “approach to steady
state” comes about by averaging over the ensemble of initial conditions. Apart
from the purely technical advantages of this approach, there is an aesthetic one
as well, in that the renewal theorem is unmasked as little more than the law of
large numbers turned upside down.

There is a certain amount of epsilonics involved even in the proof of Theorem
1, which, as the reader will discover, is still the simplest of the lot. To highlight
the essential features of the coupling construction, we will first prove Theorem
1 in the arithmetic case under more restrictive hypotheses, and then indicate the
modifications which are needed to remove the restrictions. Finally, we will
describe in somewhat less detail the form the coupling construction takes in the
nonarithmetic case.

3A. The simplest case. Let y € %2’ be a fixed but typical state in %/ to
serve as the initial state of the Markov chain {Y}},=;. Call the times of successive
returns to y Ny, N;, - - -: thus

3.1) Ny=1, Npy=min{n > N,: Y, = y}.

Assume that the underlying probability space is large enough to accommodate
two independent copies {X4,1},=1 and {X2},., of the (increments in) the Markov
random walk, i.e.,

P(X4 € dx*; X8, € dx®| F; X4, -+, Xa; XB, -+, XB)
3.2)
= Fy (dx*)Fy (dx®) Vn=0.

n+l n+l

ASSUMPTIONS 3A.
(3A.1) X421 and X821 Vn=12, .--.

(3A.2) Under P,, the random variables ¥31;' X4 and 217! (X4 — X5) have
distributions which are supported by Z, but by no proper subgroup of Z.
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Assumption (3A.2) is stronger than the arithmetic condition (1.1A). The
reason for including it is that the coupling we are about to decribe may fail (the
coupling times may be infinite) if (3A.2) does not hold. (I am indebted to Professor
Jim Pitman for pointing this out).

Processes {S}}.-0 and coupling times o(v) (v=0,1, 2, - - -) may now be defined
as follows:

St =v
8% = 8% + Xan
v {S;’; + X4, if e(w)=n

(3.3) TOSn 4+ XBy if o) > n

a(0) =0
o(v + 1) = min{n > o(»): S% = S;*Y}
= min{n > o(¥): ¥4, (X4 — XB) =» + 1}.

LEMMA 3.1. If Assumption (3A.2) holds, then for each integer v >0,
Plo(v) < o} = 1.

PROOF. The process U, = SM* (X4 — XB) (k=0,1,2, ---) is an ordinarily
random walk on Z with mean zero (this because of (3.2) and the Markov property
of {Y,}; also (1.2)). Consequently, by (3.2A) and the well-known recurrence
theorem of Chung, Fuchs, and Ornstein (cf. Proposition 1.2.8 of Spitzer, 1975, or
Chung and Ornstein, 1962), {U,}i=0 Visits each point of Z infinitely often. The

fact that {a(v) < o} follows from this and the definition (3.3).0
The coupling times o(v) are obviously stopping times with respect to the
filtration
Y, = o((Y), X}, XP))jm10,.. .-
It follows easily from this that each of the processes
(S = vhar, ¥=0,1, -+,

has the same marginal distribution (conditional on ). This is one of two
obvious but crucial features of the construction (3.3); the second is that the
processes {S9},=: and {S%},-, “coalesce” at time o(»), i.e.,

(3.4) S»=8% Vn=o0),
and thus
S:=81=...=8% Vn=d@).
PROOF OF (1.6) UNDER ASSUMPTIONS (3A). The fact that o(y) < o with

P,-probability one guarantees that for large a € Z, the processes {Si}.=1,
v=0,1, - -, M will have coalesced long before any of them gets near the level a,
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with high P,-probability. More precisely, for a, v, M € Z,, let

(3.5) 74(v) = min{n = 0: S}, > aj,

and

(3.6) F.(M) = {e(M) < 741(») for v=0, 1, --., M};

then since P,{o(M) < o} = 1, lim, .. P,(F.(M)) = 1 for each fixed M € Z,. Thus
3.7 P(Fo(M)| #) —p,1, as a— .

Now if the processes {S}},=1 (v =0, 1, - - -, M) will most likely have coalesced
before any of them has reached the level a, (cf. (3.4)-(3.7)) then the expected
number of visits to the point a by {S%,-; (conditional on %) should be
approximately the same as the expected number of visits to a by {S%},=1 (condi-
tional on &), for each » =0, 1, ---, M. In fact, if A C % 7n(A) < o, then for
anyrv=0,1, ..., M,

| E(Zh=1 1{Sh = @, Yo € A}| F) — E(Sr=1 1{S% = a, Y, € A}| F)
=1-P(F.(M)| &),

because the difference in the numbers of visits to a by {S%} and {S%}, respectively,
cannot be greater in absolute value than 1. This obviously follows from Assump-
tion (3A.1); in fact, this is the sole reason for making assumption (3A.1).
Averaging the above inequalities for » =0, 1, - - -, M, we obtain

| E(Zr=1 SR = a, Yo € A}| F)
(3.8) ~E(Zna1 M+ 1)7 B 1S, = a, Y. € A}| F) |
<1- P(F(M)| F).

Next we appeal to the fact that each of the processes {S* — »},=, has the same
marginal distribution, conditional on % This implies that the (% -conditional)
probability of a visit to a by {S}},-1 is the same as the (# -conditional) probability
of a visit to @ — v by {S%},=1, in particular,

E(Zrar M + 1) B 1S, = a, Y, € A}| F)
(3.9) =E(Znas M+ )7 B HSh =a -, Y, € A}| F)
=E(M+ 1) 31 lla— M < 8% < q, Y, € A}| F).

With (3.9), we have essentially reduced the problem of proving (1.6) to an
“ergodic” problem, because if M is large, the last expectation in (3.9) involves
the behavior of {S3},-: over a long stretch of time. Recall Corollary 2.2 of Section

2: for each ¢ > 0 there exists M sufficiently large that whenever a = M,
(3.10) PHE(M+ 1) Yilfa—M=<S)<a, Y, €A} F)
. - 'm(A) | > e <e.

This statement may be thought of as the Law of Large Numbers “turned upside-
down”, although the reader should recall that its proof in the general case invoked
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the (unconditional) renewal theorem as well.
The proof of (1.6) is now virtually complete. Combining (3.7)-(3.10), we obtain

(3.11) lim Sup,—.waes; Pyl| E(Zn=1 1{S5 = a, Y, € A}| &)
—u'm(A)| > ¢ <e

Since ¢ > 0 can be chosen arbitrarily small, it must be that
(312) U(la}, A| &) = E(Tp=1 1{S) = a, Y, € A}| F) —p, u"'w(4)
as a — o through Z.0

PRrOOF OF (1.7) UNDER ASSUMPTION (3A.2). The reader should recall that
in the proof of (1.6), the assumption (3A.1) was used only to establish (3.8): in
fact it was really only needed to assure that the number of visits to a point a
would be bounded, thus eliminating a potential uniform integrability problem.
For the proof of (1.7) this difficulty does not arise, and so assumption (3A.1) may
be dispensed with. ‘

The proof of (1.7) is quite similar to that of (1.6), and certain features require
no change at all. In particular we retain the notations 7,(v) and F,(M) established
in (3.5) and (3.6), and note that (3.7) holds.

