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SECOND-ORDER APPROXIMATIONS TO THE DENSITY, MEAN
AND VARIANCE OF BROWNIAN FIRST-EXIT TIMES!

By CHRISTEL JENNEN

Universitat Heidelberg

This paper presents correction terms to the tangent approximation for
the first-exit density of Brownian motion at distant boundaries. These lead
to second-order approximations to the first-exit distribution. Asymptotic
formulas for the mean and variance of the first-exit time are derived.
Numerical comparisons show the accuracy of the approximations.

1. Introduction. Let W be a Brownian motion with drift § and let us
consider the stopping time

(1) T = inf{t > 0: W(t) = ¢(¢)}, with T = o if the set is empty.

We want to study the distribution of 7" under drift § = 0 and 6 > 0. The values
P,(T < t) and E;T are of interest for sequential tests. No explicit formulas for
these quantities are known, except in a few special cases. In this paper we give
asymptotic approximations applicable when the boundaries are “remote” that is,
crossed with only small probability if the drift is 0. More precisely, we will
consider families {{,:a > 0} of continuously differentiable functions on intervals
(0, t,) where 0 < t, < o, such that Py(T, < t,) — 0 for the corresponding first-
exit times 7T,. Examples which are discussed in the literature are:

(a) vu(t) =atP’, 0<p<l

() y,(t) = Vtc logla/t), ¢>0,

©  y,(t) = v2(at + ¢), ¢>0,

@ y.) = V(E+ (@ + log(t + 1)).

For these families ¢, may grow like a power of a or even exponentially. For the
examples above Chow, Chao and Lai (1979), Pollak and Siegmund (1975),
Robbins and Siegmund (1973), Siegmund (1977) and Woodroofe (1976) present
an asymptotic analysis (partly for random walks) using renewal and martingale
arguments. Using completely different methods Cuzick (1981) and Jennen and
Lerche (1981) derive a very general formula for Po(T, < t). The latter study the
density f, of T, and show that under drift 6§ = 0, f,(¢) is asymptotically equivalent
to the density of the first-exit time over the tangent to ¥, at ¢

2
@ fo =22 exp(— f"—;—?—)(l +o(),

where A.(t) = Y. (t) — t¥/(t) is the intercept on the vertical axis of the tangent
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BROWNIAN FIRST-EXIT TIMES 127

to the curve at t. (2) holds uniformly on 0 < t < t, and therefore it may be
integrated to provide approximations to Po(T, < t) for t < ¢t,.

Evaluating certain integral equations for f,, a method first employed by Daniels
(1974), we derive a second-order term to the tangent approximation (2)

Al(t) 20 (t) Aq(t)
fa(t) = [ 172 + 5 A1)’ 1+0() - S Py(To<t) 1+ 0(1))]

3)
L (_ t//a(t)2>
Vor CP\” 2t )

Since (3) holds uniformly for ¢ < t, one gets second-order terms for Py(T, < t).
In the case of example c this is equal to the second-order approximation given
by Siegmund (1977). The first term in the brackets at the right-hand side of (3)
tends to infinity while the second one tends to zero. In most cases the third term
is dominated by the second and may be neglected. The first two terms of (3) are
asymptotically equivalent to the first two terms in an asymptotic expansion of
the first-exit density given by Ferebee (1983). However, since his evaluation
includes no uniformity in ¢, it does not lead to approximations for the crossing
probabilities.

Multiplying (2) and (3) by the Radon-Nikodym derivative exp(6y,(t) — 6%t/2)
one gets asymptotic formulas for the first-exit density f(t) of the Brownian
motion with drift  # 0. The tangent approximation is

Al(t) 1 < (Va(t) — 6t)*
p(— Wal®) = 00)°

(4) falt) = T 7= ex ” )(1 + o(1).
This formula holds uniformly in 6 and ¢ for ¢ < t,. Thus one gets approximations
of Py(T, < t).

For the families we consider, the ray x = 6t with @ > 0 crosses the curve
x = Y,(t) in a unique point b,, ¥, (b,) = 0b,, with b, — o as a — . We show that
the distribution of T, is asymptotically normally distributed about b,. Using the
tangent approximation (4) we derive the following asymptotic expressions for

the mean and variance of T,

(5) E()Ta = ba(]- + 0(1));
b,
6) Var,T, = 0 = v b))’ (1 + 0(1)).

Using the second-order approximation for the density we get a correction term
to (5)

bad (b)
7 ET,=bs+ 77— 1 +o0(1)).
@ " 20 — yob® & W)
This formula can also be derived more directly using Wald’s identity. For the
examples above, the second term in (7) is asymptotically constant in a. Numerical
studies show that the second-order approximation (7) is much better than (5),
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just as the second-order density approximation (3) is superior to the tangent
approximation (2).

