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A LIMIT THEOREM FOR N,./n IN FIRST-PASSAGE
PERCOLATION

BY Yu ZHANG AND Y1 CI ZHANG
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Let U be the distribution function of the nonnegative passage time of an
individual bond of the square lattice, and let 65, denote one of the first passage
times agn, bos. We define

Ny, = min{|r|:r is a route of 8,,},

where | r| is the number of bonds in r. It is proved that if U(0) > % then

e (]
N&, = limpe NT°" =)\ as. andin L},

limy e

where ) is a constant which only depends on U(0).

1. Introduction. First-passage percolation was first studied by Hammers-
ley and Welsh [2]. We generally follow the notation of [5]. The lattice L of
intergral points in the plane is viewed as a graph with points v = (v’, v”) of
Z X Z, and bonds the line segments between adjacent points. Here points v and
w are called adjacent if v’ =v’, |[v” —w”| =1, 0rif |V  —w'| =1, v" = w".
A path of L from v to w is a sequence (vo, €, Uy, ---, €, U,) with v;, vis,
adjacent points in L and such that v, = v, v, = w, and with e¢; the bond
connecting v;-, and v;. The path is called selfavoiding if v; # v; for i # j. The
path (vo, €1, Uy, -+, en, Us) is called a selfavoiding circuit if v; # v; for i # j
with the exception vy = v,.

To each bond e is assigned a random variable X(e), called the passage time of
e. It is assumed that all X(e), e € L, are independent identically distributed with
distribution U, satisfying U(0-) = 0 (which means that the X(e) are nonnegative
random variables). The passage time of the path r = (vo, €y, - - - , €, U,) is defined
as t(r) = Y1 X(e;) and the length | r| of the path r is defined as the number of
the bonds of r.

Asin [5] weset form <n

am, = inf{t(r):r is a selfavoiding path from (m, 0) to (n, 0)},
bmn = inf{t(r):r is a selfavoiding path from (m, 0) to the line x = n}.

A selfavoiding path r from (m, 0) to (n, 0) with ¢t(r) = an.is called a route from
Qmn, 8 selfavoiding path r from (m, 0) to x = n with t(r) = b,.. is called a route
for b.. It is proved in [5], Theorem 4.10 that routes exist with probability one
for ao, and for by,. Finally we define

N¢.. = min{| r|:r is a route for 0,,,},

where § = a or b. Our result is as follows.
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THEOREM. If U(0) > Y, then

N3 . N§ )
® = limpyo — =\ a.s. andin L,
n

(1.1) lim, e
where \ is a constant which depends only on U(0).

REMARKS. (i) By a rather involved argument it is possible to show that also
N} N3,

lim, e % = lim,0 — = A as. andin L},
where s, and t,, are the cylinder passage times defined in [5], Definition 4.2 and
N, is as above even for § = s or .

(ii) It is not hard to prove that A(-) is a nonincreasing function of U(0) on
U(0) > Y. Moreover, simple estimates on the number of self avoiding paths from
(0, 0) to (n, 0) of length < n(1 + §), show that for sufficiently small 6 > 0

P{3 self avoiding path from (0, 0) to (n, 0) with
t(r) < onand |r| <n(l+8)}—0
as n — o, From this it follows that
A>1 for U(0) > %.

To prove our theorem we need the following known facts from percolation
theory (see [5]). A Bernoulli percolation is a family of independent identically
distributed random variables {X(e), e € L} as above, with U a Bernoulli distri-
bution

0 x<0
Uix)=+4p 0=<x<1
1 1=sux

This means p = P(X(e) =0), 1 — p = P(X(e) = 1). It is customary to call e open
(closed) if X(e) = 0 (respectively X(e) = 1). A path r is open (closed) if each
bond of r is open (closed). We define an open (closed) cluster to be a maximal
connected subgraph which has all its bonds open (closed). It is known (cf [3],
Section 9, [5], Theorems 3.2 and 3.14) that

(1.2) If p > Y%, then, with probability one, there is exactly one infinite
open cluster, and no infinite closed cluster. Even more, the upper
and lower open half plane each contain exactly one infinite open
cluster.

(1.3) If p > 1, then, for any point » there exist infinitely many disjoint
open circuits around v with probability 1.

A collection of random variables {X,.,, m < n, m, n € N} is called a subadditive
process if it satisfies (1.4)-(1.6) below.

(1.4) Ifm<p<n then Xn. < Xn + Xpn.
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(1.5) The process {Xm+1,n+1} has the same joint distributions as the
process {X,, »}.

(16) EX3, < « for all n € N and inf,(Ex,,/n) = A for some finite
constant A.