On the event F,(M), the processes {S%} (v =0, 1, - - -, M) have coalesced before
any of them has exceeded a; consequently

Stw—a=820—a on F,M), v=1, ..., M.
Thus foranyx=1,2, --- and any A C % with 7(4) < x,
| P{S% —a=1x; Y0 EA| F}
(3.13) - M+ 1) PSS,y —a=1x; Y. ) EA| F}|
: <1-P{F.M)| Z).

Recall once again that the processes {S* — v}.=0 are marginally identical in law
(conditional on %), and notice that the first time S’ exceeds a is the same as
the first time S}, — » exceeds a — v. Therefore

(M + 1)—1 ﬁo P{S:a(,,) —a=X, Y.,a(,,) (S AI _9-}
=M+ PSS o—(e—v) =xY, 0 EA| F}

a—

(3.14)

Finally, Proposition 2.3 of Section 2 implies that for each ¢ > 0 there exists
M € Z, sufficiently large that whenever a = M,

(3.15) Pl (M + 1) 22y P{S? o) — (@ — v) = x; Yf,,_v_«» EA|F}
- G{x}, A) | > ¢} <ee.
Combining (3.7) with (3.13)-(3.15), we obtain
lim sup,_..P,{| P{S07a(0) — a = x; Y7a(0) E A | F}

(3.16)
-Gz}, A)| > e} = e
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Since ¢ > 0 was arbitrary, it follows that
P{S%0 — a = x; Y, 0 € A| F} —p, G({x}, A)

(3.17)
as a— o through Z.

This proves (1.7) for sets B consisting of only finitely many points. It is
entirely routine to deduce that (1.7) holds for infinite sets B as well; we omit the
details. 0

PROOF OF (1.6) UNDER ASSUMPTION (3A.2). Assumption (3A.1) was only
used in establishing the inequality (3.8). Without assumption (3A.1) this inequal-
ity may fail, since the Markov random walk {S?},.~; may visit a indefinitely often;
however, it is possible to circumvent (3.8), and thus to establish (1.6) without

assuming (3A.1).
Fix ¢ > 0 and M € Z.. By the unconditional Markov Renewal Theorem, the

inequalities
(3.18) IEy(anl l{S; = a, Y. € A}) - /.t_l1r(A)| <e v=0, lx o, M,

hold for all integers a sufficiently large (and) sets A C %/ with 7(4) < . By
Corollary 2.2 of Section 2, there is an integer M = M(e) sufficiently large that
whenever a = M,

(3.19) P{EM+ 1)Y= lfa—M=<S)<a; Y, €A} F)
. —ulr(A)| > e <e.

Since the equality (3.9) persists when Assumption (3A.1) is dropped (the original
argument made no use of (3A.1), we may rewrite (3.19) as

P E(M + 1) 31 20 1{S) = a; Y, € A}| F)
—p'w(A) ]| > e <e.

Recall that P,(F,(M)) —» 1 as a — o (cf. (3.7) and (3.6)); consequently by
combining (3.18) and (3.20) we may conclude that for all a € Z., sufficiently
large,

(3.20)

P E((M + 1) Y21 D=0 1{Sh = a; Y, € A}
CAFM) | F) —p (A | > 2 ¢ < 2.

Now on the event F,(M) the random walks {S4} (v =0, 1, ..., M) coalesce
before reaching a; hence

(M + 1) Yoot Tom0 1{Sh = a; Y, € A} - L(Fu(M))
=Y 1{S% =a; Y, € A} - 1(F.(M)).

(3.21)

(3.22)

Thus (3.12) becomes
(3.23) PA|E(Znz1 1{S) = a; YV, € A} - L(FM))| F) — p7'n(A) | > 2¢} < 2e.
Using (3.18) (this time only for » = 0) and the fact that P,(F,(M)) — 1 as
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a — o, we infer from (3.23) that for a € Z. sufficiently large
Pl E(Z=1 1{Sh = a; Y, € A} | F) — u7'w(A) | > 4e} < 4e.
Letting ¢ | 0 we find that we have proved (1.6). 0

3B. Removing the lattice condition. The assumption (3A.2), as we re-
marked earlier, is stronger than the arithmetic hypothesis (1.1A) of Theorem 1.
Without it, however, the coupling described in the previous subsection may fail:
if, for example P,{Y)=! X, is an odd integer} = 1, then Markov random walks
started at 0 and 1 respectively can never meet, since at times N; they must have
opposite parities. Fortunately there is a modification of the coupling approach
which resolves this odd dilemma: we will call this modification a “staggering
argument” for reasons which should become clear.

Assume then that under P,, ¥¥1;* X, has a distribution which is supported by
a+ BZ (where $=2,0=a< B, and a, 8 € Z), and by no coarser lattice (a
“lattice” being a coset of a subgroup of Z). If {X4} and {X5} are (conditionally)
independent copies of {X,} (i.e., if (3.2) holds) then .

ot (XA - XD)

has a distribution which is supported by 8Z but by no proper subgroup of 5Z.
According to the theorem of Chung, Fuchs, and Ornstein, the process

sz ! (XA Xg)’ k = 0’ 1’ e

will visit every point of 8Z infinitely often, with P,-probability one.
Define random walks {S}} and coupling times {o(»)} as follows:

S(,;:ﬂ”’ ”=0’1""’

Sy + X4, if n=a(
S+ XB., if n<oa();

v —_
n+l =

d(0) =0
o(v + 1) = min{n > o(¥): S5 = SY
= min{n > o(¥): 37 (X# — XP) =6v + B}.
(The coupling times o(») are all finite). Notice that

i) Sy =8s1=... =8 = 8% Vn = o(v), and
(ii) each of the processes {S% = Br},=0 (v = 1) has the same distribution as
{S%} =0, conditional on %

We may now repeat the arguments in (3.7)-(3.9), concluding that for
large a

E(Sye 1488 = a, Y, € A}| F)
= E(Tne1 (M + 1)7 3% 1{S) = a - By, Y, € A}| F)
=EM+1)'Ylfa-Mry=8l<a; Y, €EA; S, —a=0mod v} | ¥)
~ p'x(A).
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The last approximate equality is a consequence of Proposition 2.4 (compare with
the use of Corollary 2.2 in deriving (3.10)). The rest of the argument needed to
justify (1.6) is the same as that in (3.11)-(3.12) and (3.18)—(3.23).

The proof of (1.7) follows the same lines. 0

3C. The nonarithmetic case. If the increments in the Markov random
walk are not valued in a discrete subgroup of R (or a coset of one), then the
coupling scheme described in subsection 3A will generally “fail,” since independ-
ent walks commencing at distinct points will not visit the same points. Fortu-
nately there is, again, an easy way out of this predicament: instead of insisting
that coupling take place at an instant when two random walkers are at the same
point, we will allow coupling when the distance between the walkers is less than
K1, where K is a large integer. This “approximate coupling” trick was also used
by Lindvall (1977) in his proof of Blackwell’s Renewal Theorem. For the problem
at hand (to wit, proving Theorem 1) the approximate coupling must be supple-
mented by another not-so-very-subtle trick: rather than starting the different
random walks {S%}.-0 at integer points, as in Subsections 3A and 3B, we must
start them at integer multiples of K™}, with K to be eventually made large so as
to obtain a good approximation to Lebesgue measure.