Our program is as follows. In Section 2 we derive the asymptotic formula (3)
for the first-exit density at remote boundaries. The asymptotic formulas for the
mean and variance of T, in the case of drift § > 0 are given in Section 3. In
Section 4 we study delayed first-exit times

= inf{t > 1 W(t) = ¢(t)}

where 7 > 0 is fixed. In Section 5 we apply the approximations to some examples
and compare them with numerical results. Section 6 contains some extensions.

2. Asymptotic evaluation of the first-exit density. Let ¢ be continu-
ously differentiable on (0, ¢,) and let T be given by (1). We assume P(T = 0) =
0. Then the distribution of T has a continuous density f on (0, t,) and under drift
=0

1 (v =f‘ 1 <w<t> w(u)>
® \/Z‘p(\/i> o Vt—u ica JW
At) (¢(t)
f@t) = £3/2 <p< «/i)

f Y(t) = yw) — (¢t — wy'@) (wt) ¢<u))f( ) du,
(t — u)"? Vi - w

where A(t) = ¢(t) — t’(t). As usual ¥ and P are the density and distribution
function of the standard normal distribution. Equation (8) is given by Durbin
(1971), (9) by Durbin (1981) and Ferebee (1982). The integral equation (9) is our
main tool for deriving an approximation to the first-exit density at remote
boundaries.

Let {.:a > 0} be a family of continuously differentiable functions on R* and
let T, be the first-exit time of the standard Brownian motion W through v,

9)

(10) T, =inf{t > 0:W(t) = y.(t)}, with T, = o if the set is empty.

Let 0 < t, = o and I, = (0, t,). We make the following assumptions:

Al. P(T,=0)=0,

A2, [1, Wa(u)/u®?) P(Yu(u)/Vu) du—0 as a— o,

A3. there exist o and 8 with Y2 < a < 1 and 8 > 2« — 1 such that y,(t)/t* is
decreasing and ¥, (t)/t? is increasing in ¢ for all g,

A4. Y, is twice continuously differentiable on I, and for every p; > 0 there
exist p, > 0 and ao, such that if a = ap and s, t € I, with |s/t — 1| < p
then |yY(s)/¢a(t) — 1| <piand | ¢7(s)/¢a(t) — 1| <pa,

A5. there exist ¢ < 1 and B <  such that | t¥2/ (t) | < B(Ya(t)/~t)*** for
allt € I, and all a.

These assumptions imply that the boundaries are remote.
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LEMMA 1. Let conditions A1-A3 hold. Then

(11) P(T,<t) —0
and
(12) Ya(t)/Vt = © uniformlyon I, as a— o.

PrOOF. From (8) and (9) one can derive another integral equation for the
first-exit density f,

(o) = Y (%(t)) f Ya(t) = Yu(u) (w.,(t) ‘“‘“’)., @) du.

e c =) Vi—u
Since y, is increasing by A3 the integral is positive and it follows that
(13) f2(t) = (Ya(6)/ED)P (Ya(8)/ V).

This inequality together with assumption A2 gives (11).
(12) follows from (11) since for ¢t < ¢,

1 — ®(Yu(t)/Vt) = P(W(t) = ¥u(t)) < P(T. < ta) = 0.
Under assumptions A1-A4, Theorem 1 of Jennen and Lerche holds, i.e.

(14)  £a(8) = (Aa(8)/t¥DP (Ya(t)/Vt)(1 + 0(1)) uniformly on I, as a — .

THEOREM 1. Let conditions A1-A5 hold. Then
fa(t) = [Aa(®)/VE + Y2 (£)t7%/24.()%(1 + o(1))
— (Aa(8)/VOP(T, < t)(1 + 0(1)) + 0(Ra(t)]t P (Yu(t)/Vt)

_ holds uniformly on I,. The remainder R, satisfies Rq(t) = exp(—(ya(t)/ Vt)*) for
some k > 0 depending on a, 3 and «.

(15)

COROLLARY. Let condition A1-A5 hold. Then

P(T. < 1) = f (Ra(@)/u¥™)P (Va(w)/Vut) du

f (W8 (@)u*?/28a(w) )P (Vo) /Vu) du(l + 0(1))

(16) ) \
- <§>< J; (Ao () /U@ (Ya(u)/Vu) du) (1 + 0(1))
+ o( L (Ra(u)/u)? (Yo (u)/Vu) du)

holds uniformly for t € I,. '

Note that [§ fo(u)P(T, < u) du= P(T, < t)2/2. Thus the corollary follows by
integrating (15).
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Let us consider the terms in the brackets at the right-hand side of (15). The
first term A.(t)/vt corresponds to the tangent approximation. This term is
positive since by A3

(17) Ba(t)/t = Yq(t) < adu(t)/t
and therefore
(18) (1 = a)yu(t) = Al(t) = (1 — B)Ya(t).

