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LIMIT THEORY FOR MOVING AVERAGES OF RANDOM
VARIABLES WITH REGULARLY VARYING TAIL
PROBABILITIES'

By RICHARD DAvis and SIDNEY RESNICK

Colorado State University

Let {Z;, —o < k < o} be iid where the Z,’s have regularly varying tail
probabilities. Under mild conditions on a real sequence {c;, j = 0} the
stationary process {X,: = Yuo ¢jZ,-j, n = 1} exists. A point process based on
{X,} converges weakly and from this, a host of weak limit results for function-
als of {X,,} ensue. We study sums, extremes, excedences and first passages as
well as behavior of sample covariance functions.

1. Introduction. Consider a sequence (Z,, —» < k < ) of real valued
independent, identically distributed (iid) random variables. We assume

(1.1) P(|Zx]| >x) =x"°L(x) where L(x) isslowly varyingatowand «>0

and
P(Z, > x) P(Z, = —x)
(1.2) PAZd >0 P ™ bz Y

asx —>®,0<p=<1andqg=1- p. Note that until Section 4 we do not require
0 < a < 2. Under mild conditions on a real sequence {c;, j = 0} (cf. Section 2 and
Cline, 1983) the series

-0 GZ;
~ converges and we may define the stationary sequence of moving averages
(1.3) Xn: = 2;’;0 CjZn._j

for n = 1. We study the weak limit behavior of various functionals of
{Xn, n = 1} such as extremes, sums and sample covariance functions.

Most of the work on extreme value theory for stationary sequences has focused
primarily on the extension of the classical results to the stationary setting. In
order to attain such an extension these processes are typically required to satisfy
a mixing condition and a local dependence restriction such:as D and D’ formu-
lated by Leadbetter (1974). Unfortunately many processes, such as {X,} above,
rarely satisfy D’. However, the limit distribution of for example the maximum
of {X,} can still be ascertained in some instances (cf. Rootzen, 1978; Finster,
1982; and Leadbetter, Lindgren, and Rootzen, 1983). In this paper we prove a
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180 DAVIS AND RESNICK

point process convergence result which enables us to describe in some detail the
weak limiting behavior of various functionals including the extremes of {X,}. A
survey of the techniques that will be used is given in Resnick (1984).

In Section 2, we prove our basic result which says that a sequence of point
processes constructed from the sequence Z®: = (Z,, Zi—1, -+, Zi-m+1) € R™,
k=1 converges weakly to a limit point process. An argument involving continuous
mappings and Slutsky style proofs allows us to easily extend the basic result to
show a sequence of point processes based on {X,} converges to another limit
point process. The limiting point processes that we obtain are always derived
from Poisson processes.

From these two limit theorems a variety of applications ensue in Section 3:
(a) joint behavior of the upper extremes of {X;, ..., X,} as n — o; (b) joint
behavior of the maximum and minimum of {X;, - - -, X,}; (c) the first passage or
inverse process to the maximum sequence of {X,} (cf. Finster, 1982); (d) the
point process of excedences (cf. Rootzen, 1978).

For convenience, we state all of our results for one-sided moving averages.
However, with routine modifications, these results will also be valid for two-sided
moving averages with the constraint analogous to (2.6) on the coefficients. Hence,
any stationary ARMA (p, q) process driven by a noise sequence with regularly
varying tail probabilities will satisfy the hypotheses of our theorems.

Weak convergence notation and usage are as in Billingsley (1968) except that
“=” is used to indicate weak convergence. For point processes we follow Neveu
(1976); see also Kallenberg (1976). Let E be a state space which for our purposes
is Euclidean. Let % be the o-algebra generated by open sets. For x EE, F € ]
e.(F) = 1if x € F, 0 otherwise. A point measure m is defined to be a measure of
the form Y.e; &, which is nonnegative integer valued and finite on relatively
compact subsets of E. The class of such measures is M,(E) and Z,(E) is the
smallest o-algebra making the evaluation maps m — m(F) measurable where
m € M,(E) and F € ¥ A point process on E is a measurable map from a proba-
bility space (2, o4 P) to (M,(E), #,(E)). Let C%Z(E) be the continuous
functions E — R, with compact support. A useful topology for M,(E) is the
vague topology which renders M,(E) a complete separable metric space. If
un € My(E), n = 0 then u, converges vaguely to u, (written wu, —, wuo)
if un(f) — po(f) for all f € Ck(E) where u(f) = [ f dp.

A Poisson process on (E, ¥’) with mean measure u is a point process £
satisfying for all F € ¥ : :

—u(A) BBl i -
P[E(F)=k]={g e

andif Fy, - .-, F, € ¥ are mutually disjoint, then £(F)), - - -, £(F,) are independ-
ent. We assume p is Radon. We will call ¢ PRM (Poisson random measure) with
mean measure u on (E, %), or PRM(y) for short.