There is once again a “lattice problem,” which occurs when the distribution of

N,—
2n=11 ! Xn

is concentrated on a lattice o + 8Z (recall that 1 = Ny, Ny, - - - are the times of
successive visits to state y by {Y,}.=1). In the nonarithmetic case a and
8 > 0 should be linearly independent over Z. In the lattice nonarithmetic case
the “staggering” scheme described in in Subsection 3B must again be used. We
will not trouble the reader with the (entirely mundane) details in this case. For
the rest of the discussion, then, we will assume

(3C) the distribution of Y17 X, is not supported by any coset of a discrete
subgroup of R.

As in Subsection (3A), let {X4},-, and {X2},., be independent copies of {X,},-1
(conditional on £): i.e., suppose (3.2) holds. Fix K € Z., and define {S}}.=0,
v =0, and o(v), v = 0, by

Sy = v/K
St =8 + X
S = {s; + Xt if oG)sn
(3.24) Sy+ XB., if e(w)>n
a(0) =0
o(v + 1) = min{n > ¢(»): 0 < S;*! — SY < 1/K}
min{n > o(»): v/K < ¥, (X4 - X2) = (v + 1)/K}.

The fact that each ¢(v) < o (with P,-probability one) follows from the nonlattice
version of the Chung-Fuchs-Ornstein theorem (thanks to (3C)).

L
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PROOF OF (1.6): A BRIEF SYNOPSIS. This once again rests on two obvious
properties of the processes {S%}:

(i) the marginal distribution of {S% — v/K},=0 (conditional on %) does not
depend on »; and
(ii)) foreach M =1, |S%, — S%| <1/K whenever n = ¢(M) and 0 < v < M.

Let 7.(v) and F,(M) be defined by (3.5) and (3.6) (this time for a € R.); notice
that (3.7) retains its validity. By property (ii),
M+ 1)7" Ty Do 1{SH € (@ + K7, a + 1); Y, € A}
(3.25) <Y1 1{S%€ (a,a +1); Y, € A}
SM+1D)7 T T USHE (@,a+ 1+ K7); Y, € A

on the event F,(M).

One may now argue as in the proof of (1.6) given in Subsection 3A, under
Assumption (3A.2); the two-sided inequality (3.25) replaces (3.22). Using the
unconditional Markov renewal theorem, Corollary 2.2 of Section 2, and (3.7),
and mimicking the development in (3.18)-(3.21), one obtains

Py{| E(Tn=0 1{S? € (a, a + 1); Y, € A}| &) — p7'x(4) | > 8/K} < 8/K
for all a € R, sufficiently large. Since K € Z.. is arbitrary, (1.6) must hold. 0

A similar approach works for (1.7).
4. Counterexamples.

EXAMPLE 1. This example illustrates the need for a restriction on the sum
of the means over an excursion (cf. (1.9) in Theorem 3). Let G be the probability
measure on 2 = {1, 2, 3, ...} given by

G({y}) = Cy™®, where C'=¢(3) =3y

and let {Y,}.=1 be i.i.d. with distribution G. Notice that G = = is the stationary
distribution, and that the recurrence times have exponential moments (hence
(1.8) holds).

For each y € % let F, be the uniform distribution on the interval
[y — 1, y + 1]. Then u, = y and ¢2 = %; since (1.8) holds, it follows that (1.10)
holds. It is an easy exercise to show that

E (T py) P <o V5>0, but E(I" py) = o,
Notice that the Markov random walk specified by {Y,} and {F,} may be written
as .
S,=3%1 X; where X, =Y, + Z,,

where Z,, Z,, --- are ii.d. uniform on [-1, 1], and are independent of & =
U(Yl’ YZ’ b ')'
That almost sure convergence in (1.6) and (1.7) fails follows from the diver-
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gence of the series
=1 P{Y, > vn log n}.

The Borel-Cantelli Lemma implies that Y, > vn log n occurs infinitely often,
w.p.1, so there exists a sequence of (random) integers J,, k=1, 2, - - ., such that
Jr < Jp+1 for each k, and Y,, > vVdilog J, w.p.1. But the law of the iterated
logarithm implies that

| 251 Z;| > v2n log log n
occurs only finitely often, w.p.1. (since var Z; = 14 < 1). Consequently, if
up = T4 Y, + [| Vilog Ji/2]
and
A = {331 X; € [ug, up + 1] for some nj,
then 1(A;) — 0 w.p.1, and therefore
E(Zne: Hur =S, <= up+1}| ) >0 as,
and
P(S;uy—ur—>oask—>o| F)=1 as 0O

EXAMPLE 2. The preceding example illustrated the possibility of creating
“predictable gaps” in the conditional renewal measure. If the driving process { Y}
is badly behaved, then it is possible to have “predictable irregularities” in the
conditional renewal measure even when the variation in the distributions
{F,}yeo is mild (clearly there must be some variation in order for the renewal
theorem to fail, by Blackwell’s Theorem).

Consider the positive recurrent Markov chain {Y,},-; taking values in &' =
{0, 1, 2, - . .} with initial state Y; = 0 and transition laws

p(y, y—1)=1 Vy=1 p0,y)=C"y"y Vy=1
where C = {(3)~!. Notice that for N = min{n > 1: Y, = 0}, E,N? = «, but EyN*™?
< o for all § > 0. Let F, be the uniform distribution on [1, 2], and let
F,(y = 1) be the uniform distribution on [2, 3]. The Markov random walk

specified by the transition mechanism p(-, -) and the assignment y — F, may be
represented by

S,=3r1 X; where X,=1+1{Y,=1}+Z,

and Z,, Z,, - - - arei.i.d., independent of & = g(Y1, Y, - - -), uniformly distributed
on [0, 1].

The failure of the (conditional) renewal theorem in this example stems
from the existence of large excursions in the driving chain {Y,}. Let Ny = 1,
Ny, N,, - - - be the times of successive returns to the initial state 0 by {Y,}; then

PO{Nk+1 - Nk =n-+ 1} = {(3)_111_3.
The Borel-Cantelli Lemma implies that with P,-probability one, Ni+1 — Nj >
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C1Vk log k infinitely often for each C, > 0, since 3. (k log k)~! = . But by the
SLLN, N./k — E,N; — 1 almost surely, so it follows that Y, > C;vn log n occurs
~ infinitely often for each C, > 0, with P,-probability one. Let J,1 be an increasing
sequence of (random) integers such that Po{Y,;, > vdJ, log J, Vk} = 1.

Now Z,, Z,, - - - are i.i.d. with variance %z, so the law of the iterated logarithm
implies that

P{|3%, Z; — n/2| > vnlog log n i.0.}
= Py{| S, — Y% ny;| > Vn log log n i.0} = 0.