From (12) and (18) it follows that A4(t)/vt — o uniformly on I,. The second
term Y2 (t)t52/2A4(t)? is a “local” correction term to the tangent approximation,
i.e. it only depends on the behaviour of the curve at ¢. By the assumptions it is
of the order O((Y.(t)/ Vt)!) and since ¢ < 1 it tends to zero. For the ex-
amples given in the introduction ¢ = 0 and the term behaves like vt/A4(¢).
P(T,<t)A.(t)/ JVtisa “global” correction term, i.e. it depends on the whole curve
Ya(s), s € (0, t). The unknown probability P(T, < t) is asymptotically equal to
15 (Aa(u)/u®?)® (Yo (u)/u) du. If t, is not too large P(T, < t,) tends to zero very
rapidly and the global term is of lower order than the local one. In general the
remainder R,(t) tends to zero very rapidly and may be neglected.

PROOF OF THEOREM 1. In what follows we omit the index a. The remainder
estimates in o- and O-notations always refer to the limit @ — « and are uniform
on I,. Define

#f(2)
19 =,
(19) 80 = /D

From (9) we get the following integral equation for g

(20) g(t) = A@)/Vt - J; K(t, u)g(u) du,

where

t ) —v@) — ¢ —u)’'(®) t(u) — Y (t)u/t)*
@D K u) = ult — u)Ver exp(" 2u(t — u) )

We split the integral into three parts [§, [}, [&, where
(22) r=tt/Y(t)>)” and s=t(1— (t/¥(t)??)

with 1/8 <y <1/(2a — 1) and ¥z + ¢/4 < 6 < 1. It will be shown that there is a
k > 0 such that

J; K(t, u)g(u) du

(23)
8 = (A(t)/VOP(T < )1 + 0(1)) + o(exp(—(¥(t)/t)"),

(24) f K(t, u)g(u) du = o(exp(—(¢/(t)/Vt)"),
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(25) f K(t, u)g(u) du = —¢"(£)t>2/2A(t)*(1 + o(1)).

The theorem will then follow from (19) and (20). First we prove (23). Let
u < r. From (17), (18) and A3 it follows that Y(u) = O(A(t)(r/t)®) and
uy’(t) = O(A(t)r/t). Since r/t — o, we get

) = $w) = € —upp’@) _A®) (g

(26) u(t — u)’? T out
Now we show that
Y(t) — ¢(u) () _
- () ofut0)

Since r/t — 0 we have for a large enough

@) —y@)?* _ ¢¥(@)? Y(t)?u/t + Y (W) — 29ty (u)

t—u t t—u

LB (5, 207 () a0 (o
t t t t t t

< SR (1 _ o w1}
-t o\t t '

Since y3 > 1 this expression tends to 0 and (27) follows. (26), (27) and the
definition (19) of g yield

' _A® f Y(w)) gw)
J;K(t, u)g(u) du = 7 1+ 0(1)) A ‘P<\/;> ” du

= (A(®)/V)A + 0))P(T < r).
From this we get (23) if we show that
(28) P(r=T<t) <exp(—(¥(t)%/t)") for some % >0 and large a.
Since by (13)

Pr=T<t) < f W) /u®) (Y (w)/ V) du

and since by A3
Y(W)?/u = (P()*/t) (/)7 = (P(£)*/t) 77,
there exist 0 < 7 < v <1 — ¥(2a — 1) such that for a large enough

P(r=T<t) < exp(—(¥(t)?/t)") f utdu

= exp(—(¥(t)?/t)")og((¥(¢)*/t)") = exp(=(¥(t)*/t)").
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To prove (24) we first estimate the exponent in K for u € [r, s]. By A3 we
have ¢(u) = ¢(t)(u/t)* and therefore

EW @) — v/t _ p©* (1) _ 1>2<£ _4)

u(t — u) B u u ’
The right-hand side tends to infinity. To see this, note that the function
((t/u)*~« — 1)%/(t/u — 1) is 0 for u = 0 and u = t and strictly positive for

0 < u < t. Since r/t — 0 and s/t — 1 the function takes its infimum on [r, s] in
u=roru=s if a is large enough. We have for large a

((t/r)r= = 1)2/(t/ r — 1) = Ya(r/t)* ™" = Ya(t/Y(t)?) ">,
(/)" = 1)?/(t/s — 1) = Ya(l'— a)*(t — s)/t = Ya (1 — a)*(t/Y(t)?)".
Since y(2a — 1) < 1 and 6 < 1 it follows that there is some » > 0 such that for

large a
tww) =y _ (e
e""(" 2u(t — u) )“”‘p< <ﬁ>)

Using (13), (19) and A3 we get
Lt(t) — p(w) — (¢ — wy’ ()g)/(t — w¥?| = W(t)/Vt)*

for some p < «. Hence

< (Y(t)/Vt)*exp(—(¥(t)/ V1)) f u du
< exp((y(t)/Vt)")

for some 0 < 5 < » and large a which proves (24).
For u € [s, t] we expand y(u) about ¢. Since s/t — 1 we have by A4 for
vE [s, tly”(v) = ¢”(t)(1 + 0(1)) and therefore