" 2. Basic convergences. Let {Z:} be an iid sequence having regularly
varying tail probabilities as specified by (1.1) and (1.2). Further let {a,} be a
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sequence of positive constants such that
(2.1) nP(|Z,| > a,x) > x™ forall x>0.

In fact a, may be defined as inf{x: P(| Z,| > x) < n™'}. On the space (0, ®) X
(R\{0}) define the measure u(dt, dx) = dt X A(dx) where A(dx) = apx™* " 1(g,«)(x)dx
+ aq(—x) "1 (=w,0)(x)dx. Then it may be shown (cf. Weissman, 1975a, b: Resnick,
1975, 1984; Mori and Oodaira, 1976) that i, ewma;izy = Zh=1 &¢.jp ID
M,((0, ®) X (R\{0})) where Yi.; &, jp is a PRM(x) on (0, ©) X (R\{0}). Note
the convention that if a point falls outside the state space it does not contribute
to the sum. This result is useful for deriving asymptotic properties of various
statistics which are functionals of the sequence {Z;}. For our purposes, this result
will be used to describe and interpret limits of other point processes.
For a fixed positive integer m > 1, set

I, = Yie1 emazz®y and I = Yi Y2y e, e

where Z® = (Z,, Zy—1, -+, Zi-ms+1) and e; € R™ is the basis element with ith
component equal to one and the rest zero. If we neglect the t.’s temporarily, the
process I may be described as follows: Take the j,’s and lay them on the axis
determined by e;, then repeat this pattern on e; and so on. The procedure is
repeated deterministically on each axis.

The relevant state space for the processes {I,} and I is E = (0, ) X
(R™\{(0, 0, ---, 0)}) where & is the usual product o-algebra modified so that
the compact sets of R™\{(0, 0, - - -, 0)} are those compact sets in R™ which are
bounded away from (0, 0, - --, 0). We shall show I, = I but first we need to
specify a convenient class of sets which generate & Let S be the collection of
all sets B of the form

(2.2) B = (bo, co] X (b1, ¢1] X -+ X (bm, cm]

where the m-dimensional rectangle (by, ¢1] X - - - X (b, €] is bounded away from
0,0, ---,0)and b;<c;, b; #0,¢; #0 fori=1, ---, mand b, = 0. It is clear that
S is a DC-semiring (cf. Kallenberg, 1976, page 3). Moreover, since B € S is
bounded away from zero, either

(Cl) (b, el] X -+ X (b, cm] N{ye: yER}=¢ for i=1,..-, m

or

(C2)  (by, ea] X -+ X (b, ] N {02 y € B} = {f,,b"" “iar

That is, the rectangle (bi, c1] X -+« X (bn, ¢x] either has empty intersection with
all of the coordinate axes or intersects exactly one in an interval. Note that in
(C2), b;<0<c;fori#i and 0 & (b, c]. The following properties hold:

(2:3) P(I(6B)=0)=1 forall BES.
If B satisfies (C1) there is nothing to check since the points of I are located on
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the coordinate axes. However if B satisfies (C2), then I(9B) < ¥%, &, ({b, ¢}) =
0 a.s. since the mean measure of Yi_; ¢;, is atomless.

(24) PUIB)=0)=1 and EI,(B)—0 if BES satisfies (C1).

This follows easily since (b, ¢1] X -+ X (b, c»] has empty intersection with all
of the coordinate axes and

EL(B) = Yi/newyeqd P@r'Zy € (by, 1], -+, a7t Zi-ms1 € (b, Cm])
< Ywmetoceg T2 Plaz' | Zo| > | b;| A |eil)
and from the definition of a, it is clear that this sum goes to zero.
P(I(B) = 0) = exp(—pu((bo, co] X (b, c+])) and
EIL(B) — pu((bo, co] X (b, ¢])

if B € S satisfies (C2).
As above,

(2.5)

EIL,(B) = Yi/newoc I1E1 Plan'Zy € (b;, ci]).
Since b; < 0 < ¢; for i # i’, [[ s P(ay'Z; € (b;, ¢;]) = 1 and therefore
EI,(B) ~ (co — bo)nP(a;'Z, € (b, cr])
— (co = bo)A((by, ¢ir]) = u((bo, co] X (b, ci]).

PROPOSITION 2.1. Let I, = 351 Y21 etjnaziz, ep- Then I(B) — I.(B) — 0 in
probability for all B € S.

PROOF. For simplicity we shall assume B = (0, 1] X (b1, ¢;] X - -+ X (b, Cm),
the other cases being handled similarly. First consider the case when B satisfies
(C1). Then by (2.4), EI,(B) — 0 and from the definition of 1,, I,(B) = 0 which
proves the result in this case.