2. Proof of the theorem. The proof is broken up into several lemmas. We
consider a bond e with X(e) = 0 to be open, and with X(e) > 0 to be closed. The
open edges can then be viewed as the open edges of a Bernoulli percolation. The
unique infinite open cluster will be denoted by A. The upper (lower) open half
plane will be denoted by L.(L-) and its closure by L.(L_). We now choose for
each site (p, 0) a special open circuit D, surrounding (p, 0). Since U(0) > %
there exists a minimal ¢ = 1 such that the square S = S(p, q) :==[p — ¢, p + q]
X [g, q] contains a point of an infinite open cluster in each of L, and L_. D, is
the minimal open circuit containing S in its interior. It follows from (1.3) and
(1.4) that D, exists with probability one. D, is unique.

The reason for introducing the D, is that they allow a fairly explicit description
of routes for ao, and by,, as given in the first lemma.

LEMMA 1(a). Assume that D,, and D, lie in each other’s exterior. Then a path
r from (m, 0) to (n, 0) is a route for am, if and only if it consists of three pieces
ri,.re, r3 of the following nature. r, connects (m, 0) to D,, inside D,, (except for its
endpoint on D) and has minimal passage time among all such paths. r3 connects
(n, 0) to D, inside D, (except for its endpoint on D,) and has minimal passage
time among all such paths. Finally r; is contained in A and connects D,, with D,,.
In this case

Umn = t(r) = t(r)) + t(r2).

(b) Assume that D, lies in the half plane {x < n}. Then a path r from (0, 0) to
the line {x = n} is a route for by, if and only if r consists of two pieces r, and rs,
with ry as in part (a) and ry contained in A and connecting D, to {x = n}. In this
case

bmn = t(") = t(r1)~

PrOOF. We only prove part (a); part (b) is quite similar. Consider any path
r from (m, 0) to (n, 0). r must intersect D,, and D,, since (m, 0) lies in the exterior
of D, and (n, 0) in the exterior of D,,. Denote the first intersection of r with D,,
by v, and the last intersection with D, by v,. Any points on D,, and D, can be
connected by a path of zero passage time on A, since D, and D,, belong to A, by
construction. Thus, for r to be a route for a,,, the piece of r between v, and v,
must have zero passage time. Moreover, the piece from (m, 0) to v; must have
minimal passage time among all paths from (m, 0) to D,, which lie inside D,,
except for their endpoint on D,,. A similar statement holds for the piece of r
from (n, 0) to v,. Part (a) easily follows from these observations. [
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LEMMA 2. If U(0) > %, then for any m > 1

(2.1) E|D,|" <
and
(2.2) lim,. (| D.|™/n) =0 a.s.

ProOF. Essentially the same argument as in Lemmas 2.3 and 2.4 of [1] show
that E | Dy|™ < . (2.2) now follows from the Borel-Cantelli lemma, since the
| D,,| are identically distributed.

LEMMA 3. If U(0) > Y, then there exist a constant N\, which depends on U(0)
only, such that

(2.3) lim,— (1/n) N&, = X as. andin L.

ProoOF. First we show that {X, .} := {N%. + 2 | D,|?+ 2| D,|},m=<n,isa
subadditive process, i.e., { Xy .} satisfies (1.4)-(1.6). (1.5) is trivial since the X(e),
e € L, are i.i.d. (1.6) holds with A = 0 by virtue of (8.32) in [5] and (2.1).
To prove (1.4) let r%,.(m < n) be a route for a,, with | rn,| = N, and take
m < p < n. Let D, denote the union of D, and its interior. For any fixed sample
point, four cases are possible.

(i) Both (m, 0) and (n, 0) are contained in D,.
(ii) Neither (m, 0) nor (n, 0) are contained in D,.
(iii) (m, 0) is contained in D,, but (n, 0) is not. ,
(iv) (n, 0) is contained in D,, but (m, 0) is not.

Cask (i). Ifrg, C D,, then
N, = | r&,| < number of edges in D, < 2 | D,|>

(1.4) follows trivially in this case.

If r%, is not contained in D, then consider the following path r which is
contained in D,. First r goes along rg,, till the first intersection of rf., and D,,
then along D, to the last intersection of rf., and D,, finally along r7.. to (n, 0).
(See Figure 1.) r is a route for a,, by the proof of Lemma 1. Hence

Niw<|rl=2|Dy|%

and (1.4) again follows.

CASE (ii). We denote the first intersection of ry, and D, by v, and the last
intersection of rg, and D, by v,. Also, we denote the first (last) intersection of
r%, and A by vs(vs). See Figure 2. ry, must intersect A, so that vs; and v, exist,
because (m, 0) and (n, 0) are separated by a curve in A U S(p, q), where S(p, q)
is the square used in the definition of D,. Indeed A contains a path =, in L,
connecting a point of S(p, q) to « and a path «_ in L_ connecting a point of
S(p, q) to ; 7, and 7_ can be connected by an arc of S(p, g) which only inter-
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(m/%‘,\_J/ \\/ (n,0)

F16. 1. rf. is dashed; D, is the solid circuit. r is the boldly drawn path.