(29) (Y(t) — Y(u) — (t — W' ()/(t — u)*? = =Vt = uy"(¢)/2(1 + o(1)).
For the exponent in K we get

t(Y(u) — Y(t)u/t)® _ @ —wA@)/t + (@~ w)?”(t)/2(1 + 0(1)))?
u(t — u) , u(t — u)

= (t — w)(A@®)/t)* + o(1),
for by assumption A5 and the definition (22) of s the remainder is of the order
O((Y(t)/VD)>((t — 5)/t)%) = O((¥(t)/VE)**™*) = o(1)

since 6 > Y2 + ¢/4. Hence

B — 1412 —_
(30) exp(— t(¢(‘;L(tf(Z))”/t)>=exp< t2“<Aff’) ><1+ o(1).

f K(t, u)g(u) du
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By (14) g(u) = A(u)/vu (1 + 0(1)). One can derive from A3 and A4 that A(u) =
A(t)(1 + o(1)) for u € [s, t]. This together with (29) and (30) gives

[ Kt wigw du = @ 002900 + 001

where

t ' Vi—sA(8)/t '
= f Vt = u eVt — u A(t)/t) du = 2(t/A(t))? J; x2¢(x) dx.

Since vt — s A(t)/t= (1 — a)(Y(t)/ V)™ — o it follows that
J = (t/A(t))*(1 + o(1))
which completes the proof of (25).

The functions ¥,(t) = v2(at + c), ¢ > 0, of Siegmund’s repeated significance
tests (Siegmund, 1977) do not fulfill the assumption A3 since y,(t)/t is not
increasing in ¢ for small ¢t if 8 > 0. Therefore one cannot apply Theorem 1
directly. In the proof the assumption in question is only used to evaluate the
integral [§ K(t, u)g(u) du (see (23)). If one makes. the weaker assumption ¢,
increasing on I, and if one requires in addition to the other assumptions that

exp(a(t)a(r)/t — Ya(r)?/2t) J; (\[/a(u)/us/2)¢(\[/a(u)/‘/l:) du = o((Vt/Ya(t))")

for some n > 0, where r = t(t/y4(t)%)” and 1 < y < 1/(2a — 1), then one can show
that

fa(6) = [Aa(8)/VE + Y2 ()E72/24,(£)%(1 + 0(1))

(31)
+ 0((Yu()/VO) TP (Ya(8)/VE)

holds uniformly on I, as a — .

3. Asymptotic mean and variance of the first-exit time. Now we study
the first-exit times (10) for a Brownian motion with positive drift §. For the
family {¢,:a > 0} of continuously differentiable functions on R* we require that
A3 holds for all t.

Under this assumption the ray x = 9t crosses the curve x = Yo(t) in a unique
point b,

(32) 0b, = \ba(ba)-

We further assume that the other assumptions of Section 2 hold with ¢, = cb, for
some ¢ > 1. Then b, must tend to infinity since 02b, = ¥4 (ba)?/bs — © by (12).
A3 implies that for every a there is a straight line h, with slope less than 6
such that Va(t) < ho(t) for all ¢t = 0. Since T, is smaller than the first- exit time
through h,, all of those moments are finite, all moments of T, are also finite.
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Since the Brownian motion remains within a band of width t/2**, p > 0, about
the ray x = 6t, it is plausible that the distribution of T, is asymptotically
concentrated around the point b, where this ray intersects the boundary. It turns
out that the mean and variance of T, are asymptotically equal to the mean and
variance of the first-exit time through the tangent to ¥, at b,.

THEOREM 2. Let conditions A1-A5 hold. Then
(33) EyT, =b,(1 +0(l)) as a— .
If, in addition

by
(34) j; (Ya(t)/E2)P (Yu(t)/VE) dt = 0(b3?),
then
(35) , Var, T, = b,/02(1 + 0(1)),
(36) EyT, = by + byl (b2)/(203) + 0(b&?),

where 0, = 0 — Y, (b,) and ¢ is determined by A5.

Note that by A3 (1 — a)0's 6, < (1 — B)6. Therefore the mean and variance
of T, are of the same order. The second-order term in (36) is O(b%?). For the
examples given in the introduction this term is asymptotically constant in a and

the remainder is 0(1) (see Section 5).
As in Section 2 one can dispense with the assumption ¥, (t)/t? increasing in ¢
on I,. If the Y, are increasing and if in addition to the other assumptions

exp(0¥a(ra)) J; (Va(£) /D)9 (Ya(8)/VE) dt = 0(b3")

where r, = b, 0 <v < (2 — 2a)/(2a — 1) then Theorem 2 also holds.
We prove Theorem 2 using the tangent approximation to the first-exit density.
Since

(37) fa(t) = exp(Bya(t) — 0°t/2)fu(t)

where f% is the density of T, under drift 6 and £, is the density under drift 0, it
follows from (14) that

(38) fa(t) = (Aa(t)/t¥)P((Ya(t) = 08)/VE)(L + 0(1))

holds uniformly on I,.

