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INVARIANT MEASURES AND LONG TIME BEHAVIOUR OF
THE SMOOTHING PROCESS

By ENRIQUE D. ANDJEL!
Universidade de Sdo Paulo

The invariant measures with finite first moment of the smoothing process
are characterized in terms of the harmonic functions. It is also shown that
under some restriction on the initial configuration, the difference between the
mass at a given site and the mean of the masses of its neigbours converges in
probability to zero.

1. Introduction. Spitzer (1981) introduced several Markov processes with
an infinite number of interacting components. Among these is the smoothing
process, which can be described in the following way: a finite or countable set S
is given as well as a probability matrix p(x, ¥) on S and a collection of independent
Poisson processes N, of parameter one indexed by S. The state space of the
process is either [0, ©)° or an appropriate subset of it and its evolution is given
by this rule: when an event of the Poisson process N, occurs the configuration w
becomes
[w(y) if y#x
|Zies p(x, 2)w(2) if y=x.

The existence of the process in the whole space [0, ®)5 offers no difficulty if
S is finite. However when S is infinite some complications arise. Liggett and
Spitzer (1981) constructed the process for an infinite S in a subspace I' of
[0, ). We describe now their construction and state some related results that
will be needed later. The subspace T is obtained through a strictly positive real-
- valued function vy on S satisfying the following property: there exists a constant
M such that forally € S

(1.1) 2xes Y(®)p(x, y) = My(y).

Now T is defined as the set of elements w € [0, ©)S which satisfy
loll = Zies w(x)y(x) < oo

Note that if M > 1 and z, is an arbitrary element of S then

(1.2) v(x) = Yio M"p" (20, %)

satisfies (1.1) Furthermore if p(x, y) is irreducible y(x) > 0 for all x € S.
Throughout this paper it will be assumed that p is irreducible and v is given by

(1.2)

wx(y) =
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Once T is determined, it is endowed with the Borel s-algebra induced by the
product topology on [0, ©)5. Then .« is defined as the set of real-valued functions
fon T for which there exists a constant L(f) such that

| f(w1) = fw2) | = L(f) Zses | 01(x) — wa(x) | v(x)

for all w;, ws € T. Finally Liggett and Spitzer (1981) used finite approximations
to construct the process by means of a semigroup of linear operators S(¢) acting
on . They also proved that S(¢) enjoys the following desirable properties: For
allf€ < and w € T we have

(1.3) (a). limjo S (t)f(wl): - flw)

= 0f (w)

where Q is the natural generator of the process (ie. Of (w) =

Yes (flwe) — f(w)))

(1.4) (b). S(t)f(w) = f(w) + J; QS (s)f(w) ds
(1.5) (o). QS (s)f (w) = S(s)9f (w)

«1.6) (d). S(s)f(w) 1is continuous in s
1.7) (e). QS (s)f(w) is continuous in s.

Given a probability measure u on T, uS(t) is defined as the unique measure
such that

[ fawsen = [ sora

for all bounded f € . As usual wS(t) represents the distribution of the process
at time ¢ if the initial distribution is u. For this reason a probability measure u
will be called invariant if uS(¢) = u for all ¢ = 0. The set of invariant probability
measures will be denoted by _7 Liggett and Spitzer (1981) proved that a measure
usuchthat [ |w|du<owisin 7 ifandonlyif [ Qf du=0forallfE€ £

One of the basic problems concerning infinite systems is to determine the set
# When S = Z¢ p(x, y) = p(0, y — x) and p is irreducible it has been proved by
Liggett and Spitzer (1981) that all the invariant measures which are also invariant
under translations in Z? concentrate on,constant configurations. In this paper S
will have no structure, and we will not require measures to be translation
invariant. To exhibit a class of invariant measures we recall that a function 8 on
S is called harmonic if

B(x) = Y,es p(x, y)B(y) forall x € S.

