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SELF-SIMILAR PROCESSES WITH STATIONARY INCREMENTS
GENERATED BY POINT PROCESSES!

BY GEORGE L. O’BRIEN AND WIM VERVAAT
York University and Katholieke Universiteit, Nijmegen

A real-valued process X = (X(t))ier is self-similar with exponent
H(H-ss), if X(a-) =4 "X for all @ > 0. The present paper studies H-ss
processes Xy with stationary increments that can be represented for ¢t > 0 by
Xu(t) := [ |x|® sgn x I1((0, t], dx) =: [ x TI¥((0, ¢}, dx), where II is a point
process in R? that is Poincaré, i.e., invariant in distribution under the
transformations (¢, x) — (at + b, ax) of R% In particular, Xy allows such a
representation if it is a jump process, I1 ¥ being the graph of its jumps. Several
examples of Poincaré processes II are presented. These lead in many cases to
new examples of H-ss processes Xy with stationary increments. Furthermore,
it is investigated for which H the integral expression for Xy converges,
conditionally or absolutely. If II has finite intensity EII, then (1, «) is wpl
the set of H for which Xy converges absolutely. If EII is not finite, then the
situation is more complicated, as is the case for conditional convergence.
Several examples illustrate this. In the final section the integrator II in the
expression for Xy is replaced by II — EII, which gives conditional convergence
for more H in (0, 1).

1. Introduction and basic results. In the present paper, stochastic proc-
esses are random R-valued functions X = (X(¢)):er on R. Two stochastic
processes X and Y have the same distribution or “are versions of each other”
(notation X =, Y) if they have the same finite-dimensional distributions. A
process X is self-similar with exponent H > 0 (H-ss) if

(1.1) X(a-) =4 a¥X(-) forall a>0,
and has stationary increments (is si) if
(1.2) X(-+b)— X() =¢ X(-) — X(0) forall bER.

The reader is referred to Vervaat (1985) for a more elaborate introduction to
H-ss si processes. In particular it is shown there that only trivial processes are
admitted by extension of the definition to all H € R, that (in the present case
H > 0) X(0) = 0 with probability one (wpl) and that X is continuous in
probability. Thus we can and do always take a separable, measurable version for
X.
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We wish to investigate the special class of H-ss si processes for which X(b) —
X(a) can be represented as the sum of the heights of all points above (a, b] of a
point process in the plane. This is a natural approach in case X is a jump process,
but the above class is actually somewhat wider than that.

In order to clarify our approach, let us first consider any jump process X, i.e.
a right-continuous process whose left-hand limits exist everywhere, such that

(1.3) X(b) = X(@) = Sacuss (X(u) = X(u-))

for all a, b € R, a < b. Note that the series on the right-hand side of (1.3) has
only countably many nonzero terms. To simplify things further, assume for now
that the series converges absolutely wpl for all a, b € R, a < b, so that we need
not worry about the order of summation. If X(0) = 0 wp1, which is the case if X
is H-ss si, then (1.3) can be rewritten as

(1.4) X(¢t) = (sgn t) Yues, (X(w) — X(u-)),

where
I’(O t] if t>0,
(t, 0] if t<O,
l if t=0.
We are going to describe the sample paths of X in the same way as has been
a tradition since It6 (1942) for processes with stationary independent increments
without normal component. Set

II:= {(t, x) €R X (R\{0}): x = X(¢) — X(¢t-)}.

Then II = IIx is a random countable subset of E := R X (R\{0}). We call II the
saltus process of X. With some abuse of notation, we use the symbol IT and the
term “point process” to refer both to the random set II and to the integer-valued
‘measure counting the points of II. So II1(B) = #(II N B) for Borel sets B in E
and two ways of rewriting (1.4) are

X(t) = (sgn t) TunennuxrX

(1.5)
= (sgn t) J; _L x I (du, dx).

We fit II into the standard set-up for point processes (cf. Kallenberg, 1976) by
noting that II is Radon (= finite on compact sets) on the Borel field on
R X (R\{0}), where R := [—, ].

We next state how properties (1.1) and (1.2) of X translate into properties of
II. The proof is straightforward.

LEMMA 1.1. (a) Xissiiff Il =4 I1 + (b, 0) for all b € R.
(b) Xzs H-ss sz

=, {(at, a¥x):(t, x) € II} for all real a > 0.

In other words, X is si iff IT is invariant in distribution under the horizontal



30 G. L. O'BRIEN AND W. VERVAAT

translations
(1.6) (t, x) —» (t+b,x) forall beER,
and X is H-ss iff Il is invariant in distribution under
1.7 (t, x) — (at, a¥x) for all a € (0, »).
For real x # 0 and « we define x'™ by -
(1.8) = |x|*sgnx=x|x|*L
If II is a point process in E, then we set
I := {(¢, x1): (¢, x) € II}.

If I1 is invariant under the transformations in (1.7) then I1¢ is the saltus process
of an aH-ss process, provided that the right-hand sides of (1.5) converge abso-
lutely wpl with II* instead of II. In particular, it follows that all saltus processes
satisfying (1.6) and (1.7) can be written in the form IT¥, where II is a point
process in E which is invariant in distribution under the transformations

(1.9) (t, x) — (at + b, ax) (a, b E R, a>0)

of E. We have obtained (1.9) by combining (1.6) and (1.7) with H = 1. The
transformations (1.9) arise in connection with Poincaré’s geometry on the half-
plane (cf. Lehner, 1964 pages 78-82). Thus, we have the following definition
which will henceforth be used as our starting point.

DEFINITION 1.2. A point process II in E is called Poincaré if II is invariant
in distribution under (1.9) and II is locally finite in R X (R\{0}) wpl.

For the most part, the point processes considered in this paper allow only
points with multiplicity 1. All definitions and results can easily be extended with
minor modifications to the case of higher finite multiplicities. This extension is
necessary for certain particular cases of the construction in Section 3.5(d).

We will investigate those H-ss si processes which can be expressed in the form

(1.10) Xy(t) = (sgn t) J; j};\{o’ xIM¥(du, dx) = (sgn ¢) J;J];\m *™1I(du, dx),

where II is a Poincaré point process. We recall that the integral in (1.10) can be
expressed as a sum, as in (1.5).

The local finiteness restriction in Definition 1.2 is included because without
it the terms of the sum in (1.10) cannot converge to zero for any H so that (1.10)
diverges. There may however be infinitely many points in I; X R. Apart from a
trivial case, this is even always so, as the next lemma tells us.

LEMMA 1.3. If 1 is a Poincaré point process, then wpl either Il = & or
{t: (¢, x) € II for some x € R} is dense in R.