The density is asymptotically normal in an interval about b, and it vanishes
very rapidly outside this interval. For small ¢ the density under drift # behaves
like the density under drift 0.

LEMMA 2. Let
(39) re =0b7", sa=b,—b: and S, = b, + b
where (1 — B)/B<v< (20— 2)/(2a — 1) and Yo < u < % — ¢/6. Then for n = 0
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there is some k > 0 such that

(40) Ey(T21ir,>s,) = o(exp(—b7)),

(41) Py(ra < T, < s,) = o(exp(—bz)),

(42) fa(t) = fa()(1 + 0(1))

uniformly on (0, ry),

(43) fa(t) = (0/ Vba)P (8a(t — ba)/Vbo)(1 + 0(1))

uniformly on (sq, S,).

Lemma 2 together with inequality (13) and Assumption A2 implies
(44) Py(T, < r,) = 0(1).
Under the stronger condition (34) one has
(45) Py(T, <r15) = (ba").
From (44) and Lemma 2 we get

PROPOSITION. Let conditions A1-A5 hold. Then
(46) Py(0u(Ta — bo)/Vba < y)= ®(y) + 0(1)

uniformly in y.
Now we will sketch the proofs of Lemma 2 and Theorem 2.

ProOOF OF LEMMA 2. From (37) and (13) we get
- (47) fa(t) = (Ya(t)/t*?)exp(—(Ya(t) — 6t)*/2t).

Estimating the right-hand side of (47) and integrating yields (40) and (41). (42)
follows from (37).
To prove (43) one has to expand the right-hand side of (38) about b,.

PRrROOF OF THEOREM 2. From Lemma 2 it follows that
+00
(48) Ey(T, — b,)" = (Vb,/6,)" f x"P(x) dx(1 + o(1)) + Po(Ta < r)O(b3).

Putting n = 1 we get (33) by (44). If (34) holds then (48) and (45) imply that
E«(T, — b,) = 0(vb,) and Ey(T, — b,)2 = b,/02 + o(b,). This yields (35).
To prove (36) we use the identity :

(49) eEﬂTa = E&wa(Ta)'
Expahding y, about b, and using A3, A5, Lemma 2 and (45) we get (36).

We derived the second-order term for E,T, in (36) using only the first-order
approximation for the density. We can also prove (36) expanding the second-
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order approximation for the density about b,. But the method above is shorter.
Furthermore it can be used to derive higher-order terms for the mean and
variance (see Section 6).

4. Delayed stopping times. Now we consider stopping times for the
standard Brownian motion of the form

(50) T =inf{t > 7:W(t) = ¢(t)}, with T = oo if the set is empty,

where 7 > 0. Delayed stopping times of this kind are of interest especially for
curves like ¥/(t) = vt which are crossed immediately after zero. For the density
of T one can derive similar equations as in the case 7 = 0.

LEMMA 5. Let 0 < 7 < ty and let ¥ be continuously differentiable on (7, t,).
Assume lim,_,,y (t) > —ox. Then the stopping time (50) has a continuous density f
on (7, to) and the following integral equations hold

1 (Y@, (vG) — @)/t [C 1 v(t) — ()
o ol Ppl Rt )= e e

fe) = [Ati/? q,(w) - wwt)

Vit = 7)7/t
: r \1 (wr) - wt)r/t)} (¢<t>)
(52) + (t — T) : @ '——(t ey (4 N
“Y(t) —Yu) = (E—uW'@) ,(Y(t) — Y@
[ v (s

When the boundary is a straight line, Y(t) = b + ct, the integral in (52) vanishes
and we get the formula

. 1/2 , 1/2 -7 1/2 .
(63) f@) = [tf/z (b<t -t ) >+ (t—r) %‘p<b(t Tt ) )HL’%’)

PrOOF OF LEMMA 5. Let F(t) = P(T<t)=P(r<T<t)+ P(T=r). Since
lim;_,, () > —o it follows that P(r < T'<t) > 0. '

We have to show that P(r < T < t) is continuously differentiable with respect
to t and that the derivative f(¢) fulfills the equations (51) and (52). We have

w(T) *
(54) P(r<T<t)= f_ P(r < T<t|W(r) = x)(1/V7)¢P(x/V7) dx.