Furthermore, starting at time n = J; the Markov random walk {S,,} is obligated
to take its next ve/,log J) increments from the uniform distribution on [2, 3],
since Y, > vdJilog J. But Blackwell’s Theorem will govern the renewal measure
in this stretch of time, since conditional on % the increments from time
n =dJ to n = JvdJ,log J; are i.i.d.! Thus if

we =a [| T3, ny; + Yadylog J |],

then
1 2
E (Yoo Hur =S, <u,+ 1} | & —_—=,
o(Tn=1 Hue < S, U } )_)fgxdx 5
Since % # pu =5 ¥ uyw(y) (g < %), the conditional renewal measure cannot
converge almost surely, in view of Theorem 1.0

5. The rate of coalescence in multiple coupling. In the examples of the
preceding section the conditional renewal measures fail to converge because the
Markov chains {Y,} wander off on wild excursions before the random walk {S,,}
can “spread out.” This suggests that in the coupling scheme of Section 3 either
(i) the law of large numbers (cf. (3.10)) takes effect too slowly, or (ii) the processes
{S7} take too long to coalesce, in order for almost sure convergence in (1.6). In
this section we will examine the “coupling rate” for two schemes similar to that
described in Section 3; we shall find that the number of steps necessary to weld
together {S}, {S1}, - - -, {Sh}, where each {S, — j} is a replica of {S3}, is roughly
on the order of »2

One might wonder whether a more clever coupling than ours might yield a
better rate than »% A moment’s reflection, however, will reveal that unless the
processes {S} and {S%} are allowed to couple at different times (i.e., different
values of n) no better rate can be achieved, since this would in effect contradict
the (local) Central Limit Theorem. As for allowing the random walks to couple
at different times—this would be useless for the problem at hand, since condi-
tional on F the processes {S5} are inhomogeneous in time.

We shall assume throughout this section that for some state y € 2 the
distribution F, and its symmetrization are both supported by Z and by no proper
subgroup of Z. This assumption obviates the necessity of “staggering” the
processes {S}},>1 in the construction to follow (cf. Subsection 3B). As in Section
3, let {X2},-1 and {X2},-, be conditionally independent copies of the increment
sequence: specifically, assume that (3.2) holds. Also, let Ny = 1, Ny, N,, --- be
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the instants of successive visits to y by the Markov chain {Y,},-;:. According to
our assumption concerning the distribution F,,

(5.1) P(X#% - XR)€EBZ| F)<1 V=2
it follows that there is an integer M < « sufficiently large that
(6.2) PU(X{, - XR)UIXA - XX sMlepz| F)<1 V=2

The coupling scheme to be used in this section differs from that of Section 3
in two respects. First, the processes {S}} (v = 1) will not proceed independently
until coupling, as earlier; in fact, the increments in S* and S, respectively, will
never be more than M in absolute value. These two modifications allow us to use
results for random walks with bounded increments, which are more “precise”
than the Chung-Fuchs-Ornstein theorem.

Let
(5.3) = (X8 - XRUIXY, - XKl =M}, j=0,1,2, -
then conditional on & (under P,), &, &, - - - are i.i.d. with symmetric distribution

whose support generates Z. Define random processes {S.},-0, v =0, 1, ..., and
coupling indices a(v), by

Ss=v
o1 =S5+ X
S =8, + XB,,, if n+l=N; (some j),
n<oay), and & #0;
(5:4) Sy + X4,,, otherwise;
a(0) =0; and
a(v + 1) = min{j > a@): SF' = SY}.
=min{j>a@): &b+ &+ - +E=v+ 1}

The two critical features of the construction are that (i) the processes {S%} and
{S?%} coalesce at time N, i.e.,

(5.5) Sh=8,=...=8% on {n= N,

and (ii) the processes {S; — v} are all marginally the same (in law) conditional
on % i.e.

(5~6) %({S; - ”}naOI g) = %({Sg}nzol g) Vv = 0’ 1’ M
(here . denotes the law of the process under the probability measure P,). These
facts are completely elementary.
PROPOSITION 5.1. Asy —
5.7 Z(a)/v®)| F ) >as.p, one-sided stable — Y.
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The proof relies on a potential-theoretic result of Kesten and Spitzer (1963)
(cf. Proposition 4, Section 32 of Spitzer (1975); the analogous result for the
nonarithmetic case is in Port and Stone (1969)).

THEOREM. Suppose §;, &, - - - are i.id. with Ef; = 0 and E£? < ; suppose
also that the distribution of §; is supported by Z but by no proper subgroup of Z.
Then for each x € Z there exists a constant C, € (0, ) such that

Pit,>n} ~C,n"? as n—x,

wheret,=min{n = 1: &, + - -- &, = x}.

PROOF OF PROPOSITION 5.1. Recall from the construction (5.4) that
a(v+ 1) =min{j > a@): &+ --- + §=v + 1}
= min{] > a("): gu(v)+1 + ga(v)+2 + ..+ EJ = 1}.

Moreover, conditional on % the random variables £, £, - - - are i.i.d., with mean
zero, finite variance, and a distribution which is supported by Z but by no proper
subgroup (cf. (5.2) and (5.3)). Consequently

a(p) =01+ B2+ --- +6,

where 8, = a(k) — a(k — 1) are (conditional on %) i.i.d. By the Kesten—Spitzer
theorem

P{g>n| F}~Cin™%
thus by a standard result in the theory of stable laws (cf. Theorem XIII.6.2 of
Feller, 1966),
Pla)/v?> =s| F}— Gils)

where Gj/2(s) is the distribution function for a one-sided stable law of exponent
%.0

6. Almost sure convergence: finite state space. When the state space
% is finite, it is very difficult for the Markov chain {Y,,} to embark on a “wild”
excursion, as in the examples of Section 4: there is simply nowhere for it to go.
This is reflected in the following large deviation theorem, according to which the
empirical distribution of {Y,} approaches the stationary distribution = very
quickly.

PROPOSITION 6.1. If % is finite, then for each ¢ > 0 there exist constants
C. < o and \e) > 0 such that

6.1) Pyl eco |m Iy Y, =y} —w(y’)| > ¢} = C. - exp(—mA(e))
forallm=1andeachy € %

Much more general results than this are well-known: cf. Donsker and Varad-
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han (1975, 1976). Proposition 6.1 has a relatively simple elementary proof which
will be given in due course.

Proposition 6.1 allows us to obtain a rate of convergence in the law of large
numbers for the Markov random walk {S,}. This, combined with the result of
Section 5 concerning the rate of coupling, will enable us to establish almost sure
convergence in (1.6).

Suppose that S, = X; + - -+ + X, is a Markov random walk with the Markov
chain {Y,}.=: as driving process. The conventions (1.1)-(1.3) are assumed to be
in force. For the rest of this section it will be understood that the state space 2
of the driving process {Y,}.=1 is finite.

LEMMA 6.2. For each ¢ > 0 there exist constants C, < ® and \(e) > 0 such
that

(6.2) PAP(| S, — nu| > ne| F) > ¢} < C.exp(—nh(e))
foralln=1and foreach y € %

The constants C, and A(¢) may differ from those in (6.1). The proof, which is
a relatively straightforward exercise in the use of the SLLN and Proposition 6.1,
will be given later in the section.