ProOF. We adapt an argument used in the proof of Theorem 2.2 of Vervaat
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(1985). For some interval (¢, d] with ¢ < d, let p := P[II((c, d] X R) = 0]. By the
invariance of Il under (1.9) with b = —a(c + d)/2, we have

PII(R X R) = 0] = limyP[II((a(c — d)/2, a(d — ¢)/2] X R) = 0] = p,

which implies the result. O

We will at various times make statements of the form “wpl either A or B”, as
in the conclusion of Lemma 1.3. They mean that (A U B) = 1 but do not
exclude the possibility that P(A) < 1 and (B) < 1. The case Il = G in the
lemma corresponds to Xy = 0 in (1.10). This trivial situation will be avoided or
excluded in most results.

We note that the transformations (1.9) leaves the upper and lower half-planes
of E invariant. Thus the restrictions of II to the two half-planes may exhibit
completely different forms.

If (1.10) converges absolutely for all ¢ wpl (which will be seen to be true if
there is convergence wpl for any particular ¢ # 0), then Xy is obviously a jump
process whose paths have locally bounded variation (Ibv). We have observed that
every H-ss si jump process X with absolutely convergent sums of jumps can be
expressed in the form (1.10), where II satisfies the requirement that IT1¥ is the
saltus process for X. In this case each vertical line in E contains at most one
point of II, but we do not impose this condition in general.

We also wish to consider the situation where (1.10) converges conditionally
wpl. The order of summation is as follows: points (u, x) of II N (I, X R) are
taken in order of decreasing absolute heights and those points with the same
absolute heights are lumped together as a single term. Thus (1.10) is understood
to mean

Xu(t) = (sgn ¢)lim,}o ff 11 (dx, dx)
Iy YR\(—¢,e)

= (sgnt )limelo Z(u,x)eﬂﬁ([txlm\(—c,c))xTH-

If (1.11) converges wpl for each separate ¢, then (1.11) determines a consistent
system of finite-dimensional distributions of Xy which satisfy (1.1) and (1.2). If
in addition Xj has a version whose sample paths have lbv, then Xy can also be
obtained from (1.10) via its saltus process, so we are mainly interested in the
case when the paths of Xy do not have lbv.

In Section 2, we investigate for which H there is absolute convergence in
(1.10). If IT has finite intensity, this occurs iff H > 1. Examples of Poincaré point
processes in E are presented and reviewed in Section 3. In Section 4, the
convergence of (1.11) is investigated. In most cases there is an H, = 0 such that
(1.11) converges wpl if H > H, and diverges wpl if H < H,. Section 5 studies a
special tractable case of conditional convergence, provided by symmetrizations
of Poincaré point processes. Section 6 contains a class of examples which show
that each H. € [0, 1] may occur.

At this point it is good to notice that the processes Xy in (1.10) and (1.11)
have stationary independent increments if II is Poisson with Poincaré intensity,
s0 Xy is strictly stable (cf. Section 3). Recall that a process X is stable if X has

(1.11)
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stationary independent nondegenerate increments and there exist reals c(a) and
d(a) with d(a) > 0, for which

(1.12) X(a.) =¢d@)X + c(a) (a>0).

It is known that d(a) = a¥ for some H € [\, ) (cf. Feller, 1971, page 170) and
that all these H indeed occur. We call X strictly stable if c(a) = 0 (so that X is
H-ss). Note that H is the reciprocal of the stability exponent, as it is usually
defined in the literature. In (1.10) with absolute convergence we obtain all strictly
stable processes with H > 1. In (1.11) we obtain in addition all symmetric stable
processes with %2 < H =< 1. One obtains all stable processes with H > %, if II in
(1.11) is replaced by I — EII for small values of x and a deterministic drift is
introduced. (The case H = Y, corresponding to Brownian motion, cannot be
obtained this way, since Brownian motion has continuous sample paths.) A
similar trick is applied to the general case with II not necessarily Poisson in
Section 7. In this way we obtain a wider class of si processes satisfying the same
self-similarity relations as stable processes. Some but not all of them are H-ss.

An important and major novel point in the present paper is that many other
non-Poissonian II are possible in (1.10) and (1.11). There are even cases with
almost deterministic dependence between the jumps of Xz. Examples are given
in Sections 3 and 6. This aspect of the paper strongly mimics some earlier results
for ss stationary extremal processes in O’Brien, Torfs and Vervaat (1984+).

2. Absolute convergence of jumps.

Intensity measure. Let II be a Poincaré point process in E (cf. Definition
1.2). Its intensity or intensity measure is the (deterministic) measure EII, defined
by (EII)(A) := E(II(A)) for Borel sets A in E. Clearly EII is also Poincareé, i.e.,
invariant under (1.9). By considering EII on rectangles one finds that

_ Jesdt dx/x® if x>0,
(2.1) EIl(dt, dx)= {c-dt dx/x* if x<0,

where c,, c_ € [0, ] and ¢, + ¢_ > 0 (to avoid the case IT = & wpl). We say that
EII is finite if ¢, + ¢- < o, otherwise it is infinite. The right-hand side of (2.1)
will be abbreviated to c. dt dx/x>.

The domain of absolute convergence. Let II be a Poincaré point process in E,
and consider Xy as in (1.10), so that for I := (a, b] C R

(2:2) Xu(b) — Xp(a) = f

R\{0}

xMI1(I, dx) = f *xIT#(I, dx).
R\{0}

We now want to vary I and H. If we keep H fixed, and consider the events thav
the right-hand sides of (2.2) (which are, in fact, random series) converge abso-
lutely for various I, then it follows by an argument like that used in the proof of
Lemma 1.3 that wpl either (2.2) converges absolutely for all bounded intervals
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I C R or (2.2) converges for none of them. The set &, of H for which there
is absolute convergence on one fixed I has the form &, = (H,, ©), [H,, ®) or &;
&, is random and depends on the sample point w, but except for a set of w of
zero probability, does not depend on I. We call &, the domain of absolute
convergence of II, and H, := inf &, the absolute convergence boundary of II.

Obviously, &, itself (not only its distribution) is invariant under the transfor-
mations (1.9) applied to IL. It follows that &, is constant if II is ergodic, i.e., if
the probability distribution of II is trivial on the (1.9)-invariant o-field (cf.
Section 2.6 of Vervaat, 1985). As most examples in practice are ergodic, unless
specifically set up to violate this condition, it is no surprise that &, usually is
nonrandom.

Another approach for getting rid of a nonconstant & is the following. Since
II is Poincaré and &, is (1.9)-invariant, the regular conditional distributions of
11 given & are (1.9)-invariant. (They exist, since the space of all Radon measures
on the Borel field of R X (R\{0}) is Polish). These conditional distributions, of
course, have <, constant.

We now can formulate the main result of the present section.

THEOREM. 2.1. Let II be Poincaré and 11 # @ wpl. Then

(a) S%a C (]-a °°) wpl,
(b) & = (1, ©) wpl if EII is finite.