Now suppose B satisfies (C2) in which case 0 € (b;, ¢]], i # i’ and 0 & (b;, ¢l
By writing

I(B) = 3kl etmazizen(B) + Sieiv e/mazizen(B),
we see that the expectation of the first term is bounded above by (i’ — 1)
- Pla;'Z, € (b, ¢v]] = 0 as n — o and thus this piece is 0p(1). The second term
can be bounded above by
poy 8((j+i'-'1)/n,a;lz,~)((0, 1] X (by, c])
= Y1 e/m,azizp((0, 1] X (b, cr]) = L.(B).
Clearly EL(B) — u((0, 1] X (bs, cz]) and E(IE: ewmazz(B)) —

u((0, 1] X (s, cv]) by (2.5) which together with the inequality above gives
E(B) — Yi-i" &@/n,azz#)(B) — 0 in probability. This completes the proof. 0

THEOREM 2.2.  Let {Z,} be iid satisfying (1.1) and (1.2) with {a,} satisfying
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(2.1). For each fixed positive integer m,
Th=1 Ek/naZ®) => Dol Dim1 E(tyjy-e)

in Mp((0, ) X (R™\{(0, - - -, 0)})) where {(tx, jr): k = 1} are the points of a PRM(yu)
on (O’ OO) X (mm\{(o’ Tty O)})- .

ProOOF. By Theorem 4.2 in Kallenberg (1976), it suffices to show (I,(B),
-, I(B;j)) = (I(By), - - -, I(By)) for any j = 1 and sets By, - - -, B; € S. However,
in view of the above proposition, it is enough to prove (B, ---, fn(Bj)) =
(I(B1), ---, I(B))) or equivalently I, = I But the composition of the two
continuous mappings,

27:=1 E(uy,vp) > (27:=1 E(up,vp-€,) s 27:=1 E(up,vp-€9)s * " " 2f=1 c(uk,v,,~em))

— 22‘;1 2;”—1-1 C(u,,,v,,-e;)

is itself a continuous mapping from M,((0, ®) X (R\{0})) into M,(E). Thus by
the continuous mapping theorem we obtain I, = I as desired. 0

We now use these results to derive a point process result based on {X,} where
recall {X,} is defined in (1.3) by X, = Y7 ¢;Z,-; and as usual {Z;} satisfies (1.1)
and (1.2). According to results in Cline (1983), the infinite series converges a.s.
if
(2.6) Y20 lci|® <o forsome d<a, =<1

and in this case

. P“Z;LO cJZ"J|>t]_ o o
2.7 lim; e Pl Z:] > 1] = Y20 Gl
We begin with a lemma which parallels Lemma 3.8.2(i) on page 74 of Leadbetter,
Lindgren and Rootzen (1983).

LEMMA 2.3. If {c;} satisfies (2.6) then for any v >0
(2.8) limm_.mlim SUI)n_,wP[a;l Vz=1 I 2.’,';0 CjZk._j - Xkl > ‘y] = 0.

PrROOF. We have
Pla;! Viai | X0 ¢ Z1kj — Xi| > v] = Plaz" Via | Zjsm ¢iZk—i| > 7]
and since {Yj>m ¢jZi—j, k = 1, - - -, n} is stationary the above is bounded by

Pl Ziom 62| > any]  Pl1Z:1]| > any]
Pl Z,| > any] P Z,] > a,]

and by (2.1) and (2.7) as n — oo this converges to

nPla:t | Tism ¢Zr-i| > ] ~

Yiem Gl ™" =0

asm—o. [
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We may now state and prove a convergence result for point processes based
on {Xk}

THEOREM 2.4. Suppose {a,} satisfies (2.1), {c;} satisfies (2.6), {Z,} satisfies
(1.1) and (1.2) and { X} is given by (1.3). Let {(t, j.)} be the points of PRM(u) on
(0, ) X (R\{0}).

(1) In M,((0, ) X (R\{0})) as n —
Thm1 €k/n, Xyfan) => Diz0 Dbl E(tyjpc) -
(ii) For any positive integer /
Tl E0e/n,az X Xt Xno) = D=l 20 E(tyinleintigs- - -10i-p)
in M((0, ») X (R”*"\{(0, 0, - -, 0)})) where the sum in the limit is taken over
those points lying in the state space.

PROOF. (i) From Theorem 2.2 we have for any positive integer m
The1 Ek/n,aTiZ®) => Dzl Dhe1 E(tyie)-
The map
(2.9) (2ky Zb-1y ***» Zhmt1) = 2iZ0" CiZk-i

induces a continuous map from M,(E) — M,((0, ©) X (R\{0})) and so by the
continuous mapping theorem

Z;z;l E(k/n,a X002, ) = 2::61 2;;1 E(ty,cijp) in Mp((O, °°) X (R\{O}))~
Asm—>
(2.10) Tot Y1 Sty —> Lie0 Jhel E(tyciji)

pointwise in the vague metric and so by Theorem 4.2, page 25 in Billingsley
(1968) it suffices to show for any n > 0

limy,olim SUPy—ewP[p(Th=1 ek/n,azismsle,z, )0 Lbel Ek/mazixy) > 1] =0

where p is the metric inducing the vague topology on M,(E). To accomplish th.s
it is enough to prove (cf. Kallenberg, 1976, page 95) that for

f € Cx((0, ») X (R\{0}))
lim,—olim sUp,oP[| Xi=1 f(B/n, a5 225" ciZr—)
(2.11)
— Y= flk/n, a7’ X)) | > 9] = 0.