Note that with our choice of v all positive harmonic functions 8 are in I' and the
invariance of &5, the point mass at (8, is an immediate consequence of the
statement following the definition of _Z The question that arises is whether there
are elements in 7 which are not mixtures of these measures. The following
theorem says that there are not if we restrict ourselves to measures with finite
first moment.
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THEOREM 1.8. Ifp(x,y) is irreducible, p € 7 and [ w(z) du(w) < % for some
2z € S then

f |w(x) = Xy plx, ¥)o(y) | du(w) =0 foral x€S.

A natural question to ask is whether there are invariant measures that do not
concentrate on the set of positive harmonic functions. Of course if u is such a
measure we must have [ w(x) du(w) = o for all x € S. The coupling techniques
used by Andjel (1982, Sections 4 and 6) give a negative answer to this question
if p(x, y) is recurrent, but the problem remains open if p(x, y) is transient.

To prove the theorem above we need to define another process, the potlatch
process, described in the next paragraph and introduced by Spitzer (1981). A
proposition concerning this process is stated and proved in Section 2 while the
proof of the theorem is in Section 3. In Section 2 we also obtain some information
about the long time behaviour of the smoothing process. This as well as Theorem
(1.8) follow from the proposition of Section 2 and a duality relation between the
potlatch and smoothing processes stated at the end of this introduction.

As in the case of the smoothing process, a finite or countable set S is given as
well as a probability matrix p(x, y) on S and independent Poisson processes
N,(x € S) of parameter one. For the purposes of this paper it is convenient to
construct the process on the following state space:

F={€[-1 1]% Ties A*(x) = 1 and Yies A7 (x) < 1}

where A*(x) = max{0, A(x)} and A7(x) = max{0, — A(x)}. The potlatch process
evolves like this: when an event of the Poisson process N, occurs, the configu-
ration A becomes

_JANY) + A@)p(x, y) if y#x
M(y) = {A(x)p(x, x) if y=x

This process is a modified version of the one studied by Liggett and Spitzer
(1981). It can be constructed using their method; more precisely we let

0(x) = Yn=0 M7"p"(x, x0)

for some fixed X € S and M > 1. Then & is defined as the set of real-valued
functions f on T such that there exists a constant L(f) satisfying

1FOM) = FA2) | < L(f) Sees | M (%) — Ao(x) | 8(x)

for all Ay, Az in f_ Finally using finite approximations one obtains a semigroup
S(t) acting on . and such that for allf€ < and A €T

(a) limmg—‘M= ) where T = Sues (Fh) — FV)

b SO =) + J; QS(s)f(\) ds = f(A) + J; S(s)Of(A) ds.

Given an initial distribution, one obtains the distribution of the process at
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time ¢ in the same way as in the case of smoothing process. For both processes
we adopt the following notation: if % is an initial configuration then 7, denotes
the random configuration observed at time ¢. It follows that for the smoothing
(potlatch) process E“f(w;) = S(t)f(w) for all f € & and all w € T (E*f(\,) =
S(@t)f(\) for all f € < and all A € T). This equality allows us to extend S(t)
(S(t)) to all positive functions f on I'(T')."

The duality statement connecting the two processes that will be needed in
this paper is the next proposition. We recall that v (x) is defined by (1.2).

PROPOSITION 1.9. Ifw €T, A €T and | A(x) | < cy(x) for some constant c
and all x € S, then Y.es w:(x)A(x) and Y.es w(x)\:(x) converge absolutely with
probability one and

E°| Yies w(@)N(x) | = E*| Ties w(x)Ne(x) |-

This duality relation was first mentioned by Spitzer (1981). It has been proved
in similar contexts by Spitzer (1981, for finite S) and Holley and Liggett (1981,
for generalized versions of these processes taking only positive values). Noting
that | A;(x) | = (A\*):(x) + (A7).(x) their proofs can be easily adapted to Proposi-
tion 1.9. For this reason we refer the reader to them.

2. A property of the potlatch process. The main result of this section,
Proposition (2.8), is a key ingredient in the proofs of Theorem (1.8) and Corollary
(2.15). Before stating it we introduce some notation and prove two preliminary
lemmas.