REMARKS. If EII is infinite, then &, can have any form (H,, »), [H,, ) or
@ (provided &, C (1, ®)). A class of examples with &, = (H,, ») for any H, €
(1, ) is presented in Section 5.2 of Vervaat (1985).

Theorem 2.1(a) is in fact a consequence of Theorem 3.3 in Vervaat (1985),
stating that no H-ss si process with H < 1 can have lbv unless H = 1 and
X(t) = tX(1). Nevertheless we will give here an independent proof, as it will be
used again in the proof of Theorem 4.3 and introduces techniques that we expect
to become standard in this field.

Theorem 2.1(a) and Vervaat’s (1985) Corollary 6.3 combine to give a new
proof that no H-ss si process with H < 1 has lbv. Let X, be an H;-ss si process
of Ibv with H; < 1. Then select H, > 1 with H;H; < 1 and a nondecreasing
H,-ss si jump process X, (for instance, strictly stable), independent of X;. Then
X; ° Xp = (X1(X2(t)))ier is a jump process and has lbv, but also is H; H;-ss and
si. This contradicts Theorem 2.1(a).

PROOF OF THEOREM 2.1. We will prove the theorem under the assumption
that c_ = 0, i.e., that I C E, := R X (0, ). It is easy to deduce the general result
from this case. Consider (2.2) with I = I, = (0, 1]. Since II is finite on I X
(1, ), we have wpl that H € &, iff

Y := f I (I, dx) < .
©1
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If H> 1 and EII is finite, then
EY = f coxlde/x?=c,(H-1)"'< o
©1]

so Y < oo wpl. Thus (1, ») C &, if EII is finite, and (b) follows once (a) is proved.
To prove (a), it suffices to show 1 & &, wpl. Fix an integer a > 1 and set

Yn:=f le(I,dx)9 for n=1929""
(a™",a™"+1)

Then Y = Y-, Y,.(in case H = 1) and

Y. = f f a"xII(a™™ dt, a™" dx)
(0,a") v(1,a]

=5a" f f xII(dt, dx) = a™ f xI1((0, a™, dx),
(0,a") v(1,d] (1,a]

since II is Poincaré. Set

Zy :=f xI((k — 1, k], dx) for k=1,2 ...
(1,a]

Then
(2.3) Y, =sa™ Xi, Zs

and (Z,)%-, is a stationary sequence since II is Poincaré. By the Birkhoff ergodic
theorem for nonnegative random variables, it follows that

(2.4) a™ J: 1 xI1((0, a"], dx) = a™ Yir, Z, —E’Z, wpl,
l,a

where _7 is the invariant o-field for the shift of (Z,)-;. By (2.3) and (2.4), Y,
converges to E“Z; in distribution. Applying the Portmanteau Theorem (cf.
Billingsley, 1968, pages 11-12) to the distributions of the nonnegative random
variables Y, and E-Z,, we obtain, for any é > 0,

p=P[Sm, Y, <] =P[Y, > 0] <lim,..P[Y, <6 for k=n]
< lim sup,_.P[Y, < §] = P[E’Z, < §].
Since all Z; = 0 wpl, we obtain
Pp<PEZ,=0=P[Z,=2Z,=-..- =0] = P[II(R: X (1, a]) = 0].
Since this holds for all integers a > 1, we have
p = P[I((0, ») X (1, )) = 0].
éince II is Poincaré, we have for ¢ > 0 and real b:
p = P[IL((b, ) X (¢, %)) = 0].
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Letting ¢ | 0 and b — — we deduce that
p=<=P[I=0J]=0,

which proves (a). 0

3. Examples. In this section we first describe two basic examples of Poin-
caré point processes. Using (1.10), these each lead to H-ss si processes. We then
list a variety of procedures for constructing other examples by modifying or
combining previously constructed examples.

3.1. Poisson Poincaré processes (strictly stable processes). Let II be a Poisson
process in E = R X (R\{0}) with intensity c.dt dx/x® (0 < ¢y + c_ < ®). Then
Xy as defined in (1.10) does not only have stationary, but also independent
increments. So Xy is strictly stable with exponent o = 1/H, whenever convergent
(cf. discussion around (1.12)). The theory of Section 2 specializes to well-known
facts in this case. From Theorem 2.1(b) it follows that Xy has lbv iff H > 1. The
set of Xy to which this applies is the collection of all strictly stable processes
with index o € (0, 1). In the particular case that ¢, = c_, the Poisson process IT
can be thought of as the symmetrization (cf. Section 5) of a Poisson process in
E, == R X (0, ©) with ¢, doubled. In Corollary 4.2(a) we will see that Xy
converges conditionally (but not absolutely) wpl iff %2 < H < 1. In this way we
obtain the symmetric stable processes with 1 < a < 2, and rediscover the fact
that their sample paths have nowhere bounded variation.

A variation of (1.10), which leads in the case II is Poisson to all stable
processes, is studied for Poincaré II in Section 7.

3.2. The g-adic lattice process. Consider the point process in R? obtained by
choosing one point (V, U) at random in [0, 1) X [0, 1) and then placing a point
at (V+ k, U + n) for all k, n € Z. Among all translation-invariant point processes
in R?, this one has the least randomness in the sense that the position of any
one point determines the position of all points. The point process II in E, that
we are now going to describe is a Poincaré process with a similar albeit slightly
weaker dependence between points; the position of one point (¢, x) of II deter-
mines the position of all other points of IT at or below level x(i.e., ordinate in the
t — x plane) and leaves only countably many possible positions open for the
points above level x. Thus II is very different from the Poisson process described
in Section 3.1.

The requirements that IT be Poincaré and that the randomness be minimal
lead us to try the following construction. First, let the points of II all lie at one
of the levels cgV*", n € Z, where c is a positive real, g is an integer greater than
1, and U is uniformly distributed over [0, 1). Second, let the points of II which
are at level cgV*" for some particular n have abscissas (V, + k)gU*", k € Z, where
the V,’s are uniformly distributed over [0, 1) and the collection of V,’s is
independent of U. Finally, let the V,,’s be related in such a way that each point
at level cgU*"*! has the same abscissa as a point at level cgU*"; this yields the
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condition
(3.1) Vi = g_l(Vn + En);

where the £,’s are independent and uniformly distributed over {0, 1, ---, g — 1}.
Note that V,,,; determines V, and £, and that for given V, there are only g
possible values for V,.;. In the following formal definition, V, is expressed in
the form

(3.2) Vo= 371 87

Thus, each V, has a uniform distribution and (3.1) holds.