By the remarks in Section 2 the conditional probability P(r < T <t| W(r) = x)
is continuously differentiable with respect to ¢ for x < ¢/(7) and the conditional
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density f(¢| W(s) = x) fulfills the integral equation

Y(t) — (=7 @) —«x ¢<¢(t)— x)
(t —7)%? N

_ f v(t) — y(w) — (= wy'(t)

(t - u)3/2

fEIW(r) =x) =

(55)

Y(t) — ¢(u) _
. ‘P<———-—m )f(ul W(r) = x) du.

With arguments similar to those employed by Ferebee (1981) one can show that
the right-hand side of (54) has a continuous derivative and that differentiation
and integration can be exchanged, so
)
x

Now we insert the expression (55) for f(¢| W(r) = x). After integrating over x
we get for the first term

[Aa) q)<¢<r> - w(m/t) . < u )‘“ 1 ¢<¢<r> - wt)f/t)}o(w(t))

t¥? Vit — 1)/t t—1) t \ Jt-r)/t vt )

In the second part we change the order of integration and get the integral in (52)
since

W(r)

fw| W(r) = x)(1/V7)P(x/7) dx = f(u).

—00

In the same way one can derive (51) using (8) for the conditional density.

Let us now consider a family of stopping times
T, = inf{t > 7:W(t) = ¢,(¢)}, with T, = o if the set is empty.
We assume that the functions y, are continuously differentiable on (7, ©) and

that conditions A2-Ab of Section 2 hold, where now I, = (7, ¢,) and 7 < t, < .
Instead of Al we require

Al'. Y(r) > as a—> oo .
Then P(T, = 7) — 0. As in Section 2 one can show that P(7T, < {) — 0 and
therefore Y, (t)/v't — o uniformly on I, (cf. (11) and (12)). Examples of boundaries
which meet our requirements are

(e) Valt) =avt,

(f) a(t) = Vt(a® + log t).

They are discussed in Section 5.
First we will derive asymptotic expressions for the density f, of T, using

equation (52).
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THEOREM 3. Let assumptions A1’ and A2-A5 hold. Let
(56) 7a = 7(1 + (1/¥a(7)?)?)
where Yo + ¢/4 < p < 1. Then
fa(8) = [Aa(t)/VE + P2 ()t72/20(8)%(1 + 0(1))
6D ~(Ault)NDP(T, < )1 + 0(1)) + 0(Ra(E)E" 0 a(t)/VB)
uniformly on [7,, t,] and
fa(8) = {[Aa)/VE + Y2 (1)7%2/284(r) X1 + 0(1)]B(VE — 7 Aa(r)/7)
+ [Vr/(t = 7) = Va/2 $2 (1)7°%/2Ma(7)? ,
— Vit — 79I (1)r/20a(7) + O(L/Ya(7)?)]
S P(VE = 7 A7) /TP (Wa(8)/VE)
uniformly on (r, 7,), where Ry (t) = exp(—(¥q(t)/Vt)") for some k > 0.

(58)

Note that r, — 7. For t > 7,, f,(t) has asymptotically the same form as in the
case 7 = 0. Integrating (57) and (58) one gets approximation for P(r < T, < t).
For the examples above the integral from 7 to 7, only plays a role in a second-

order approximation.
We only sketch the proof since the methods are similar to those employed in

Section 2. Instead of (9) we use the integral equation (52). We omit the index a.
We put

(59) g(t) = tf(t)/P (¥ (t)/Vt)
and get

(60) g(t) = (A()/VO)B(h(2)) + V7/(t — T)P(R(2)) — f K(t, u)g(w) du,

where K is given in (21) and

(61) h(t) = W(r) = ¥@©)7/t)/V(E = )7/t

One can show that the integral in (60) is dominated by the other terms so that
(62) g(t) = (A®/VD)RRE)A + 0(1) + Vr/(t — T)P(h(2))

holds uniformly on I,. Proceeding as in the proof of Theorem 1 one can derive
(57). Instead of (23) one gets

f K(t, u)g(u) du = (A(t)/Vt)P(r < T < t)(1 + o(1)) + o(R(t)).

Furthermore one has
(A@&)/VO)®(h(t)) = (A(£)/Yt) = (A(&)/VE)P(T = 7)(1 + 0(1)) + o(R(t)).

The second term in (60) yields only o-terms.
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To prove (58) one has to estimate the integral in (60). For g(z) one can insert
the expression from (62). After expanding about = one gets

f K(t, wg(u) du = —(+7 y"()/2)(1 + 0(1))

. f V(t - u)/(u—r) ¢(J?— uA(r)/7)P(Vu — rA(r)/r) du
(63) ’

— (W (1)A(7)/2¥7)(A + o(1))
. f Vt — up (Nt — uA()/7)®(Vu — 7A(r)/7) du.
After integration by parts the last integral may be rewritten as
ft Vt —ue (Nt — uh(r)/7)®(Vu — 7A()/7) du

e ANES R (VESAG))

(64) + (1/A(7))? f (1/vt — w)P (Nt — uA(7)/7)®(Vu = 7A(7)/7) du

— (7/A(7)) f Vit — u)/(u — )P (Vt— uA(r)/7)
- @(Vu — 7A(7)/7) du.