The almost sure convergence of the conditional renewal measure will only be
established for Markov random walks {S,} with strictly positive increments. Thus
we will assume for the remainder of this section that each of the distributions
F,, y € % is concentrated on the set of positive integers, i.e.,

(6-3) Fy({]-, 2, . '}) =1 Vy €

The reader should notice that with (6.3) in force, {S,},= is strictly increasing in
n, and S, never visits a point @ more than once. Consequently the (conditional)
renewal measure is just the (conditional) hitting probability function:

(6.4) E, Yn=1 1S, = a; Y, € A} = P,{(S,, Y,) visits {a} X A for some n}.
LEMMA 6.3. Fix p > 0 and ¢ > 0. Then there exist constants C(p, ¢) < ®© and
N p, €) > 0 such that for each y € % and A C % and eachn = 1,
(65) P.{maxocoene| E(R™! Tp=y Ha < S < a + n; Yn € A}| F)
' — u'r(A) | > ¢} < Cle, plexp(—nA(e, p)).
Consequently,
66) maXozezns | EM™ Y1 1la = Sn<a +n; Y, € A}| &)
. - ur(A)| >0
almost surely (relative to P,).
The proof of this lemma is a long but straightforward affair in which the rates

(6.1) and (6.2) are translated into corresponding rates for the renewal measure.
We defer the details until later in the section.
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PrOOF OoF THEOREM 2. We will consider only the convergence of the (con-
ditional) renewal measure; the proof of almost sure convergence in (1.7) is
virtually identical. Furthermore, we will assume that the initial state y is such
that neither F, nor its symmetrization is supported by a proper subgroup of Z.
This allows us to call on our results concerning the coupling scheme established
in (5.4).

REMARKS.
(1) In order to prove that

(6.7) E (Y1 1{S, =a; Y, €E A} | F) - p'n(A) (a — @)

almost surely (P,) for every y € % it suffices to establish it for any particular
value of y. This is because {Y,}.=1 visits every point of %/ and any “initial
segment” of the process (S,, Y,) cannot affect the validity of (6.7). We leave it
to the reader to supply a formal proof.

(2) If there is no point y € %2 for which (5.1) holds, then the coupling scheme
of (5.4) must be modified to incorporate an appropriate “staggering,” as in Section
3B. In all other respects the argument given below applies verbatim.

The first phase of the proof is to retrace the line of reasoning in Section 3A,
especially the relations (3.8) and (3.9). This leads to

IE(anl I{Sg =a, Yn € A} I ﬁ)
6.8) B M+ 1) e - M <SS <a; Y, €A} F)]|
=1-PFE.M)| F),

where

(6.9) FyM) = {N.ay < 7o-1(v) foreach » =0, 1, - - -, M}
and

(6.10) 74(v) = minfn = 1: S, > a}

(the coupling index «() is defined in (5.4)). Notice that (6.8) is valid for all
values of M and a.
Define events I';(m) and I'y(m) as follows:

(6.11) Iy (m) = {mine<,<m7,m3(v) < m®/2} (early crossing),
and

(6.12) I'y(m) = {Namsny = m?/2} (late coupling).
Clearly

1-P(Fm +1)| &) = P(Ty(m)| F) + P(Tx(m) | F)
for every integer a such that a = um?®. By (6.6) of Lemma 6.3,
max,mze<umrn)t| E(Cnzi(m + 1) '1{fa — m = 8% < a; Y, € A}| ¥)
— u'r(A)| - 0 almost surely (P,)
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as m — o; consequently to prove (6.7) it suffices, in view of (6.8), to show that

(6.13) P(T'y(m)| #)—>0 almost surely (P,),
and
(6.14) P(T'y(m)| &) — 0 almost surely (P,).

PROOF OF (6.14). Recall that N, =1, N;, N,, . - - are the times of successive
returns to state y by {Y,}.=1. By the ergodic theorem

Nim _
n;;;]—wn'(y) 1 AS. (P);

by Proposition 5.1,
Pla(m+1)>mb%| F} >0 AS. (P);
therefore '
P(Nogmen Z 7(y)7'm*?| F) >0 AS. (P).

PROOF OF (6.13). Recall that on the event {n = N,} S3 = .S'1 = =8
(cf. (5.5)); Moreover on {n < Na(,,)} St =8*%—Fkfork=1,2, (cf (5 4)).
Consequently

Iy(m) = {mines,<m7um(¥) < m*/2}
= {SE?nS/zl > ﬂma or S?m3/2] > [.l,ma},

since among those path {S.}, --- {S7} which have not coalesced with {S3} by
time [m?/2], ST has the largest value at n = [m3/2]. It follows that

By Lemma 6.2 and the Borel-Cantelli Lemma,
P(S?ms/ﬂ >um?—-m| F)—>0 AS. (P). O

PROOF OF PROPOSITION 6.1. According to the ergodic theorem (strong law)
for Markov chains, the empirical distribution converges to the stationary distri-
bution, w.p.1 (regardless of the initial state). Since there are only finitely many
possible initial states, the convergence is uniform over all initial distributions: in
particular, for each 6 > 0 there exists a & = k(6) such that for every
YE Y

(6.16) PySyes | B Tha 1{Y; = '} — w(y) | > 8} <.

To prove (6.1) we will break up the time axis into “blocks” of length k. There
will be a lot of “good” blocks, i.e., blocks for which the empirical distribution is
close to the stationary distribution; and a small proportion of “bad” blocks, in
which the empirical distribution is not so close to the stationary distribution. Let

617  Z,=1{0 < Tyes | k7 Te-en UY; =y} — x(y')| = 2}
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then Z, is the indicator of the event that the nth block is bad. Notice that
(618) Py(Zn =1 I Yl, Y‘b ) Y(n—l)k+1) <é Vy € @, nz1

by (6.16). Notice also that the measure of discrepancy between the empirical
distribution and the stationary distribution is the total variation distance, which
is never greater than 2.

If 6 > 0 is sufficiently small, say é < ¢/5, and if m is large, then a large (bigger
than ¢) discrepancy between the empirical distribution of the first mk observa-
tions and the stationary distribution can occur only if a large proportion of
Z,,Z,, -+, Z, assume the value 1. (This is because of the triangle inequality for
the total variation distance.) Furthermore, the empirical distribution can change
by at most 1/m between n = mk and n = (m + 1)k (in total variation).
Consequently if 1/m < §, and 0 < n < k, then

{Syew | (mk+ n)™ TP 1Y, = y'} — n(y’) | > 55}
(6.19) C {Zyew |(mk) TR LY, = y'} — n(y’) | > 48}
C {m™' X2, Z: > 38/2}. )
The exponential rate (6.1) therefore follows from (6.19), (6.18), and
LEMMA 6.4. Suppose Z,, Z,, - - - are 0-1 valued random variables, adapted to

ANCAHC-- L If
PZpn=1|)<p

foralln=0,1, ... (% = {3, Q) then for each ¢ > 0 there exists a constant
() > 0 such that

Pim™ Yn, Z, > p + ¢} < exp(—m(e))

for all m.

Proor. By the Markov inequality

E(1 + s)*=% _ (1 + sp)"
(1 + s)me*d = (1 + s)leram

for all s > 0, m. For each ¢ > 0 there exists an s > 0 for which

Pim? Y, Z,>p+¢ <

1+sp<(1+s)t
(calculus!) so the desired inequality holds with e ™ = (1 + sp)/(1 + s)***.0

. PROOF OF LEMMA 6.2. For y’ € % let
M.(y') = 2} {Y; =y} and S.(y') = I} Xj1{Y; = y'}.