Suppose the support of f is contained in [a, b] X ([—K + vor — K™ — 7,] U
[K™! + 40, K — v0]) where (K + K™)/2 > v, >0 and 0 < a < b. Set w(y) =
sup{| f(t, x) — f(t, y) |: x, y € (0, ®) or x, y € (—, 0) and |x — y| < v, t > O}.
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Since f has compact support it is also uniformly continuous and therefore w(y)
—0ify = 0.If vy <o A K! then on the set A, = [a;* Vi1 | 37! ¢iZk—i — Xk |
< v] we have a;' ¥2¢' ¢;.Z,—; € [-K, =K ') U [K}, K] =: B(K) implies

| f(k/n, a7 ¥Z5" ciZii) — f(k/n, a7'Xe) | < w(y)

and a;' Y726 ¢;.Z,—; & B(K) implies f(k/n, a;' Y76 ¢iZy—) = 0 = f(k/n, a;'X,).
Therefore (2.11) becomes :

limpelim supn— P{[] Ziz1 f(k/n, az' TG ciZk-)
— X1 f(k/n, 027 Xa) | > 1] N (A + AT}
< limpelim sUppPlw(v) Tie1 e0nsm5t02,-([a, B] X B(K)) > n]
(where the term involving A was killed via (2.8))
= limpwPlo(y) Z' Tit ety ((0, 11 X B(K)) > 1]
from Theorem 2.2 and from (2.10) this is
= Plo(y) ZZo Xk=1 e@ined(la, ] X B(K)) > ).

Since
220 T epie(la, ] X B(K)) < as.

the desired result is obtained by letting v — 0.
(ii) The continuous map (2.9) is replaced by the map

(Zky Zi-15 * **y Zhoma1) = (D" CiZhiy 2im0" CiZk—1-is ***» Dm0 CiZk—r—i)
and (2.8) is changed (without difficulty) to
lim, olim sup,—«P(a;' Vio Vil | X756 ¢Zk-imj — Zp—i| > v) = 0.

The rest of the proof of (ii) is almost the same as that given in (i) and is omitted. O

3. Applications. By applying functions and the continuous mapping theo-
rem to Theorem 2.4, a variety of corollaries can be drawn. We now explore some

of these.
We suppose throughout this section that the hypotheses of Theorem 2.4

are met. Set ¢, = max;(c; V 0), c- = max;(—c; V 0), M}, = rth largest among
{Xl’ M ] Xn}aMn=Mrlu-

(A) Extremes. We prove convergence of the sample extremal process to a
limiting extremal process.

THEOREM 3.1. Assume either c.p > 0 or c_q > 0 and that (1.1)-(1.3), (2.1),
(2.6) hold. Set

- _ a;lM[m] if t=n"!
(3.1) Yo(t) = J[a,",le if 0<t<n™

and suppose (Y(t), t > 0) is an extremal process generated by the extreme value



186 DAVIS AND RESNICK

distribution exp(—(c§p + ¢2q)x ™) for x > 0 (cf. Dwass, 1964, Resnick 1983, 1984).
Then Y, = Y in D(0, »).
PROOF. The functional T from M,((0, ) X (R\{0})) — D(0, ) defined by
(T 2;:=1 e(u,,,uk))(t) = vukSt Uk

is almost surely a continuous mapping (cf. Serfozo, 1982; Mori and bodaira,
1976; Resnick, 1984). So by the continuous mapping theorem,

T(Xi=1 etmazxy) = Ya(-) = T(TZo Ti=1 yipcd)
= Vs, (VZ0 Jre) = Ve, (c4ji V (—c-ji)) =: Y(-).
Note that Y is an extremal process since Y = T¢ where
£(-) = k=1 epenin(- N ((0, ®) X (0, )))
+ Yhe1 e, —c_jp(- N ((0, ©) X (0, ®)));

i.e. £is a PRM on (0, ®) X (0, ©) with mean measure of (0, ) X (x, ©) equal to
t(cip + ciq)x™ for t > 0, x > 0. The PRM ¢ is obtained by taking points with
negative ordinates and relecting about the horizontal axis up to the positive
quadrant. For t >0, x>0

P[Y(¢) = x] = PIE((0, t] X (x, ) = 0]
= exp{—E£((0, t) X (x, ®))} = exp{—t(csp + c*g)x™}
which completes the proof. 0
Of course this method can be extended to get joint convergence of the k
processes based on (M}, i < k). One merely needs to note that
(02" Mg < x] = [Zk=1 e/n,x,/a0((0, £] X (x, @) < r = 1].