Let S, be an increasing sequence of finite subsets of S such that S, 1 S and
let

[px,y) if x,y€S,
P (% y) = 10 otherwise.

To each # we associate a potlatch process in the following way: we only consider
the Poisson processes N,, x € S, and when an event of N, (x € S,) occurs, the
configuration A (defined in S) becomes:

INY) + A@)p(x,y) if yH#x

(2.1) )\x(y) = l}\(x)p/(x, x) if y=x.

We denote by 'S,(t) the semigroup of this process.
Let 71, 72 ... be the successive times of the events of N.(x € S). Fix x, € S,

= (xq, - x,,) € S™ and t > 0, then consider the following events
E,: The sequence i, - - -, i,—; defined by
(a) l1 1

(b) r'f is the time of the first event of N, occuring after r'l" j=2,
: n — 1 satisfies r'"" <t.

E,: There exists no sequence i,, - - -, i, such that
Ta<Ti<...<71p<t
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E;: If iy, ---, i,-1 is the sequence constructed in the definition of E; then for
eachj=0, - .., n — 2 there exists no sequence ko, ky, - - -, k; such that

TR<TA< ... <7i<rin,
E,: There exists no sequence ko, &y, - - -, k.~ such that

<< <rimcy
By g(t, x0, x) we denote the probability of N, E;. Similarly r(¢, x,, X) will be
the probability of E; N Es.

IfxO’y0€S9x= (xI’ 0y xn) C Sn’ Y= (yl, “‘,ym) Esm andQ(x,y) isa
subprobability matrix on S then we let

q(x()’ X) = H?=1 q(xi—I’ xi)’ XY = (xl; sy Xny Y1y 00ty yM) € Sn+m

and
XyO = (x19 s Xn, yO) € Sn+1

It follows from the definitions of g and r that

(2.2) 8(t, %0, X) = r(t, xo0, X)
and
(203) g(t’ xO, X) + r(t$ xO’ XyO) = r(t9 xO’ X)-

Finally if 8 is a strictly positive function on S such that

Yy q(x, y)B(y) = B(x) Vx€S
then we let
q°(x, y) = q(x, ¥)B(y)/B(x).

" The new matrix g is a subprobability matrix and it will be a probability matrix

if 8 satisfies Y, q(x, ¥)B(y) = B(x) for all x € S.
Fix a positive harmonic function 3 and let

(24) fN) =X [ Ax)]|6x), ff(\) =3 A (x)Bkx), f(\) =3 A (x)8(x)
where A*(x) = max{\(x), 0} and A~ (x) = max{—\(x), 0}.
LEMMA (2.5). Ifxo € S, and

_J1-po, %) if y=z
Mo(y) |=px, y)  if ¥ # %,

then

S,(t) £~ (o) = Z51 Zxes Blxo)p” (o, X)g(t, %0, X) + Lugs, p(xo, x)B(x).

Proor. We call A(x) the mass at x; this mass may be positive or negative
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and when an event of N, occurs (x € S,) it is distributed among the neighbours
of x according to (2.1). Since S is finite, the number of events that occur up to
time t is finite with probability one. Therefore, it is possible to follow the
trajectories of all the masses jumping from the sites of S. If we start only with
the negative masses, the quantity starting at x, € S that follows the path x,, x.,
e %, (6 €S, 1 =i<n)is p(xy, X) where X = (xy, - -+, x,,). However, starting
with the configuration )\, this negative mass may have been cancelled by (a part
of) the positive mass starting at xo. In our estimate of S,(t)f"(\o) we are only
going to consider cancellings of the following type: for some sequence %1, - -+, %,
in S the negative mass starting at x, and following the path x,, - - -, x, is still at
x, when the positive mass following the path x,, x;, - - -, x, arrives at x,. Note
that' these two masses have the same absolute value p(x,, X). Hence if this
cancelling occurs both masses vanish. If other type of cancellings take place we
consider the positive and negative masses to be at the same point of S, without
cancellation. This applies also to the case x, = x;: the initial configuration ) is
considered as having at x, a positive mass of absolute value one and a negative
mass of absolute value p(xo, xo).