Notice that S,(y’) is (conditional on %) the sum of M,,(y’) i.i.d. random variables
each with distribution F, . Consequently, by SLLN there exists m(y’) sufficiently
large that

(6.20) P Sn(y’) — uy Mu(y') | > eMu(y') | F} - 1{ML(Y') =2 m(y')} <e.
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Now in order for | S, — nu| > 2¢n to occur, it must be that either

| Sa(y’) — uy Mu(y') | > eM,(y’) for some y' € %
or

Inu = Zyew uyMu(y')| > ne.
Let n be sufficiently large that nx(y’) > 2m(y’) for every y' € %/; then by (6.20)
PAP(1S, —nu| >n - (2| F) > 2| ¥ |}
(6.21) < PJf|nu— Yyew uyM.(y')| > ne
+ P{| M,(y’) — nw(y')| > nw(y’)/2 for some y' € Z/}.

(Here | 2/ | denotes the cardinality of 2/). Both probabilities on RHS (6.21) are
exponentially decaying in n, by Provosition 6.1; the inequality (6.2) follows. 0

ProOOF oF LEMMA 6.3. It suffices to consider only (6.5), since (6.6) follows
from (6.5) by a trivial application of the Borel-Cantelli Lemma. .

We will use Proposition 6.1 and Lemma 6.2 to establish exponential bounds
for six separate probabilities:

(6.22) Py{P(r(n* + n) > n**'| &) > 8} = C exp(—n})
(6.23) P,{maxo<,<nsP(S,0) — a > on| F) > 6} = C exp(—nl)
Py{maxo<m=ne+1 P(Sp, nu~l(1-26)] — Sn>n(l1—-08)| F)>é
(6.24) ,{max, (Sm+inu—1(1-26)) n( )| F) > 8}
=< C exp(—n\)

(6.25) Py{maxocm=n*1 P(Sm+inu-1 + 5)) — Sm < n| F) > 8} < C exp(—nl)
P,{maxXosmentt Tyew | (nu™'(1 = 28))7" Tigjsnu-ta-25 1Y = ¥’}
—w(y’)| > 8} = C exp(—n\)

P{maxosmsn Tyew | (Mu (1 + 8))7! Tigjmnutass HYj = ¥’}
— w(y’)| > 8} = C exp(—nh\).

(6.26)

(6.27)

Here 7(a) = min{n: S, > a}; the constants C, A may depend on 4 but not n; and
the inequalities hold simultaneously for all y € 2¢ The exponential rate (6.5)
follows from (6.22)-(6.27): it is a routine matter to verify that with
66+ ud((1—28)1+ (1+0))<e,

LHS(6.5) < Y%, LHS(6.j).
PROOFS OF (6.22)-(6.27).

(6.22): Notice that since S 1,
P(r(n” + n) > n**'| ) <= P(Spw*y = n° + n| F),
so (6.22) follows from (6.2).
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(6.23): Since {S..} cannot visit any integer more than once, it follows that for
anya € Z*

P(Sf(a) -—a> 5n| y) = Zy’ee« Z?‘-O Fy»((én +a-—-/4 00))
= Yyew Yoo Fy((bn + 4 ®©)) >0 as n— o,

since each F,. has finite first moment.

(6.24)-(6.25): It follows from (6.2) that with no = [nu™(1 — 26)],
LHS(6.24) < n**'max, e« Py {P(| Sn, — uno| > no8/2| F)} < C exp(—n))

for certain constants C < o, A > 0 ((6.25) is similar).
(6.26)—(6.27): These are almost immediate from Proposition 6.1.0

7. Almost sure convergence: infinite state space. The argument in the
preceding section hinged on the exponential estimate of Proposition 6.1 for the
rate of convergence of the empirical distribution of the Markov chain. In infinite
state spaces such estimates are not generally available; even when they are,
almost sure convergence of the renewal measure may fail (cf. Example 1, Section
4). This suggests that almost sure convergence depends not on the degree of
“mixing” in the Markov chain alone, but also on the nature of the assignment
y — F,. In this section we shall establish almost sure convergence of the renewal
measure under the hypotheses of Theorem 3, to wit, that each X, > 0, and

(7.1) E(ZN5" py,)? < o,
(7.2) E (05" 0%,) <o,
and

(7.3) E,N? < .

The proof of Theorem 4 is similar (although not identical) and will therefore be
omitted.

The basic strategy of the proof is no different from that of Section 6: balance
the speed of convergence in the Law of Large Numbers (actually the erogdic
theorem for the first-passage process) against the rate O(n?%) of coalescence in
the coupling scheme of Section 5. The balance here is considerably more delicate
than in the finite state space case, however. The second moment hypotheses
(7.1)-(7.3) give precisely the right speed of convergence in the Law of Large
Numbers to compensate for the O(n?) rate of coalescence. (Indeed, the examples
of Section 4 demonstrate that if (7.2) holds, then (7.1) is a “minimal” moment
condition for almost sure convergence in (1.6), in the sense that Ey(zn_1 T
< is insufficient to guarantee A.S. convergence.) The essential tool for obtammg
rates of convergence from (7.1)-(7.3) is the Hsu-Robbins Theorem:

THEOREM (Hsu and Robbins, 1948). Suppose &, &, --- are iid. with
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Et = 0and var §; < . Then
Soa Plle+ o+ £0] > en) < oo
for every ¢ > 0.

Throughout this section we will assume that assumptions (6.1)-(6.3) are in
force, that all of the distributions F,, y’ € % are supported by the set of positive
integers {1, 2, - - -}, and also that for the given initial point y, the symmetrization
of F, is supported by no proper subgroup of Z (this last is only so that the
coupling construction of Section 5 may be used without modification). As usual,
1= Ny, Ny, - - - are the times of successive returns to the initial state y; we will
sometimes write N(j) instead of Nj, for typographical reasons. The process {S.,}
will be Markov random walk with {Y,} as its driving process; the processes {S},
v=0,1, ... will be as in (5.4). Keep in mind that conditional on % the processes
{S.} and {S% — »} are identical in law.

Define first passage indices 8(m) for the process of accumulated means:

(7.4) B(m) = minfk: XY uy > Kim? — 2K, m}.

Here K, and K, are large but fixed constants which will be further specified later.
Notice, however, that with P,-probability one,

(7.5) " uy < Kim? — Kom
for all sufficiently large m.
PROOF. By the ergodic theorem 8(m)/m? — K;n(y)/u < ». The increments

& = Y@+ py, are iid., with finite second moment. Now if £, &, - - - are i.i.d.
with finite second moment, then for any constant K* < o

maXp<gem?| & | /m — 0
almost surely by the Borel-Cantelli Lemma, since E£? < o implies
Sk P{| & | > ek} < o
which implies P{| £, | /k'/? < ¢ eventually} = 1. Thus
m N o141 By, = 0 as. (Py),
which implies (7.5).0

LEMMA 7.1. Suppose g: 2 — [0, ) is a function for which

(7.6) &= Yyes &y )w(y') <o
and
(7.7 Ey(T7 g(Y,))? < oo,

Then for each real v > 0 and each integer K > 0,
(7.8) MAaXn:0<n-N(8(m)<Km | (ym)™! Losj<ym &( Y.t) — 8|l >0

almost surely (P,), as m — .
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PrROOF. The plan is to partition the time interval N(3(m)) < n = N(B(m) +
Km) (notice that N(B8(m)) + Km = N(B8(m) + Km)) into subintervals N(8(m) +
(kB — 1)m(e)) = n = N(B(m) + km(e)) (where m(e) = [em] and ¢ > 0 is a small
fixed constant, and k=1, 2, - .., Km/m(e)), and show that