DEFINITION. Let g > 1 be an integer and let ¢ be a positive real number. Let
U and &, j € Z, be independent random variables such that U has a uni-
form distribution on [0, 1) and each £; has a discrete uniform distribution on
{0, 1, --., g — 1}. Define V,, n € Z, by (3.2). Then define the g-adic lattice
process by

O :={(k + Vg, c)g/*"™ k, n € Z}

3.3
3.3) = {(kgU*" + ¥o2l, gU*t, cgU*™): k, n € Z}.

The g-adic lattice process will play a role in several other examples. We note
that the value of U determines the levels of the points of II, . and the spacings
between the points at each level, while the values of ¢, # € Z, determine the
exact positions of the points, once the levels and spacings are decided. Figure 1
displays a realization of the triadic lattice process Il;;.

Mg,c: 9=3,c=1 THE g-ADIC LATTICE PROCESS

3|+U

3U

3-|+U
324U

50 0 0 0 0 0 0 0 A 5 G 6 5 O B S S S £

3r3+U vrirrbrhrhrhrbrrh T
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THEOREM 3.3. Let I, be a g-adic lattice process in E, := R X (0, ©). Then
(a) I,.is Poincaré with finite intensity

(3.4) EllL,.(dt, dx) = c(x®log g)'dt dx;
(b) I,.is ergodic.

COROLLARY 3.4. The processes Xp, H> 1, as defined in (1.10) with II = I,
are nondecreasing H-ss si jump processes.

We will show that in fact II,. is ergodic with respect to the set of transfor-
mations {II,. > all,.: a > 0} and hence is ergodic in the sense defined in Section
2. (It follows from the proof that we need only show that II,. is ergodic with
respect to the transformations II,. — all, either for all a of the form a = g" for
r rational or for a = g and a = g" for one irrational r.) We note that Il, is not
ergodic with respect to Il — IL,. + (b, 0), b € R, as the whole ¢-field generated
by U is invariant under these transformations.

It is possible to prove II,. is Poincaré by considering the effect of the
transformations (1.9) either on the point process itself or on the random variables
U and ¢ = (&)rez. We find it most convenient to take the latter approach here.

ProoF OF THEOREM 3.3. Without changing the distribution of II,. we can
take as underlying probability space the compact metric group G: = T' X T', where
T:=R/Z and I': = (Z/g)%, with Haar probability measure [P and generic element
w = (U, £) = (U, ({&)rez). The mapping
(3.5) w > I e(w)
~ from G to the set of realizations of Il,. in E. is one-to-one (except for a null set)
" and measurable. The probability > = A X u? where A\ is Lebesgue (uniform)
measure on T and p is the discrete uniform probability on Z/g. By definition, P
is invariant for all translations in T in the sense of the addition modulo 1 in T
(combined with the identity relation on I'). In addition, I and the associated
probability measures P on T obtained by conditioning on U are invariant under
the shift to the right in T

(SE): = £r1, KEZ.
Define addition with carry over in T' as follows:
1(- + E(O) = E(l)
where, modulo g",
Tl (£ + £0)g = 30 £ g7 E [0, g7)
for all n € Z, with the probability that £ = g — 1 for all sufficiently small 7

excluded.
(a) The mapping II,. — all,, with a = g™*", m € Z, r € [0, 1) corresponds to
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the transformation
U U+ rmod 1,

[Sm if 0sU+r<1
(8.6) E20smg if 1=U+r

on G, which leaves [P invariant. The mapping I, — II, . + (b, 0) corresponds to
the transformation

U— U,
g g+ g7V, jEZ

which leaves PV invariant for each U € T'; hence it also leaves P invariant. Thus
IL, . is Poincaré.

Let I X J be a rectangle in E. with J C [cg", cg"*") for some n. Since U has a
uniform distribution, the probability density function of the random level cgV*"
is (x log g) 7" for cg™ < x < ¢cg"*™. Thus, (3.4) follows from the calculation:

(3.7

ElL,(I X J) = J; E[I.(I X J)|cgV*" = x](x log g)" dx

- f <cx—1 f dt)(x log g)~" dx
J 1

- f dt f cx~*(log g)~" dx.
I J

(b) Let = denote equality modulo null sets. Let A be a Borel set of realizations
of I, such that

B: = {w € G: I, (w) € A} = {all,.(w) € A}.

We will show that A has probability 0 or 1, or equivalently that the Borel set B
has [ measure 0 or 1. Note that B is invariant under the transformations in

(3.6). Set
BU={t€T: (U, £) € B

for U € T. Then invariance under (3.6) with r = 0 and m = 1 yields SBY = BY
for almost all U € T. Since the shift S is ergodic in (T, u%), we see that BY = &
or I for almost all U € T. Thus, we have

B=T,xT

where T,: = {U € T: BY = T'}. Applying (3.6) with m = 0 to B, we see that
Ty=Ti+rmod1lforallreETsoTy=BorT.ThusB=JorG.0

There are many variations of the g-adic lattice process which are also Poincaré
and érgodic. The simplest of these is obtained by deleting all the points of Il
which lie directly below some other point of IL,.. This amounts to adding the
restriction k £ £,(mod g) to the sets given in (3.3). The intensity of this modified
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process Il is
EIl,.(dt, dx) = (g — 1) 'Ell,.(dt, dx) = c(g — 1)(x% log g) " dt dx.

The effect of this modification on Xy (t) for any H > 1 is merely to multiply it
by (1 — g7¥). We can obtain the same H-ss si process by changing the value of c.

A more substantial variation of Il,. is obtained by choosing the V,’s to be
related in some way different from (3.1). The easiest example is that of inde-
pendent V,’s. In this case, there is no need for g to be an integer. Further
variations can be obtained by choosing the spacings between points at each level
and the logarithms of the levels according to stationary renewal processes.

3.5. Variations and combinations. So far, we have obtained two classes of
examples of Poincaré processes, one of them new. The next list will make it clear
that there are many more examples and consequently many different H-ss si
jump processes. The list is far from complete. Any procedure which constructs
one point process from another in a way which is (1.9)-invariant yields a Poincaré
process if the input is Poincaré. In particular, note that the various procedures
described below can be applied successively in the same example, to obtain yet
more complex Poincaré processes.

(@) Superposition. Take the union of two different Poincaré point processes
II, for instance a Poisson process and a lattice process, or two lattice processes
with different g. The union is Poincaré if the two composing processes are
independent. Even some dependence is allowed. For example, the two processes
can be lattice, generated by two independent copies of (£)rez but by the
same U.

(b) Thinning. Let I1,(p) be obtained from the lattice process II,;,, by deleting
each point of Il, ;,, independently with probability 1 — p and maintaining it with
probability p. The point processes Il,(p) have the same intensity as II,; and are
Poincaré. It follows by Theorem 8.4 of Kallenberg (1976) that II,(p) converges
in distribution to a Poisson process with the same intensity as p | 0.