(n,0)

Y1 V2

FIG. 2. rf., is the dashed path. D, is drawn boldly. The solid paths from (m, 0) to ( p, 0) and from
(p, 0) to (n, 0) are ry, and rp,, respectively.

sects the x-axis between (m, 0) and (n, 0). Thus r%, must intersect 7, U 7_ U
S(p; q). But S(p, q) lies in the interior of D,, hence if r%, intersects S(p, q) it
intersects D,, which is part of A.

Now let r be the following path from (m, 0) to (n, 0). First r goes along ré,
from (m, 0) to v;, then from v, to v, along an arc of D,, and finally from v, to
(n, 0) alonig rp,. Clearly

|rl = |ropl + |rgnl + | Dp| = Njp + Np + | Dp| <= X,p + N2,

To complete the proof of (1.4) we now show that r is a route for a,.,. Let s, and

82 be paths on A which connect vs with vy, and v, with v., respectively. Then we
obtain a path from (m, 0) to (p, 0) by going along r from (m, 0) to vs, then along
s1 and then along ry,, from v, to (p, 0). The passage time of this path is at least
@mp = t(rmp). Therefore

t(piece of ry,, from (m, 0) to v,;)
(2.4)
< t(piece of ry, from (m, 0) to vs).
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For the same reason

t(piece of rg, from v, to (n, 0))
2.5
) < t(piece of ry,, from v, to (n, 0)).
If we add (2.4) and (2.5) and take into account that any arc of D, has zero passage
time we obtain

t(r) < t(rmn) = amn.

This proves that r is a route for an., and establishes (1.4) in Case (ii).

Cases (iii) and (iv) can be handled by combining cases (i) and (ii), so that
{Xmn} is indeed subadditive. It now follows from Kingman’s subadditive ergodic
theorem (see [4], Theorem 17) and Lemma 2 that

(2.6) lim,»(1/n)N§, = X\ as. and in L'

for some A. The limit A is given by formula 1.3.6 in [4]. But the o-field of events
generated by the {X,..} and invariant under the shift in the x-direction is
contained in the o-field of events generated by all the bonds and invariant under
the shift in the x-direction. The latter o-field is trivial (cf. [3], Lemma 3.1 or [5],
Lemma 8.11) so that A is a constant w.p.1.

To show that A\ depends on U(0) only, observe that by Lemma 1, as soon as
D, and D, lie in each others exterior (hence for all large n) any route r for ao,
consists of some bonds inside Do U D, plus a piece r% in A. Since n™' | Do, U D, |
— 0, A depends on min r3, n =1, 2, - - - only, where the min is over all paths r}
in A connecting D, and D,. Therefore A depends on A only, and hence on U(0)
only. O

LEMMA 4. If U(0) > Y, then for the \ of (2.3)
lim,_(1/n)N§, =\ a.s. andin L,.

PROOF. Set
Ann(u) = inf{t(r):r is a path from (m, Lmul) to (n, Lnul)}
and
Ny (u) = inf{| r|:r is a route for A,.,(u)},

where LxJ denotes the largest integer < x. Note that a,,, = A,,,(0). The proof of
Lemma 3 with some trivial modifications shows that for each u there exists a
constant A, (u) such that

(2.7) lim,_,.(1/n)No.(u) = A\ (u) a.s.

Now let D = D(n, u) be a circuit surrounding (n, Lnl) such that D is part of A
and such that any two of Dy, D and D,, lie in the exterior of the third. Let r, and
r, be paths of minimal passage time connecting (0, 0) to (n, Lnul) and (n, Lnul)
to (0, 2n), respectively. Then by the arguments of Lemma 1 we can construct a
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route for a2, by going along r; from (0, 0) to its first intersection with D, then
along D to the first intersection of r, with D and finally along D to (0, 2n). It
follows that

(2.8) N§ 2. < Non(u) + N((n, Lnul), (2n, 0)) + | D(n, u)|,
where
N((n, Lnul), (2n, 0)) = inf{| r|:r a path of minimal passage
time from (n, Lnul) to (2n, 0)}.
N((n, Lnul), (2n, 0)) has the same distribution as Ny,(u«) and therefore

(2.9) (1/n)N((n, Lnul), (2n, 0)) — A;(u) in probability.
(2.7)-(2.9) show that
(2.10) A = 1im(1/2n)N§ 2, = A (u).

Now let r, be a route for by, with | r,| = N§,. Define
h(r,) = max{| m|:(k, m) is a site on r, for some k}.
From Theorem 8.10 in [5] it follows that for some finite constant K
lim sup(1/n)N§, < K as.