(7.9)  Mu(8) =a MaXitzkm/me | T(YIM() ™ TN Gamir i o &(Y) — & — 0

almost surely (P,), as m — o, The convergence (7.8) will then be deduced from
(7.9).
By (7.6) and (7.7), the random variables

2‘1,\_’—_(;\-;(1))_1 g(ij), L = 0’ 17 ce

are ii.d. with finite second moment; consequently the Hsu-Robbins theorem
implies that

=1 P r7t IR0 &(Y) — gn(y) 7' > 8} < oo

for each 6 > 0. Now any given integer r = 1 appears at most 2/¢ times in the
sequence {m(e)}m>1/., and Km/m(e) < 2Ke™* for all m > 2/, so

Zm>2/c Py{Mm(g) > 6}
< Yoz (2Ke P | (y)m(e)™ TXR G "™ 8(Y)) — &| > 6}
= ¥y 2Ke™)(2e7 )P r! 2?’:,’3@} g(Y) — gn(y)™| > w(y) '8} < .
The convergence (7.9) therefore follows from the Borel-Cantelli Lemma.
NoTE. The fact that TYRGA' g(Y;) has the same distribution as
SXGer~1 g(Y;) follows from the fact that the random times {3(m)} are stopping
times with respect to the filtration Fn) = o(Yy, Ya, - -+, Yywm), n=0,1, - ...

To complete the proof of the lemma we must show that (7.8) follows from
(7.9). First apply (7.9) with the function g = 1; this gives

[N(Bm + km(e)) — N(B(m))lm™ — ke n(y)™

uniformly for k =1, 2, - .., km/m(e), with P,-probability one, as m — o (keep in
mind that for fixed ¢ > 0, k > 0, Km/m(e) is bounded as m — ). It now follows
that for each n, N(8(m)) = n < N(B(m)) + Km, the number of points {N(8m +
km(e)): k=0, 1, ..., Km/m(e)} which lie in the interval [n, n + ym) differs from
yx(y)e! by no more than 2, for m large (with P,-probability one). Consequently
for each g satisfying (7.6) and (7.7), the result (7.9) implies

lim Supm-hoomaxn:OSn—N(ﬁ(m))sKmI ('Ym)_l 205j<7m g( Yj+") - g—l
< 28/(yw(y)e™' — 2) as. (P).
Since ¢ > 0 is arbitrary, (7.8) follows. 0

LEMMA 7.2. For each real v > 0, 6 > 0, and each integer K > 0,
(7.10)  P(maxn.o<n-N@my<km| (YM)™ Tosjcym Xnej — pu| > 86| F) -0

almost surely (P,), as m — o,
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PROOF. Recall that conditional on & the increments X, are independent
with distributions Fy , for n =1, 2, - - .. Consequently by Chebyshev’s inequality

P(| (Ym) ™" Yosjcym Xnsj — 1| > 6| F)
< 1{| (ym)™ Tosj<ym Hy,,; — | > 8/2} + (ym)? Tosj<ym 0%,,, - (4/8%)
a.s. (Py),

for each integer n = 1. Using (7.8) first for g(y) = u, and then for g(y) = o2, we
conclude that

(7.11)  maxno=n-N@mN=knP(| (YM)™ Yosjcym Xnvj — | > 6| F) >0

almost surely (P,), as m — .

The deduction of (7.10) from (7.11) is similar to the argument that showed
(7.8) follows from (7.9). Choose ¢ > 0 small and break up the interval [N(8(m)),
N(B(m)) + (K + vy)m] into subintervals of approximate length em: specifically,
let

ny(m) = N(B(m)) + jm(e), j=1,2, ..., (K20 4
m(e)
where m(¢) = [em]. Since [(K + v)m]/m(e) < 2(K + y)e* for all m = 27, it
follows from (7.11) that
(7.12)  P(maxigjsigspmymen+ | (em)™ T2 Xpimy—i — u| > 8| F) -0

almost surely (P,), as m — . Now for any integer n such that 0 < n — N(8(m))
< Km, the number of points n;(m) (j = 1, 2, -.-) which lie between n and
n + ym differs from /e by at most 2, for all m sufficiently large. Averaging first
over those intervals [n;j(m), nj.1(m)) which intersect [n, n + ym), second over
those which are entirely contained in [n, n + ym), and performing an obvious
bracketing maneuver, we find that

{maxn:OSn—N(ﬁ(m))sKmI (’Ym)_l 205i<'ym Xn+i - I-‘I > 26}

C {max;<jcqi+y)myme+1 | (em)™ TS an(m)+i —ul| > 8},
provided ¢ > 0 is sufficiently small. Therefore (7.10) follows from (7.12).0

LEMMA 7.3. For each subset A of the state space %' and each integer K; > 0,
(7.13) MAaXK, m?=<a<K,(m+1)?
|[Em™ T Hla—m=8S,<a; Y, €EA} F)—p'n(A)| -0
almost surely (P,), as m — oo,
PrROOF. Choose K; large, and let 3(m) be defined by (7.4). By Chebyshev’s
inequality, the ergodic theorem, and (7.5),
P(| Snsimy — 2’,2;‘?‘""’ uy,| = Kem| &) < (foi‘i""” a%,)(Kam)™? — Kip'0?K3?

as. (P)) as m— oo,
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where o2 = ¥ eo o3 w(y’). It therefore follows from (7.5) that
(7.14) P(K1m2 - 3K2m < SN(ﬁm) < K1m2| ?) =1-—¢ as. (Py)

for all sufficiently large m, provided K,p '02K3% <e.
Define events I';(m), i =1, ..., 4, by

I'i(m) = {Kym? — 3Kam < Snmy < Kim?,

To(m) = {maxn:osn—N(ﬂ(m))SKml m™? 205j<my-le n+j — € | < 3},

T3(m) = {max,.o<n-N@mmn=km| M Tosjemu-t1-0 Xnsj — (L — &) | <eé},
and

T4(m) = {max,.osn-N@m)skm| M Tosjcmu-ta+a Xnej — (L + &) | < ¢},

where K > 2K;m + 3K, M. Since each increment of S,, is at least one, the number
of n for which Kym? — 3K,m < n < K;(m + 1)? is no more than Km; moreover,
on I'y(m) all of these n lie between N(8(m)) and N(B8(m)) + Km. On I';(m) N
I‘Z(m),

Si@) — a < 2em

for every a, Kim® < a < K;(m + 1)?, where 7(a) = min{n: 8, > a}. Consequently,
on N&, Ty(m),
(7.15) M Y lfa—m=8S,<a} —p'| <2ul,

for K1m2 =a= Kl(m + 1)2.