Note that if X = (x4, - -+, x,), g(¢, %0, X) is the probability that the negative
mass starting at x; and following the path (x,, - - -, x,) is at x, by time ¢ without
having been cancelled in the way described in the previous paragraph; therefore

SAfNo) = Tia1 Tx=tans- - e P, %1) + -+ P(Xn-1, 2a)B(x)E (L, %0, X)
+ Zses, p(xo, x)B(x).
The right-hand side can be written as:
=1 Xxes,r B(x0)p?(x0, X)g(t, %o, X) + Taes, (%0, x)B(x)

and the lemma follows.

LEMMA (2.6). If % € S, X € S™ and x, is the last coordinate of X then for any
probability matrix q

g(t, x0, X) + i1 Nvest q(xn, Y)g(t, x0, XY) < r(¢, x0, X).

ProOF. By (2.2) it suffices to show that forallm =1

F(m) = g(t, %0, X) + ZiS Tvest q(xa, Y)&(¢, %0, XY)
27 + Syesn qltn, YI(t, 20, XY) < r(t, %0, X).
This is done by induction on m. If m = 1 the inequality follows from (2.3).
Suppose now that (2.7) holds for m = N.
v F(N + 1) = g(t, x0, X) + 1 Tvest q(x, Y)g(t, %0, XY)

+ YvesV Yyes q(xn, Yy)r(t, xo, XYy).
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By (2.3) this is bounded above by
g(t, %o, X) + Tl Tvest q(xn, Y)g(t, %, XY)
+ Yyest Tyes 4 (xn, YY)r(t, o0, XY) — g(t, x0, XY)]
= g(t, x0, X) + T1 Tvest q(xn, Y)E(, %0, XY)
+ Xvest q(xn, Y)[r(t, xo, XY) — g(t, %, XY)] = F(N)
and the lemma follows by the inductive hypothesis.

PROPOSITION (2.8). For all xo € S and all positive harmonic function 8
lim, .. S(2)f(Ao) = 0
where f and o are as in (2.4) and (2.5) respectively.

PrOOF. Liggett and Spitzer (1981) used different approximations of p and
showed that lim S,(t)g = S(¢)g for all g € .2 However their technique applies to
our approximations also. Hence if

fr(A) = Y.es, A" (x)B(x), then S(t)fr(\) = llngz(t)fk(k)

Therefore by Lemma (2.5)

S(t)fi (Ao) = Tn=1 Txesr B(x0)P’(x0, X)g(t, x0, X)
and by monotone convergence
(2.9) S()f~No) = Tr=1 Txesr B(x0)p?(x0, X)g(t, %0, X)
where f~ is as in (2.4). The right-hand side of (2.9) can be written as
B(x0) Tn=i Txesr P(%0, X)&(t, %0, X) + B(x0) TX=(ay,- - xmesy PP (%o, X)

: [g(t %0, X) + Xi-1 Tvest pPlxn, Y)g(t, %0, XY)]
< B(x0) T25 Txes pP(xo, X)g(t, %0, X)
+ B(%0) Txes¥ p(xo0, X)r(t, xo, X)

where the inequality follows from Lemma (2.6).

Fix ¢ > 0 and let & be such that the hitting time of the origin for a simple
symmetric random walk starting at one is less than k — 1 with probability larger
than 1 — &. Then choose N in such a way that a random walk on S starting at x,
and with probability transitions given by p? has probability smaller than ¢ of
visiting at most k different sites after N steps. Fix X = (x,, -- -, x,) and note
that E; occurs if and only if the negative mass starting at x,, and following the
path xl, -+, %, is ahead of the positive mass starting at x, and following the path
Xo, X1, * ++, X, at any time s < 1‘"“ Now observe that the number of steps it is
ahead is one at time 0 and evolves like this: it remains unchanged as long as the
two masses are at the same site. (If X has two equal coordinates this can occur
even if the negative mass is ahead of the positive mass.) When the two masses

(2.10)
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are at different sites it increases by one with probability ¥ and decreases by one
with the same probability. It follows that the probability of E; is less than e
whenever | X | > k. Hence

Yxest: | x|>k PP(x0, X)r(t, x0, X) < ¢ Txest pP(xo, X) = e.
Furthermore from our choice of k and N it follows that

Yxest xi=k PP(x0, X) <e.