It can be shown that

(@) f (1/vVt — uw)e(Nt — uA(r)/7)®(Vu — 7A(r)/7) du
5 T

= (r/A@)@(VE = TA(r)/7) = VT/20 (Nt — 7A(7)/7)].
(63), (64) and (65) together with an evaluation of the first two terms in (60) lead
to (568).

One can proceed as in Section 3 to derive approximations for the mean and
variance of T, under drift # > 0. We assume that condition A3 of Section 2 holds
on (7, ©) and that A1’ and A2-A5 hold with I, = (r, cb,) where ¢ > 1 and b, is
given by ¢,(b,) = 0b,. Then the expected value and variance of T}, are finite and
they are asymptotically of the same form as in the case 7 = 0 (see Theorem 2).

(66) EyTo = by + bayd (b2)/203 + 0(b?),
(67) Var,T, = b,/0%(1 + 0(1)).
5. Examples. As before let

T, = inf{t > 7:W(t) = Yu(t)}

where now 7 = 0. We use formulas (35) and (36) for the asymptotic mean and
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variance of T, under drift § > 0. To give approximations to the distribution
function of T, under drift 0 we integrate the asymptotic density (see (16), (31),
(57) and (58)) and evaluate the integrals. We omit the calculations.

EXAMPLE A. y,(t) = at?, 0 < p <%, 7 = 0. The assumptions of Theorem 1
hold if ¢, = 0(a¥*~%)). On (0, t,) the local second-order term dominates the
global term. We get:

_ -1/2yy| 2. 2P _ pt'*
(68) Po(T,<t)=(1— ®(at’™ ))[ o U =p)d-2p)a® (1 + 0(1))
: a’ _pg’®
(69) ET.= ;= 2 +0(),
2
(70) Var, T, = Z:‘L +0(a),

where ¢ = 1/(1 — p). (69) and (70) also hold for ¥ < p <1 if 7 > 0 (cf. Woodroofe,
1976, Chow, Chao, Lai, 1979).

EXAMPLE B. y,(t) = Vet log(a/t), ¢ > 0, 7 = 0. Theorem 1 holds if log
t. = o(log a). We get
(T1)  Po(Ta < t) = (¢/a)*[Viog(a/t) + 1/vlog(a/t)1 + 0(1)))/V2n,
(72) E,T, = (1/6%)[c log a — ¢ logza — c log(c/8%) — 1 + o(1)],
(73) Var, T, = (4c/08*)log a + o(log a),

where logza = log(log a).
EXAMPLE C. Y,(t) = v2(at + ¢), ¢ > 0, 7 = 0. Since assumption A3 of
Theorem 1 does not hold we apply (31) and get
Py(T, < t)

(74) = w(@>[(J2_a - 1/v2a(1 + 0(1)))

j:/ xTexp(—cx?/2) dx + (3/v8a)exp(—c/t)(1 + o(l))]

2/t

Formula (74) is valid for every fixed ¢. It holds uniformly for 1 < t < exp(aPe?),
where p > 3. Approximations for the corresponding crossing probabilities of a
. normal random walk are given by Siegmund (1977) and Woodroofe, Takahashi
(1982).

(75) E,T, = 2a/0% — 1/6% + 0(1),
(76) Var, T, = 8a/0* + o(a).

EXAMPLE D. ¢,(t) = ¥(t + 1)(a + log(t + 1)), 7 = 0. Although assumption
A3 does not hold it can be shown that formula (15) of Theorem 1 remains true



BROWNIAN FIRST-EXIT TIMES 141

for large t. For t = exp(e*?) the global term in (15) dominates the local second-
order term.

PO(Ta < t)

1/2
— e—a/2|:<1 — @((g_-'-lo—gt(t-'-._l_)_) ))(1 + O(I/a))

1/2 1/2
(et e ) (o £ 1))

(77)

uniformly for a” < t < e®, where c <1 and p > 0,
(78) Po(T, < ®) = Yae %1 + o(1/a))
(cf. Robbins, Siegmund, 1973; and Lai, Siegmund, 1977).
(79) E,T, = (1/6%)[a + log(a/8®) — 1 + 6% + o(1),
(cf. Pollak, Siegmund, 1975). |
(80) Var,T, = 4a/6* + o(a).
EXAMPLE E. ¢,(t) = avt, 7 = 1. Theorem 3 holds with ¢, = exp(a~%e®’?),
g > 1, and implies that uniformly for 1 + 1/a <t <t,
(81) Py(T, < t) = P(a)[(a/2)log t + a™*(2 — % log t)(1 + o(1))].
(82) E,T, = a%/0* — 1/6* + o(1),
(83) Var,T, = 4a%/6* + o(a?).
EXAMPLE F. y.(¢) = v(a® + log ¢)t, = = 1. Here Theorem 3 holds with
ty, = oo.