The joint limiting distribution for any collection of upper extremes can thus be
determined through the limiting point process. For example, letting

N() = 27:=1 2;0 C(t,,,jkc;)((o, 1] X )
we have for 0 < y < x,
P(a;'M,, = x, a;'M} < y) — P(N((x, ®)) = 0, N((y, z]) < 1).

For convenience, suppose c_ = 0, define c,, = second largest of (c; V 0) and for
y > 0 set G(y) = exp{—pc%y~}. Then the above limit becomes

P(¥i- g (y/cs, xfcx N y/ess) < 1, Doy &, ((x/cs A y/c.,.z, ©)) = 0)
= G(x A (c+¥/c+2))G()/G(x A (cry/c42))(1 — 10g(G(y)/G(x A (c+y/c+2))))

= G(Y)(1 — 1log(G(¥)/G(x A (c+y/c+2)))).
By choosing p(s) = 1 — s(1 V (s (cs2/c+)?)) the limit distribution of
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a, (MX, M%) may be rewritten as,

fG(x) if x=<y

1G(») A — p(log G(x)/log G(y))log G(y)) if x>y
which is in agreement with the formula given on page 161 of Mori (1977)
(cf. Welsch, 1972 and Mori, 1976).

(B) Maxima and Minima. It is just as easy to determine joint limiting
behavior for any collection of upper and lower extremes using Theorem 2.4. We
shall concentrate on the specific case of the maximum M, = V}, X; and the
minimum W, =AL; X,.

THEOREM 3.2. Suppose (1.1)-(1.3), (2.1), (2.6) all hold. Then we have

P(az'M, = x, a;' W, < y) = GP(x, ©)G%(%, x) — GP(x, =y)GU(~y, x)
where

fexp{ —c5x™} A expf{—c2y™} for x>0, y>0

Glx, y) = otherwise.

PrOOF. We have forx >0, y<0
P(a,'M, = x, a;'W, > y)
= P(Xi=1 e/m,azxp((0, 1] X ((—, y) U (x, ))) = 0)
— P[Ek=1 o e, ((0, 1] X (=%, y) U (x, ®))) = 0]
= P[Y7o1 e,,50((0, 1] X ((=o0, —x/c_) U (x/c4, ) U (=, y/c,)
U (=y/c-, ©))) = 0]
= P[Xi=1 e@ip((0, 1] X (=00, (—=x/c-) V (y/c+)) -
U ((x/cs) N (=y/c-), ®))) = 0]
= exp{—[p(csa™ V c2(=y)™) + glc2x™ V cX(=y)™)]}
= G?(x, —y)GU -y, x).
Thus,
P@;'M, < x,a;*W, < y) = Pa,'M, < x) — P(a;'M, < x, a,'W, > y)
has the desired limit. 0

Note that as specified by Theorem 4.1 in Davis (1982) the limit distri-
bution of a,(M,, W,) is of the form H(x, ©) — H(x, —y) where H(x, y) =
G?(x, y)GUy, x) is a bivariate extreme value distribution. Moreover, it is easy to
see that the maximum and minimum are asymptotically independent if and only
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if all the ¢/’s have the same sign. For further remarks on this point, see Davis
(1983, 1984).

(C) Inverses, overshoots and ranges. We may trivially modify Theorem 2.4
to yield as s — o,
Y1 €k/s, Xafals) => Dm0 Te1 ey 1D Mp((0, ) X (R\{0})) .
where a(s) = F—(1 — s7!) and F< is the left continuous inverse of F. Let Y be
the extremal process given in Theorem 3.1 and let Y,(t) be defined as in (3.1)
with s replacing n. As in Resnick (1975) we have by an application of the
continuous mapping theorem that (Y, Yy) = (Y, Y) in D(0, ») X D(0, )
where for x >0
Yo(x) = inf(u: Yo(u) > x) = inf{k: VL, X; > a(s)x}/s
and a similar definition holds for Y. So setting 7(x) = inf{k: V&, X; > x} we
have 7(a(s)-)/s = Y and changing variables we get
(3.2) 1—=F@s)r(s-)=Y(.)
as s — o in D(0, «). Recall for x> 0,¢t>0
P[Y(t) = x] = exp(—t(pcs + qc2)x™)
and therefore
P[Y<(x) = t] =1 — exp(—(pcs + gc2)x™°t).