Therefore

(2.11) Sxesy pP(x0, X)r(t, x0, X) < 2e.

Since g(¢, x9, X) — 0 as t — « we have

(2.12) limy e Yxest pP(x0, X)g(t, xo, X) =0 for all n.

Now (2.9), (2.10), (2.11) and (2.12) combine into lim sup, .S (t)f~(Ao) < 2¢ B(%0).
Since ¢ is arbitrary

(2.13) lim;_.. S(t)f~ (o) = 0.
Since ), satisfies the condition of Proposition (1.9),
(2.14)  E™| T M(x)B(x)| = E°| T No(x)B:(x)| = | T No(x)B(x) | = 0.

Where the evolution of A\;(3;) is the one of the potlatch (smoothing) process and
the second equality is a consequence of 3 € _Z Since Y, \;(x)8(x) converges
absolutely we can write

2 M(®)B(x) = T A(@)]"B(x) — X [Ae(x)]7B(x).
Taking expectations it follows from (2.14) that
St)f* (o) = S(t)f~ (o)

and since f = f* + f~ the proposition follows from (2.13).

The following corollary is an immediate consequence of (1.9) and (2.8).

COROLLARY (2.15). Let p(x, y) be irreducible and w an initial configuration
for the smoothing process bounded above by a harmonic function, then Vx € S

| we(x) — Zy p(x, Y)wr(y) | =0

in probability‘as t goes to infinity.

3. Invariant measures for the smoothing process.

LEMMA 3.1. If u € 7 p(x, y) is irreducible and [ .w(z) du(w) < o for some
2 E€ S, then g(x) = [ w(x) du(w) is finite for all x € S and g is harmonic.

PrROOF. From the definition of uS(¢) and the invariance of u it follows that
J S@)f du = [ fdu for all bounded f € £ A standard truncation argument shows



70 ENRIQUE D. ANDJEL

that the same equality holds for all positive f € & In particular

f S(t)h.(w) du(w) = f h.(w) du(w)
where h,(w) = w(z), hence by (1.4) and (1.5)

f [fo S(s)Qh,(w) ds] du(w) = 0.
Therefore

f(J; S(s)(Zx p(z, x)w(x)) dS) dp(w) = f (J; S(s)w(2) d8> dp(w).

Using Tonelli’s theorem and the invariance of p on both sides of the equality we
get

t 3. p(2, x)g(x) = tg(2).
Hence
2. Pz, x)8(x) = g(2) < .
This shows that g(x) < o for all x such that p(z, x) > 0 and the lemma follows
from a standard inductive argument that uses the irreducibility of p.
PrOOF OF THEOREM (1.8). Fix xo € S and let
v(w) = w(xo) = Tyesp (%o, y)w(y).
Then

flv(w)l du(w) =fS(t)lv(w)I du(w) =fE“’|v(wz)| du(w)

=fE°’|Z wi(¥)No(y) | du(w)

where Ao(y) is as in Proposition (2.8). As a consequence of (1.9) this last
expression is equal to

[ Bz eom 1 duto) = [ £ B NG dute

By Lemma (3.1) the right-hand side is equal to ¥ E™|\.(y)|8(y) for some
positive harmonic function 3. By Proposition (2.8) this last expression converges
to zero as t goes to infinity. Since [ | v(w) | du(w) is independent of ¢ we must
have

f |v(w)] du(w) =0

and the theorem is proved.
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