(84) Po(T, <t) = P(a)a(l — 1/vt) + a*(1 + 1/vt — log t/2vt)(1 + 0(1))],

(85) Po(T, < @) = ¢(a)la + 1/a + o(1/a)],
(cf. Robbins, Siegmund, 1973).

(86) E,T, = (1/69)[a® + log(a?/6%) — 1] + 0(1),
87) Var,T, = 4a2/6* + o(a?).

By solving the integral equation (9) numerically one gets approximations to the
first-exit density. This was done for Example D,

Ya(t) = V(t + 1)(a + log(t + 1))

for several values of a (5, 10, 15 and 20). We compare these numerical values for
the density f,(t) with the tangent approximation f3 (¢)

f3(t) = (Aa()/t¥)P (Yu(t)/ V)
and with the second-order approximation f&*

15 (2) = [Aa(E)/EY2 + £3292 (£)/284 ()29 (a(t)/VE).
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TABLE 1
Relative errors for the density approximations
r(f2) = supf|fi(t) — fa(t) | /fu(t):0 < t =< 100}

r(fa*) = sup{| f2*(t) — fa(¢) | /fa(£):0 < ¢ = 100}

a 5 10 15 20
r(f¥) 0.22 0.10 0.07 0.05'
r(f¥) 0.05 0.02 0.01 <0.01

TABLE 2
Numerically calculated values and approximations for the mean of T,.

a 5 10 15 20
E, 74 12.8 18.0 23.2
E¥ 8.1 13.6 18.9 24.2
E¥* 7.3 12.7 18.0 23.3

TABLE 3
Numerically calculated values and approximations for the variance of T,.

a 5 10 15 20

V. 27 50 71 93

\%4 33 55 76 97

Table 1 shows the maximal relative errors of these approximations for ¢t < 100.
These errors are independent of the drift. In Table 2 we give the numerically
calculated values E, for the mean E,T, and the approximations E}X and E}* of
Theorem 2

E} =bs, E¥* = b, + bayq (ba)/205.

The drift 6 of the Brownian motion is 1. Table 3 compares the numerical values
V, for the variance with the approximation V* = b,/62.

The tables show that the improvement of the second-order approximation is
quite large.

6. Concluding remarks. Higher-order terms.

An improved evaluation of the integral in (9) leads, under additional assump-
tions on the higher derivatives of y,, to higher-order terms for the density. The
next term in an expansion is

3 3t5/2¢,’,’(t) 3 2t9/2¢‘/l/(t)2 3 t7/2¢,;” (t) ¢a(t)
2A,(t)* Aq(t)® 2A,(t)* vt
For the examples of Section.5 all terms in the brackets are of the order of

magnitude vt/ (t)3.
Refining the techniques in the proof of Theorem 2 one can derive higher-order

(88)



BROWNIAN FIRST-EXIT TIMES 143

terms for the mean and variance of T,. Using the identities
Eﬂ(\ba(Ta) - aTa)z = EOTa
Ey(Ya(Te) — 0T.)® = 3Eo(Tatba(Ta) — 0T7)

one gets under assumptions on ;" and ¢

(89) EoTo = by + byl (52)/203 + ma/b, + 0(b3/*71),
(90) VarﬁTa = a/ag + n, + O(bf,),
where

ma = b2 (ba)/20% + b (ba) /805 + Thayq (ba)?/465
+ 5b3y” (ba)¥ " (ba) /405 + 1503y (ba) /805,
N = Thalll (ba) /205 + b2y (ba) /07 + Thava (ba)?/265.
For the examples of Section 5, m, and n, are asymptotically constants in a.
Approximations to the first-exit density for small ¢.
Let us now consider the first-exit time (1) through a fixed curve y. Applying

the results of Section 2, one can get second-order terms to Strassen’s (1966)
tangent approximation for the density f. After the space-time transformation

(91) t—a’, x—ax, a>0,
W transforms to a new Brownian motion and y becomes ¢,
Ya(t) = ay(t/a?).

The first exit-density f, at ¥, and f are related by the formula f(t) = a*f,(a’). If
the family {,:a > 0} fulfills the assumptions of Theorem 1 then as t — 0

f(8) = [A@)/E2 + " (0)t2/24(£)*(1 + o(1))
o — (A@/EPP(T < (A + o)L (W ()/V2).
Furthermore putting a = 0 in (91) and appealing to Theorem 2 one gets
(93) EyT = by + bp"(by)/203 + 0(b§®) as 6 — o,
(94) Var, T = b9/01(1'+ o(l)) as 6 — o,

where by is given by b, = y/(by) and 0, = 6 — ¢’ (by).
From (92) one can derive asymptotic formulas for the density of last-entry
times (see the proof of Theorem 3.6 of Strassen, 1966).
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