(c) Interaction. Let V be a neighborhood of (0, 1) in E,. Then
Vie = (t,0) + xV = {(t + xs, xy): (s, y) € V} for (t x) € E.

defines a system of neighborhoods in E, that is (1.9)-invariant. Let II be Poincaré
in E,. Remove all points (¢, x) of II for which there exists some (s, y) EII N V,,
with (s, y) # (¢, x). The resulting point process is again Poincaré. In particular,
one can take for V,, some set which depends only on a Poincaré distance
(a metric which is invariant under (1.9)) from (¢, x). As an alternative to this
interaction between points of II, one can also have a similar type of interaction
between two independent (or at least “jointly Poincaré”) Poincaré processes.

(d) Subordination. Let each point of a Poincaré II (the “primary points”)
generate a cloud or cluster of points (the “secondary points”) around it. The
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clusters may be random. They should be transformed in a way which depends on
the location of their primary points in order to preserve Poincaréness. To make
this more specific, we first observe that we may enumerate Il in a measurable
way, by writing

(3-8) o= {(tj’ xj): n= 13 21 ° }

in such a way that each (t;, x;) is a random vector (cf. Kallenberg, 1976, pa;:g:e 11).
Now let i, k2, - - - be independent identically distributed point processes in E
with («;)j=; independent of II, and define II’ as a union of random sets:

3.9) I = U;’;l [(tj, 0) + ijj].

Then II' is also Poincaré provided it is locally finite in E wpl. We call I’ a
subordinated process of II in this case.

There are a few special cases of particular interest. If P[x, = {(0, 1)}]] = p =
1 — P[k, = J], then I’ is a thinned process of the type discussed in Example
3.4(b). If P[x, = {(0, 1)}] = P[xn = {(0, —1)}] = Y%, then II’ is the symmetrized
process discussed in Section 5. If P[(0, 1) € «,] = 1, then II C II’ wpl.
Subordination gives a convenient way of constructing locally finite Poincaré
point processes with infinite intensity. We obtain such a II"’ if «,(E) < o wpl
and E (k, N K) = » for some compact set K C E.

There are two important generalizations of the subordinated processes. Under
some circumstances the point process I’ defined by (3.9) is a Poincaré point
process even if there is dependence among the «,’s and II. A particular example
of this is considered in Section 6. Also, a subordinated process is a special case
of a random measure subordinated to a Poincaré point process (cf. Vervaat, 1985,
Section 4).

~ (e) Composition. If X, and X, are independent ss si processes with self-
~ similarity exponents H, and H,, then X; © X, := X; (X (t)).er is Hy Ho—ss and si
(cf. Vervaat, 1985, Corollary 6.3). If X; and X, are both obtained from Poincaré
processes in E,, then so is X; © X,.

(f) Stripes. Let U be uniformly distributed on [0, 1), independent of a
Poincaré II. Delete all points (¢, x) of II with log | x| € Upez(k + U + (0, %))
and maintain all others. The resulting point process I1’ is again Poincaré. Note
that :

P[O'(R X [1, e¥*) = 0] = % > 0,
although
EII'(R X [1, %)) = oo,

So in general it is not true for Poincaré II with finite EII that II(B) = o wpl (or
even II(B) > 0 wpl) if EII(B) = o (B Borel in E). In the case of Poisson II,
EII¢(B) = o« implies that II(B) = c wpl. If II is any Poincaré process and B is
any set in E, for which there exists a sequence of transformations V,, as in (1.9)
such that V,(B) 1 E., then EII(B) = c implies that I1(B) = « wpl. Examples .
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of such B are the sectors
B={(ty+1t x+x):0=<x=<ct}
where (¢, x0) € E,, ¢ € (0, ).

(g) Doubly stochastic Poisson processes. Let A be some Poincaré random
Radon measure on E. Let II be the doubly stochastic Poisson process ‘with
intensity A. Then II is Poincaré. As a particular example, let II’ be Poincaré and
let A be a function of a Poincaré distance to the closest point of I1"’.

4. Conditional convergence. Let II be a Poincaré point process in E :=
R X (R\{0}). In this section, we investigate the convergence of Xy(t), which is
interpreted throughout the section to mean convergence of the limits in (1.11).
Recall that the terms of the sum in (1.11) are arranged so that they are
nonincreasing in absolute value.

Suppose Xy(t) converges wpl for some t 7 0. Since II is Poincaré, it follows
that for all ¢ separately Xy (t) converges wpl. It also follows by a Fubini-type
argument, as on page 113 of Lamperti (1966), that wpl Xy (t) converges for all ¢
simultaneously except at a random Lebesgue null set. This leads us to define the
(random) domain of conditional convergence in a way which does not depend on
any particular choice of ¢; namely, we let

&, = {H > 0: Xy(t) converges for all ¢t outside a Lebesgue null set}.

It is also useful to consider the domain of locally uniform convergence &,
defined by

, = {H € &,: Xy(t) converges locally uniformly in ¢
as ¢ |, 0 through some sequence}.

The interest in &, is derived from the following fact: if H € &, then the sample
path Xjy is right-continuous and possesses left-hand limits everywhere (that is,
Xy € D(R)). We cannot do so well with &,. Examples such as fractional processes
(Vervaat, 1985, Section 5.4) cause us to doubt whether H € &, wpl even implies
that Xy (t) converges for all t € R wpl. Some of these self-similar processes are
nowhere bounded wp1, which precludes the possibility of locally uniform conver-
gence.

Recall that absolute convergence of (1.10) automatically entails locally uniform
convergence. Thus we have

(4.1) ¥, C ¥, C ..

It is obvious that &, and &, are invariant under the transformations (1.9) applied
to IT; hence &, and &, are constant wpl if II is ergodic. The following classical
lemma is useful for determining the form of &; and &,,.

LEMMA 4.1. Let T C R. Let (f,)n=1 be a sequence of real-valued functions on
T such that Y, f.(t) converges uniformly on T, | f.(t)| is nonincreasing in n for
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all t and | f,(t) | is bounded on T. Then ¥, f.(t)" converges uniformly on T for
B8>1.

PROOF. Apply Abel’s test for uniform convergence (cf. Apostol, 1974, pages
248-249) with f, as at present and g, = | f,|*71. 0

PROPOSITION 4.2. &, and &, both have the form [H, »), (H, ) or @, wpl.

ProOF. We prove the result for all sample points II outside the null set on
which II is not locally finite in R X (R\{0}) (cf. Definition 1.2). We also exclude
the trivial case I = &. Suppose H € &,. For any t # 0, we may express Xy(t) in
the form

Xnu(t) = (sgn t) By (%),
where | xj41(t) | < | x;(t)| for all j and t. Also | x,(t)| is locally bounded as a
function of ¢. (Incidentally, for each j, | x;(¢) | is a step function of ¢ with infinitely
many steps near ¢t = 0.) The conclusion that 8H € &, for all 8 > 1 follows by
Lemma 4.1 with T ranging over all compact sets in R, once we observe that

Xen(t) = (sgn t) T2y (x(¢)) "M = (sgn t) T2 ((x;(2)) )1,

The result for & follows similarly by considering singleton sets 7. 0

Recall from (2.1) that the intensity EII of a Poincaré process II is determined
by constants ¢, and c-. The following theorem shows that unless ¢, = ¢_ no
processes can be obtained by conditional convergence that were not already
obtainable by absolute convergence.