Now define L(a(s), 1) = inf{k: X, > a(s)}, L(a(s), 2) = inf{k > L(a(s), 1):
X > Xi(ae),1)) and so on. Then {X ), n/a(s), k = 1} are those record values of
{Xx/a(s)} bigger than 1. As in Resnick (1975), Corollary 3 this sequence converges
weakly in R™ to the range of Y above 1 which is a Poisson process with mean
measure of (a, b] equal to « log b/a (Resnick, 1974, Theorem 2). In particular for
x>0
(3.3) limy o P[(XL@wn/als)) — 1= x]=1—(1+ %)™

(As before, we may change variables ¢t = a(s) to get the limit distribution for the

overshoot past t.)
Consider jointly ({Xr@e).n/a(s), k = 1}, Yi (1)) on R X R. By the continuous
mapping theorem this converges as s — « weakly to

({points hit by Y above 1}; Y<(1)) = ({times of jumps of Y*(x), x > 1}; Y*(1)).

Since Y has independent increments (Resnick, 1974: Shorrock, 1974; Dwass,
1974)

{times of jumps of Y (x), x > 1} = {times of jumps of Y (x) — Y (1), x > 1}

is independent of Y*°(1). So for instance if we combine (3.2) and (3.3) jointly we
gét as s >

P[(1 = F(s))7(s) = x, (X1 — 8)/s > y]— P[Y™(1) = x](1 + y)™°
for x > 0, y > 0. (Cf. Finster, 1982, Section 4.)
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(D) Excedences. Rootzen (1978) and Leadbetter, Lindgren and Rootzen
(1983) consider the indices when an observation X/a, exceeds a given level
x > 0. Suppose as a convenience for this subsection that | ¢;| < 1 for all j. The
point process of points with ordinates bigger than x > 0 converges as n — o; that
is
Yot esnxan (- N ((0, ©) X (x, ©))) = FZo Xk e+ N ((0, ) X (x, )))
in M,((0, ®) X (x, ©)) from Theorem 2.4 and the fact that the map m —
m(- N ((0, ®) X (x, ©))) from M,((0, ©) X (R\{0})) to M,((0, ©) X (x, »)) is a.s.
continuous. To evaluate the structure of the limit consider the following: Let {T',,
n = 1} be the points of a homogeneous PRM on (0, ) with rate x™*. Suppose
{Jx, k = 1} are iid on (x, ©) U (—%, —x) independent of {T',} and with common
density

f(y) = (Pay™ em(y) + qa(=y) ™ Lcw-n(¥))x"
Then
The1 C(t,,,j,,)(' N (0, ©) X ((x, ©) U (=%, —x))) =4 Yi E(Ty,J))

on M,((0, ®) X ((x, ®) U (=, —x))). (This can be checked readily using Laplace
functionals or from Cinlar, 1976.) Therefore the weak limit of the above point
process is

0 Tie1 (- N ((0, ®) X (x, ®)))
=4 220 Zie1 émueup(+ N ((0, ®) X (x, ))).

Finally define &, = #{c;: ¢c;J, > x} so that {&;, k = 1} is iid. In the limit the point
process of times of excedences is the compound Poisson point process Yi_; &eer,
where {£&) and {T';} are independent (cf. Rootzen, 1978, page 858.)

4. Sums and sample covariances. In this section we determine the weak
limiting behavior of the partial sums of the type decribed in Sectien 1. As before
assume X, = Y7o ¢;Z,—; where {Z;} satisfies (1.1) and (1.2) with 0 < a < 2.
Further assume {c;} satisfies (2.6) which necessarily implies ¥ | ¢;| < . Define
Sn = 2?:1 X,' and bn = EZ11[|Z1|5¢,"] so that (Cf Feller, 1971)

(4.1) az' (Tt (Zi = by)) = S
in R where S is a stable random variable with index «.
THEOREM 4.1. Suppose (1.1) and (1.2) are valid for 0 < a < 2. Also assume
(1.3), (2.1) and (2.6) hold. Then
a7 (Sn — n T30 ¢b) = (Z0 ¢)S
in R, where S has a stable distribution with index . (If ¥ ¢; = 0, then a;'S, —
0 in probability.)

PrROOF. We shall first establish the result for the partial sums of the trun-
cated sequence X{™ = ¥, ¢;Z,; and then use an approximation argument to get
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the full result. Consider the sequence of (m + 1)-dimensional vectors
Y. = a7 (T (Z: — ba), i1 (Zimy — bn), - -+, i1 (Zi-m — bn)).
Relation (4.1) holds and furthermore for 1 < k< m and any > 0
P(|az" Y1 (Z; — ba) — az' Tk (Zire — ba) | > )
= P(a7" | 51k Z + Sionins Ze| > 1) = Plaz* | Sk Ze| > ) = 0

as n-— oo,
Thus, in R™4, Y, = (S, S, - - -, S). By the continuous mapping theorem,
(Co, C1y * cm) . Yn = a;1(2?=1 XJ('M) - (E;n=0 cj)nbn) = (2;n=0 Cj)S~