Now from Lemma 7.2 and inequality (7.14) it follows that for all sufficiently
large m,
(7.16) P(NL Ti(m) | F)=1-2 as. (P).
Since 0 = m™ Y2y 1{a = m < S, < a} < (m + 1)/m, (7.15) and (7.16) together
imply that a.s. (P,),

MAaXK, m?<a=kym+1?| E(M™ Tpoy Lfa —m =S, = a} | F) — ™| < Qu™ + 4)e
for all m sufficiently large. Since ¢ > 0 is arbitrary, (7.13) follows in the special
case A = %

The proof of (7.13) for arbitrary A C 2 uses (7.16) and Lemma 7.1 with

& = 14. According to Lemma 7.1,

m_l 205j<mn-l(l—c) lA( Yn+j) = “-IW(A) - 28
and

m™ Yosjcmu-ta+e) 1a(Yne) < u'w(A) + 2¢
for all n, N(8(m)) = n < N(B(m)) + Km, provided m is sufficiently large.
Therefore, on N, I'i(m),

Im? Y1 lfa—m=S,<a;Y, €A} — p"'w(4)| < 2,

(7.17)
Va, Kim? < a < Ki(m + 1)%
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Combining (7.16) and (7.17), we obtain a.s. (P,),
MAXK mtcask a1z E(M™ Tpst lla — m < S, < a; Y, € A}| F)
- p'7r(A) | =< 6

for all m sufficiently large. Since ¢ > 0 is arbitrary, (7.13) follows.O

PROOF OF THEOREM 3. As in the proof of Theorem 2 we will only consider
the convergence of the (conditional) renewal measure. Again we will assume that
the distribution F, associated with the initial state y has the property that its
symmetrization is supported by no proper subgroup of the integers Z; thus the
coupling results of Section 5 are applicable.

As in the proofs of Theorems 1 and 2 the first step is to use the coupling
construction (specifically, the properties (5.5) and (5.6)) to conclude

| E(Tr=1 1S5 = a; Y, € A} | F)
(7.18) —E(m+1)1'Ylla—-m=8l=<a; Y, €A} F)|
=1-P(F.(m)| &),

where

(7.19) F,(m) = {N(a(m)) < 74-1(v) for each»=0, 1, - -+, m},
and

(7.20) 74(v) = min{n: S;, > a}

(a(m) is defined by (5.4)). This holds for all values of m and a in Z.
Define events I';(m) and I's(m) by

I1(m) = {mings,<m7i,m2-1(v) < Km?, and Ta(m) = {N(a(m)) = Km?};
then
(7.21) 1 = P(F(m)| &) = P(Ty(m) | ) + P(Ts(m) | F)

for Kym? < a < Ki(m + 1)%. We will show that if K; > K > 0, then each of the
last two conditional probabilities is small.
First notice that for any ¢ > 0 there is a K* > 0 sufficiently large that with
P,-probability one,
P(a(m) = K*m?| &) <e
for all m large: this follows from Proposition 5.1. Now a(m) — % as m — =, so
the ergodic theorem implies that

N(a(m)) 1
alm) " 7(y)
almost surely (P,). Consequently if K = 2K*x(y)™", then
(7.22) P(N(a(m)) = Km?| &) = P(T2(m) | F) <e
for all sufficiently large m, with P,-probability one.
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Next, recall that on {n = N(a(»))}, S% = S. = ... =8} (c¢f. (5.5)); moreover
on {n < N(a(»))}, S;, = Si** — k for k = 1 (cf. (5.4)). Therefore

I'i(m) = {max(Sknz, Skn2) = Kim?
(cf. the proof of (6.13)); it follows that
(7.23) P(Iy(m)| &) <= 2P(Skm: = Kim? —m| F) <e

for all large m, a.s. (P,), provided K;/K is sufficiently large (by Chebyshev’s
Inequality and the ergodic theorem).
Combining (7.18), (7.21), (7.22), (7.23), and Lemma 7.3, we obtain

lim SUPmwMaXk mi<a<kym+12| E(Tn=1 1{S5 = a; Y, € A} | F) — 7 'w(A) | < 2

as. (P,).
Since ¢ > 0 is arbitrary, it follows that

limg o E(Yp=1 1{S, = a; Y, € A} | &) = u"'x(A)
with P, probability one. 0

8. Concluding remarks. The semi-Markov process is but one of many
stochastic processes in which two or more distinct “random mechanisms” are at
work. Queueing models typically incorporate separate arrival and service proc-
esses; models of population growth often postulate a “random environment”
within which a random evolution occurs; statistical models of survival studies
commonly include separate arrival, censoring, and response processes. Often, it
would seem, one would like to know whether limit theorems for such processes
hold conditional on the output of one (or more) of the random mechanisms. In a
typical problem involving a “random environment” one would imagine the
environment as “fixed,” having been hammered out by a dice-throwing Hephaes-
tus at the beginning of time: it is in this particular environment, rather than
across the ensemble of all possible environments, that one would like to under-
stand the behavior of an evolving population. In problems of statistical inference
(such as survival studies ) one should (according to R. A. Fisher) generally try to
make one’s inference conditional on the observed values of the “ancillary”
statistics (such as the arrival times).

The coupling techniques we have introduced in this paper may be of use in
establishing conditional limit theorems even when Theorems 1-4 are irrelevant.
We hope to demonstrate this in forthcoming articles. But we also hope that the
reader will appreciate that embedded Markov random walks are as common as
E. Coli, and hence that our theorems may be of broad applicability.

As an example, consider the discrete time G| G |1 queue. Tasks arrive at a
server at times A, = o; + .-+ + a,, where the interarrival times {«;} are i.i.d.
from a distribution F on the positive integers. To each task is attached a service
time: assume that the service times {£,} are i.i.d. from a distribution G on the
positive integers, and are independent of the interarrival times. Let Z, be the
number of tasks in the queue at time ¢. It is well-known that if ur > ug (here ur
and g are the means of F and G respectively) and if supp F, supp G both generate
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Z, then the queue approaches an equilibrium, i.e.,
Z:—o H as t—> o through Z

for some distribution H on the nonnegative integers.
Let
fn=o(a1’a2’...) and 3’£=a(£1, EZ”")'

A moment’s reflection will reveal that conditional on %, Z, does not generally
converge in law as ¢t — o: in eras when arrivals are very sparse, the queue will
tend to empty out. However,

THEOREM. Suppose F and G have exponentially decaying tails, that ur > ug,
and that both supp(F) and supp(G) generate the group Z. Then

L2 FH—>H as.
as t — . Suppose T(t) is the accumulated service time up to time t, i.e.,

T(t) = IX9* & where N(t) = #{tasks completed by time.t},

j=1

and 7(t) = inf{s: T(s) = t}. Then there exists a distribution H on the nonnegative
integers such that

LZuy| F)—>H as.as t— o,

To prove this one need only identify appropriate embedded Markov random
walks and apply Theorem 3 (the hypotheses on the tails of F and G will make
verification of (1.8)-(1.10) routine; they could be weakened). For the first limit,
let Y3 consist of the number of tasks in the queue, their service times, and
the time since the last arrival at the time the nth task is completed; let
Y. = (Y5, Yo+1); and let X, be the amount of time which passes between the
time the nth task is completed and the time the (n + 1)st task is completed. For
the second limit, let Y consist of the number of tasks in the queue, together
with the amount of service time remaining on the task being processed at the
time of the nth arrival; let Y, = (Y3, Y2,,); and let X, be the amount of service
time which accumulates between the nth and (n + 1)st arrival. The details of
the argument are left to the reader.
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