THEOREM 4.3. Let Il be a Poincaré point process for which c.# c_. If H € &,
- wpl then H € &, wpl.

Proor. We first show that H > 1. Follow the first part of the proof of
Theorem 2.1 (a), with a = 2 and the changes

Y. = f xI1 (1, dx)
n (2-n’2—n+llu[_2—n+l’_2-n) ’ ’

Z, = f *I (I, dx).
(1,2}U[—2,-1)
Since ¢+ # ¢, at least one of them is finite, so
2
B Z = (c+—c_)f xldx#0
1
is well-defined although possibly infinite. Hence P[E“Z; # 0] > 0 whereas

Y, —4 EZ;. Thus, P[1 € &,] < 1, which implies that H > 1. If ¢, and c_ are
both finite, then H € &, wp1 by Theorem 2.1 (b). If one of ¢, and c_ is infinite,
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say c,, and the other is finite, then the contribution to Xx(¢) from the lower
half-plane converges (since H > 1). Since H € &, wpl, the contribution from the
upper half-plane must converge wpl, so H € &, wpl in this case also. [

The examples in Sections 5 and 6 all have ¢, = c-. In Example 6.2(b),
., = &, wpl but in most other examples, the two sets are distinct wpl. |

It is not true in general that if ¢, # c_ then &, = & wpl. To see this, let II,
be a Poincaré process with ¢, # c- and &, = &, = (1, ©) wpl and let II, be a
Poincaré process with ¢, = ¢ < ® and & = (%, ) wpl. Examples of such
Poincaré processes are given in Sections 5 and 6. Now let ¢ be a Bernoulli random
variable which is independent of II, and Il,. Then the composed point process
II, is Poincaré with c, # c_, &, = (%, ») with probability P[e = 1] and &, =
(1, ©) wpl. The cause of the problem is the nonergodicity of II, as we see from
the following immediate corollary of Theorem 4.3.

COROLLARY 4.4. If Il is an ergodic Poincaré point process and c, # c- then
o=, = Z. wpl.

5. Symmetrization of point processes. We now consider an important
class of examples involving conditional convergence. Let II, be a Poincaré point
process. The symmetrization of I1, is the subordinated Poincaré point process I
obtained by taking P[x; = {(0, 1)}] = P[«; = {(0, —1)}] = %, as described in
Example 3.4(d). An equivalent description is to write II = {(¢;, &x;)} where II, =
{(t;, x;)} is a measurable enumeration of the points of II;, as described in that
example, and (¢)2; is a sequence of independent random variables, which is
independent of II;, such that P[¢; = 1] = P[¢; = —1] = Y. Thus each point of II,

is either left where it is or replaced by its reflection in the t-axis.
* The intensity constants c, and c_ of II are both equal to the average of the
two intensity constants for I1;. Thus, we can hope to obtain H-ss si processes via
(1.11) that are not available via absolute convergence.

THEOREM 5.1. Let I, be a Poincaré point process in E, let I be its symmetri
zation, and set

(5.1) Xu(t) := (sgn t) f o *MIL(I,, dx) = lim, 0 Xu(t, 7)
R
where
(5.2) Xu(t, n) == (sgn t) f *MI1(1,,-dx).
R\(—7,7)
Then

(a) & =%, ={H:2H € .} wpl;
(b) int(% &,) C &, C Yo &, wpl.
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COROLLARY 5.2. If EIl is finite and I1 # @ then
(5.3) = A = (Y, ®).

REMARKS. The corollary follows from Theorem 2.1(b). It is shown in Ex-
ample 5.2 of Vervaat (1985) that for each 8 > 1 there exists a Poincaré point
process with &, = (8, ). Thus, we may have &, = &, = (H, ) wpl for any
H = %. This is extended to all H = 0 in Section 6.

PROOF OF THEOREM 5.1. (a) Fix t # 0. The points of IT, N (I; X R) can be
measurably enumerated by writing

(5~4) 1—Il n (It X R) = {(sj’ yj), J = 1, 27 ° '}
in such a way that | y;| = | yj+1| for all j. Then we may write
(5.5) Xu(t) = T721 8™

where (9;) 2, is a sequence of independent random variables, which is independent
of II, such that P[; = 1] = P[é§; = —1] = Y. For now, let us condition on II.
Then the terms of the series in (5.5) are independent uniformly bounded (by
| 11) random variables with mean 0 and variance | y;| 2. Such a series converges
wpl iff the sum of the variances converges (cf. Lamperti (1966), Theorem 8.2
and Lemma 9.2), which happens iff 2H € &,. Thus

(5.6) P"([Xx(t) converges]A[S 2 |yl < ®]) =0 wpl,

where A denotes symmetric difference and P denotes conditional probability
- given II. Taking expectations of both sides gives us (5.6) with P™ replaced by P
and with the “wp1” removed. Recalling that <7, is independent of ¢t wp1 (cf. the
argument below (2.2)), we have

P([(Z5 1551 < @]A[2H € &]) = 0.

Theorem 5.1(a) follows from the last two sentences.
(b) We will prove uniform convergence on I, for t > 0. The case t < 0 is

similar. Set
Yo.(u) =372 6y 1un(s, |y]) for u€l, m=1,2, ..,

where §; and (s;, y;) are as in part (a) and where 1,,, is the indicator function of
the set (0, u] X (27", 27"*]. Also, set || Y, || := supues,| Y, (u) |. It suffices to show
that ¥7-; || Y.|| < © whenever H > & H, = ¥ inf &,, modulo a null event. Fix
H and H’ with 0 < H’ < H. Then set a, := 2#~#)"*D_Qnce again we proceed
by conditioning on II. Given II, the Y,(u) are partial sums of finitely but
increasingly many (as u increases) independent random variables with zero mean
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and finite variance. By Kolmogorov’s inequality
P Yall 2 @] = az?E"YE(2)

= qa;? f 211 (1,, dx)
(2_",2_"+1]

< a;zzz(H—H’)(—nH)f sz'H(It, dx)

(2_",2_"'”]

= L_"2_"+l] x*H11(1,, dx), wpl.