Now to prove the result in the general case it suffices to show by Theorem 4.2
in Billingsley (1968) that

lim,, elim sup,—.P(a;' | (S, — Y50 ¢jnb,)

(4.2)

= (T X™ — TRocnby) | > ) =0
and
4.3) (X0 ¢)S — (T70 ¢)S  in probability as m — oo,

Clearly (4.3) is automatic (in fact we have a.s. convergence) since Y, | ¢;| < «. As
for (4.2) first note that

a7 (Tt X, — (o ¢)nby) — az'(Tie Xi™ — Tk ¢jnby)
= a," (T1 Tom ¢Ze-j — Xjsm ¢jnby)
which may be written as
= a;" Thenim SknlZ-klyz_iza — D) + a2t Tio1 Tjom 62111z, j1>a,

where

s = Cmt1+ o+ Cpyp If —n+m+1<k=m
kn Cha1+ oo e If R>m.

So the probability in (4.2) is bounded above by

P(az" Yhe—nimer | Sun | | Zoklz 10 — bu| > v/2)
“ + P(az! 3t Tjom 161 1 Zesj | Lz i5a > ¥/2).
Observe that ’

(l/n) E;en=—n+m+l si,n = (l/n) Z;’LI (cm+1 + ..+ Cj+m)2 i (2;0=m+1 cj)2

a n-—w
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and

(1/n) Them+1 skn
= (1/n) Timer (o1 + -+ + o) < (/1) Tiemar (Lo | + -+ + | Chem |)?
= (/n)(T5 161) Shemer (Leran | + -+ F L cranl) = (o 16 1) (Zhemsr.| e l)

from which we conclude that lim, ..lim sup,.«(1/n) Yi—r+m+1 st = 0. Now
using Chebyshev’s inequality, the first term in (4.3) is bounded by

411 n
? I:T—l Lie-ntm1 8%"’ : ? Var(le“lesa,J):l

4 (1 . n
= ;5 Ii;; 2k=—n+m+1 slze,n:"ia—g EZ% 1[Z15“n]:| .

By Karamata’s Theorem (cf. page 283, Feller, 1971) lim SUPn—wnn’EZ312, <a,)
< o s0 that the lim,, .lim sup, .. of the first piece in (4.4) is zero.
For a > 1, the second term in (4.4) is bounded by

2n _ 2 n
S E(az' Tiom 1611 Zi | 11zj15a,) = 5 Ziom 161 = Bl Zx| luzi>a)

2 @
— - m | G
’YZJ> Ijla—l

as n — o by Karamata’s Theorem. Therefore, lim,,.lim sup, .. of this piece is
also zero when a > 1. For the case 0 < a < 1, let < a be as specified in (2.6)

. and note that

@3 321 Yism 161 Zeej | Lz yima)’ < @27 Tier Diom | 61° 1 Ze-j | * Lyzijiisad-
Since | Z; |° has index /4 > 1, we can apply the above argument to get
limp,lim sUpp e Plar" Tty Bjsm | 6| | Zimi | Lzsi>an > v/2]
< limp_.lim sup,..Plaz® ¥ Siom |6 1° | Zeej |* 11z, 150y > (v/2)°] = 0

which establishes Theorem 4.1 as claimed. 0

We now consider the asymptotic properties of the sample covariance function
and correlation functions which will follow quite easily from Theorem 2.4. For h
a nonnegative integer let ’

Y0 _ Shnn XX
30 - S X

denote, respectively, the sample covariance and sample correlation function at

-

. 1 «
V() = = Blw XeXion, ph) =
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lag h. If Var(Z,) = 62 < «, then
2o CiCj+h
2;';0 CJZ

which does not depend on the nuisance parameter ¢2. In the following theorem,
we show that na;? ¥(h) has a stable limit and p(h) — p(h) in probability.

y(h) = cov(X:, Xi+n) = (X0 cic+n)o? and p(h) =

THEOREM 4.2. Let Y5~ ¢, be a PRM()) on R\{0} with
Adx) = apx ™ gw(x)dx -+ aq(—x) " agy(x)dx, 0 <a <2.

Suppose (1.1)-(1.3), (2.1), (2.6) hold with 0 < a < 2. Then for every nonnegative
integer 4, as n — :

(n/a?,)(’)‘/(()), 7"(1)’ ) ')A/(/))

(i)

= VL1 JF - (Tfo €F, Tiko CiCj1, -+ +y Do CiCirr)
and
(i) 2(2) = ple) = BRGS0 o obability.,

27=0 CJ?
REMARK. Y5, j#is a stable random variable of index «/2.