In fact this holds with K = X\ = lim n~'N§,. To see this, observe that if D, and
D, lie in each others exterior, then in the notation of Lemma 1 any route for by,
must have passage time at least ¢(r;). This time is achieved by the path which
follows a route r for ay, till its first intersection with D, and then follows an arc
of D, till the line x = n. Thus for large n

(2.11) N3§» < N§, + | Dyl

and ‘

(2.12) lim sup,.«(1/n)N§, < lim,_.(1/n)N§, = A w.p.l.
As a consequence of (2.12) we have

(2.13) lim sup,_.»(1/n)h(r,) =\ as.

Fix a small positive ¢ > 0. Let (n, v) be the endpoint of r, on the line {x = n} and
let j = j,, be the unique integer for which

jen = v < (j + 1)en.

By virtue of (2.13) we may assume |j| < 2\e~* for large n. Now let A(x, y) be the
smallest circuit in A with (x, ¥) in its interior. Then, as in [1], Lemma 2.6 and
Corollary 2.7, we can connect A(n, v) to A(n, jen) by a path s = s, which consists
of pieces of

{A(n, y): jen <= y < v}.
Moreover, Lemma 2 shows that for any m = 1 there exist a constant C such that

P{diameter of A(x, y) = d} = P{|Do| =2d} = C(d +1)™
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It follows from this that with probability 1
(2.14) A(n,y) C[n—n'"%2 n+n") x[y—-n2y+n"?

for all | y | < 2An and all sufficiently large n. Thus we may also assume that for
large n, D, lies in the exterior of each A(n, y) with |y| < 2\n. (It is actually
possible to show that P{| Dy| = d} — 0 exponentially in d, so that A(n, y) C
[n—Cilogn,n+ Cilogn] X[y—C,logn,y+ C;logn]forall |y| <2 \nand
sufficiently large n. We do not need this sharper result here.)

Finally, if this happens, then we can construct a route for Ao,(je) from pieces
of r,, s, and a path in the interior of A((n, Ljenl)) (compare proof of Lemma 1
and last paragraph of proof of Lemma 3). Consequently,

Non(je) < | ra| + | sa| + |interior of A(n, Ljenl) |

= N§. + MAaXx|jji=an! Nyjensy<(+len | Z(n, N,
where
| An, y) | = number of edges in A(n, y) U interior of A(n, y).

It follows that w.p.1

lim inf(1/n)N§, = lim inf min,;j<z\-1(1/n)No,(je)

(2.15) . -
— lim sup(1/ n)maX|j|szu" ijsy<(j+l)en |A(n, )1,

where the lim inf and lim sup in (2.15) are taken along any fixed subsequence of
the intergers. The first term in the right hand side of (2.15) equals X\ for any
choice of such a subsequence, by virtue of (2.7) and (2.10). We next study the
second term in the right hand side of (2.15). We claim that if we take the
lim sup along any subsequence {n;} of the form

n, = L1 + 8)*,
with 6 > 0 fixed, then
(2.16) lim,jolim Sups—.(1/NR)MaX,jj<orct Xjeny=y<(i+1)en, |l(nh, | =0 wp.l.

(2.16) follows by a simple Borel-Cantelli argument. Indeed, by virtue of (2.14) we
may replace | A(n, y) | by

T(n,y) := |An, y) | I{A(n, y) C [n — n*? n + nY2 X [y — n'2, y + n¥?}

(I{E} is the indicator function of E.) For |y, — y2| > 2n'% I'(n, y1) and I'(n, y.)
are independent. Since A(n, 0) is contained in Dy, I'(n, 0) has finite moments of
all orders (see Lemma 2). Consequently

azgzjcn,,sy<(j+l)cnh P(nh’ y)} = 58(nk)3/262(r(nh’ 0)) = O(ng/Z)

and
E{Zjen,,sy<(j+l)enh P(nh’ y)} = (enk + l)E I DOI .
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Thus
P{maX|j|52)\c‘l chnksy<(j+l)en,, I‘(nk, y) = 2£nkE | DOI}
(2.17) 0(n¥?)
YWk ) ~1/2) — —k/2
< Bhe™ = = 0 = 01+ 6)™4)

The Borel-Cantelli lemma now gives (2.16).
It is now easy to complete the proof of the lemma. If n, < n < n,4;and D, C
{x = n,}, then by Lemma 1(b) any route for b,, contains a route for bon, so that

N¢., < N§,.
Thus, from (2.15) and (2.16)

.. 1 .. n, 1 1
lim inf, .. o N§, = lim inf_. 'n:; ;; N?,,,,, = 1+ A wp.l

Since 6 > 0 is arbitrary
lim inf(1/n)N%, = A w.p.l.

In view of (2.12) this completes the proof of the a.s. convergent;e. The L!
convergence follows now from (2.11) and Lemmas 2, 3.0
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