We use this calculation, followed in succession by the Borel-Cantelli Lemma, the
fact that Y a, < o, the definition of &, and the definition of conditional
probability to obtain (modulo null events):

[2H' > H,] C [Z7-1 P[Il Yall = a,] < ] C [PT[|| Y| = @, i0.] = 0]
C [PU[Z5=1 | Yall <] =1] C [P"[H € &,] = 1] C [H C &Z,].
This proves the first inequality in (b); the second inequality follows from (a). 0

6. Lattice processes with random signs. The symmetrization procedure
of Section 5 has the property that the points are left as they are or reflected in
the t-axis independently of each other. In this section, we consider a class of
examples in which the reflection procedure is performed in a more dependent
way. This could be done in a variety of ways but we stick to a fairly specific case
in order to facilitate various calculations. We start with the g-adic lattice process
Il,,, as defined in Section 3.2. The reflection procedure features dependence
- between different points at the same level but different levels are treated
independently.

Let &.(k € Z) and U be independent random variables, U with a uni-
form distribution on (0, 1) and £, with a discrete uniform distribution on
{0, 1, ---, g — 1}. Furthermore, let (¢,.)nrez be a two-dimensional array of
{1, —1}-valued random variables (the random signs) which is independent of U
and (£;)rez. Assume that for each n the sequence e, := (g, :)rez is stationary and
that these sequences are independent and identically distributed. The distribution
of these sequences is unspecified for now; it will vary from example to example.

Finally, set
(6.1) O:={(k+ X7 &7nj, ear)8"*™ k, n € Z}.

We call 11 a lattice process with random signs.
THEOREM 6.1. The process 11 defined above is Poincaré and ergodic.

PrROOF. The proof involves some modifications of the proof of Theorem 3.3.
Replace G in that proof by T X T' X {—1, 1}%*Z and denote the generic element
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by w = (U, (&n)nez, (enk)nrez. Likewise, replace P by the product of the Haar
measure on T X I" with 6% where ¢ is the distribution of ¢, for each n.

Let S* denote the shift for the iid sequence ¢ := (e,.)nez and let ST denote the
shift for each stationary sequence ¢,. The mapping II +— aIl with a = g™*"
corresponds to

U—U-+rmodl,

[ sm¢ if 0=sU+r<1,
E=smiy  if 1=U+r,

Llsnme it osU+r<t
FUSM™e if 1s U+

This leaves P invariant. The mapping II — II + (b, 0) corresponds to the
transformation

U— U,
b £+ [bg7), RE 2,
&n. > (ST)a(n)en.’ ne Z,

where «(n) is an integer depending on U, (&,).cx, b and n. The invariance of P
relative to this transformation follows by conditioning on (U, £) and applying
the independence properties for e. (Note that independence of the e¢,’s is an
important assumption since the shifts «(n) depend on n.) The ergodicity with
respect to the transformations II — all, a > 0 follows by first conditioning-on U
and taking a = g as in the proof of Theorem 3.3(b). 0

We will investigate the convergence of Xy(t) for such Poincaré processes II.
Note first that &, and &, are constant wpl. The calculation of X} (¢) amounts
to adding up the contribution to Xx(t) from each level gU~" of I, ;; denote these
contributions by Y,(¢). (Note the minus sign, which is included in order to
simplify many calculations below.) Thus

(6.2) Xu(t) = (sgn t) Yr-——w Ya(t),
where
(6.3) Y.(t) = You(t) =gUmEy {e;,,,k: (k+ 321 g7%)) € g~ UL

If v, is the largest integer for which II,; has points in I, X {gU*"}, then Y,(t) =0
for n < —v,. Thus, (6.2) converges iff Y »—; Y,(t) converges. For all n € Z, the
horizontal distance between points at level gU*" of I, ; is g*". Thus, the number
k,(t) of terms contributing to the sum in (6.3) satisfies

(6.4) [elg™0) < ka(t) < [1¢]gV" + 1 wpl,
provided n = 1 — (log g) 'log | t|. Since 0 < U < 1, we deduce the deterministic
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bounds

(6.5) [1t1g7""] < ka(t) < [It]g"] + 1 wpl,

with the same provision. By the independence of Il ; and (en)nrez, We have
(6.6) Ya(t) =a g'V"HS (Ra(2)),

where S(k) := Sk == 21 e,

Since II,; has finite intensity with ¢, = (log g) ™" and c_ = 0, it follows easily
that II has finite intensity with ¢, = P[e,, = 1](log g) ™' = (2 log g) 'E(enr + 1)
and c- = (log g) ™' — c+. By Theorem 4.3 & = &, = (1, ©) wpl unless Ee, . = 0.
We now give three simple examples, the first two of which can be viewed as

extreme cases.

EXAMPLES 6.2. (a) First, we suppose that every second point within each
level of II,; is reflected in the t-axis. Thus, we take ¢, = (=1)*e, for all n and
k, where P[eno = 1] = P[en0 = —1] = % and the e,¢’s are independent. Then
| Y,.(t)| =gV for all n and ¢t so (6.2) converges uniformly in t € R wpl for
all H> 0, i.e., & = &, = (0, ©) wpl.

(b) Now suppose that, for each level, all the points of the level are left as they
are or all of them are reflected in the t-axis. To accomplish this we take ¢, =
eno for all n and k, where the ¢,’s are the same as in (a). Then | Y,(¢)| =
gUHE (t) ~ | t| g V™" H=D a5 n — ®, so that & = &, = (1, ©) wpl.

(c) If all ¢,,’s are independent, we obtain a symmetrized process of the type
considered in Section 5, so &, = &, = (Y, ©) wpl.

We next give conditions which are useful for determining & for other examples
of lattice processes with random signs. As we saw at the beginning of Section 4,
H € & wpl iff Xu(t) converges wpl for any specific t # 0. For convenience, we
choose t = 1 and define

(6.7) Y,:=Y,(1) and &k, := k,(1).

THEOREM 6.3. Let Il be a lattice process with random signs. If 6 € (0, 1] and
(6.8) lim Sup,_wming<r<mP[R™?| Sk| > a] > 0 for some a >0
(where S, is defined below (6.6)), then &, C (4, ©) wpl. If 6 € [0, 1] and
(6.9) mE|S,| >0 as m—> oo foral vy >0,
then (6, ©) C &, wpl.
PROOF. Assume (6.8). We will show that X;(1) diverges wpl. Let m be a

positive integer and choose the integer n such that g"™' < m < g". By (6.4), kn+1
=gk tg+1 and, by (6.5), g"! — 1.< k, < g" + 1. Combining those inequalities

weseethatlfk <m,thenm=<g"—1<Ry1<gk,+g+1=<gm+ g, while
otherwise m <k, < g"+ 1 < gm + g Thus P[m < k, < gm + g] = % for some n
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(i.e., either n or n + 1 in the above). For such m and n, we have by (6.6) with H
= 5, (6.4) and the independence of (k,)nex and (enx)n ez that, for a >0,

P[] Yal = a] = P[(k)7°| S(ka) | = a(g""ka) ']
= P[(k.) | S(ka) | = 2°a]
= Y Pk Sk| = 2%, k., = K]
= Y% miNpshzgmie PR7°| S| = 2%).
By (6.8), it follows that
lim sup,—«P[| Ys| = a] >0
for a sufficiently small. Thus
P[Yn-; Y, diverges] = P[Y, -5 0] > 0.