PROOF. (i) By restricting attention in Theorem 2.4 to points in
(0, 1] X R“*1\{(0, - - -, 0)}, we have

(4.5) ZZ=1 Eap Xy Xpe1s - 2 Xpp) = 2:=1 2;:0 EjuleinCis  sCimp)

Let ¥ > 0, and for each integer h, 0 < h < / define the mapping ¢, from
M,(RTN\{(0, - - -, 0)} into R by

¢h,7(27§=1 c(uko,u,,l,...,u,,,)) = Yia ukoukh]-[(ukol>-yorlukh|>'y]-

Using an argument similar to that given in Section 3 of Resnick (1984) it may
be shown that ¢, is a.s. continuous relative to the limit point process in (4.5).
Thus by the continuous mapping theorem, the # + 1 vector of random variables
with components

— 2 n
By (X1 €az¥ X Xor, - Xnor) = On° D=1 XeXi—n1{1 X500y or | Xpon|>amr}s

h =0, ..., 4 converges in distribution in R“*! to the random vector whose
corresponding components are

(4.6) Bhr(Tiim1 D20 Eigtencirs i) = Doml Dm0 JECiCin 1{1jyi>v(cr eyl

[t is easy to check that (j; k = 1) are the points of a PRM(X) on (0, o) with
A(dx) = x7*"(a/2)dx. An alternative representation for Yi, ¢z is Yiry erpue
where I, = E;, + ... + E is the sum of k& iid unit exponentials. By the strong
law of large numbers, I';%* ~ k~%* a.s. k — o, which ensures that Y5, j? =
Yo, I'%* < . Consequently, the limit random variable in (4.5) approaches
Y1 7 Yizo CiCip @8 ¥ —.0.
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Next we show that for any n > 0,
(4.7 lim,_olim supPn—ewP(a7” | Dha1 XeXe-n1[ix,is0:7,1 X4l sa1| > 1)= 0.
This probability can be bounded above by

n
» E(| Xi | Lyxy=van | Xi-n | 1yx, pisvan)
which by Cauchy-Schwartz has an upper bound (n/a2y)EX?$ 1 x,|=a,~ According
to (2.7), the distribution of X, has regularly varying tails with index 0 < a <2

and so

hm.,_,ohm sup,,_,w(n/ a?,)EX%].“ Xil=apy]l = 0

by Karamata’s Theorem (Feller, 1971, page 283) which verifies (4.7). Invoking
Theorem 4.2 in Billingsley (1968), we have

a3k X7, Yoy XeXe-1y 00y =1 Xe X))
= Y- ji(Z c, Y CiCit1y + vy X CiCits)-

Finally it is easy to see that the limit is unaltered if we commence the summing
of Yy X X,-natt=h+1,for h=0, .- ., 7 and since (ii) follows trivially from
(i) we are done. O

COROLLARY. The same limit laws are attained in Theorem 4.2 if v(h) and
p(h) are replaced by their mean corrected versions,

F(h) = (1/n) Trpn (Xe — X)(Xen — X) and  j(h) = ¥(h)/7(0),
respectively, where X = (1/n) Y1 X;.

ProOF. It suffices to show R,: = na;2(y(h) — ¥(h)) —, 0. R, also has the
representation

(4.8) R, = a;%(n — WX? = X Tip1 Xe — X Tioner Xin)-
For the first term observe
VX ¥n X 1 (Zf=1 X; — nb, 3o Ci) + nb, Yo Ci

an Jna, n " an Vna,
and from Theorem 4.1 the first term converges to zero in probability. If
a < 1 no centering is necessary (Feller, 1971) by Karamata’s Theorem and
nbn/a, — (1 — ). If 1 < a < 2 then b, — EZ;, < » and since a, is regularly
varying with index 1/a € (%, 1) we have Vn/a, — 0. If @ = 1 then

| &bn/an | = ‘/ﬁar_llE | Z I 1[|21|50n]'

Since E | Z1 | 12,1, is slowly varying (Feller, 1971, page 315 and Karamata’s
Theorem) and a,, is regularly varying with index 1 we have

«/r_zb,,/ a, — 0.
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In all three cases vnb,a;* >0 ¢i — 0. The remaining terms of (4.8) converge in
probability to zero by similar arguments.

REMARKS.

(1) The weak consistency of the estimate p(h) was established by Kanter
and Steiger (1974) for AR(p) processes under stronger assumptions on the errors
{Zn}.

(2) If {X,}is the AR(p) process
X, = ¢1Xt—1 + .-+ ¢pXt—p + Z,

where ¢(2) =1 — ¢12 - - - —¢p2P” # 0 for | 2| < 1,then using the above theorem it
can be shown that the least squares estimates of (¢;, ---, ¢,) are weakly
consistent. This result was also obtained by Kanter and Steiger while Hannan
and Kanter (1977) considered strong consistency properties of the least squares
estimator.

(3) From the above theorem, we also have weak consistency of the estimates
of the parameters of a causal invertible ARMA( p, q) process based on the method
of moments.
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