By ergodicity, 6 & & wpl, so & C (4, ©) wpl.
Now assume (6.9) and suppose 8 < v < H’ < H. By (6.6), (6.5), the inde-
pendence of (k,)nez and (S(k))rez, and (6.9), we have for n = some nonrandom

N that
P[] Yo = g"H 0] = PH[| S(kn) | > g~V ]
< gV EM| S(ky) |
< gUH ™ max{E |S(k)|: ™" < k< g" + 1}
< g"H) wpl,
Hence,
P[| Y| > g" "™ = 0(g""™™) as n— .

 Since v —H’ <0and H' — H <0, we deduce via the Borel-Cantelli Lemma that
Y21 | Y, <o wpl,so HE & wpl.O

REMARKS 6.4. A sufficient condition for (6.9) is that E | S%| = O(m*) as
m — oo, for some a = 1, since lim sup m—E | S,| < lim sup m™(E | S|%)"/* In
particular, if Ee,, = 0, a sufficient condition for (6.9) is

(6.10) Var(S,) = O(m%») as m — oo,

A sufficient condition for (6.8) 1s that k™S, converges in distribution to a
limit that is not concentrated at 0, as k — oo.

EXAMPLES 6.5. In Example 6.2(a), E | S| < 1 so (6.9) holds with § = 0. In
Example 6 2(b), | S| = m so (6.8) holds with 6 = 1. In Example 6.2(c), both (6.8)
and (6.9) hold with § = %, by virtue of Remark 6.4. The following two examples
of stationary sequences (e, x)rez Of {—1, 1}-valued random variables can be found

in the literature.
(a) Let (en)rez be the stationary extension of the random walk in random
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scenery (enx) =0 =a (Wi) =0 as defined in Kesten and Spitzer (1979) ([K & S]),
with random scenery as on page 5 of [K & S] and random walk satisfying (1.6)
and (1.7) of [K & S]. By Theorem 1.1 of [K & S}, m'™*/2*S,, —; A; where A, is
normally distributed by Lemma 5 of [K & S]. Thus (6.8) holds with § = 1 — Y«
> 15, Formula (6.10) follows from (1.2) and (2.13) of [K & S], with the same 4.

(b) Take (enz) =0 =a (sgn Xi)k-o in Taqqu (1975) (so G(x) = sgn x, having
Hermite rank m = 1). Here again 6 > Y.

Except for the trivial Example 6.2(a), all examples so far have &, = (5, ) wpl
for some & = Y%. We will now construct a class of lattice processes with random
signs for which &, can be any set of the form (H., ) for 0 < H. <1 or [H., ®)
for 0 < H, < 1. We will not apply Theorem 6.3 directly in this construction
although it can be shown that (6.8) and (6.9) do hold in the case & = (H,, ®).
Let (bx)7-1 be any sequence of positive real numbers such that b, 1 « and
k7'b, | 0 as k— . It is shown in Theorem 4 of O’Brien (1983) that it is possible
to define {—1, 1}-valued random variables (en,x)nrez Such that (e, )rezis station-
ary for each n, the collection of these sequences is iid and the following two
formulas hold:

(6.11) lim Supn—yoo maxzﬂ'lskszn"’lb;ll zf;(} en’il = ]. Wp].,

(6.12) lim SUp,_mingn-1<p<om14by? T4 6, = 1 wpl.

Let 6 € (0, 1) and let b, = k°. Let (en)nrez satisfy the conditions indicated
above and let IT be a lattice process with random signs constructed from the
lattice process II,; and these ¢,,’s. Then we claim that & = &, = (3, ®) wpl.
By (6.5), we have

2" < ko(t) = 2™ for 1st<2.

It follows from (6.6) and (6.11) that for such ¢ and sufficiently large n, the
contribution Y, x(t) to Xy(¢) from these points satisfies

| You(8) | = 20| S0 6] < 2079H92™)? wpl,

Thus Xy (t) converges uniformly for t € [1, 2) wpl, provided H > 6. Local uniform
convergence then follows by an argument like that in the proof of Lemma 1.3.
On the other hand, by (6.12) and (6.5) with ¢ = 1, there are wpl infinitely many
n for which

8(kn) ™ Bl" eni = L.
For such n,
You(l) = 207H Tlagt 6,
> 2—nH2—3(kn)6 > 2—nH—3(2—‘l+n)6,

which converges to zero as n — ® only if H > 4. This proves that & = &, =

(8, ) wpl.
By choosing b, = (log k) 'k, log k, or (log k) 2k® where 0 < § < 1, the above
construction yields &, = &, = (1, »), (0,») or [§, =) respectively.
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7. Centering at expectations. Let II be a Poincaré point process in E
with finite intensity determined by the constants c; and c- in (2.1). If ¢4 # c-,
then Xy in (1.10) converges absolutely for H > 1 by Theorem 2.1(b), but does
not even converge conditionally for any other H in case II is ergodic, by Corollary
4.4. In the present section we study a modification of (1.10) that will converge
conditionally for H in part of (0, 1], even if ¢, # c_.

In fact we mimic the Lévy-Ito representation for processes with stationary
independent increments without normal component: namely, we replace II by
II — EII, but only for small jumps. So we are led to define

Sy(t) := (sgn t) f «M(I (I, dx) — 11, (x)EIL(I, dx))
(7.1) 1R\MO}

= (sgn t)lim,o f xM(IL(L, dx) = 1y ()BT, dx)).

R\(—¢,¢)

It is well-known that in case II is Poisson, there is conditional convergence wpl
in (7.1) for H > %, and that, apart from linear drift, all nonnormal stable
processes are obtained by (7.1). Although Sy must be si, it need not be ss. The
rescaling properties are exactly the same as those of stable processes, as the next
lemma shows.

LEMMA 7.1. If Sy in (7.1) converges wpl, then for a > 0

(@) (Sulat) — (cs+ — c-)at/(1 — H))er =a a”(Su(t) — (c+ — ¢-)t/(1 — H))ser
ifH#1,

(b) Si(a*) =4 (aS:i(t) + (c+ — c-)ta log a)ien-

COROLLARY 7.2. (Sg(t) — (c+ — ¢-)t/(1 — H))ien is H-ss and si for H # 1.
Furthermore, Sy is 1-ss iff ¢+ = c—.

PRrROOF OF LEMMA 7.1. For a > 0 and random functions of ¢ we have

Syu(at) = »[92\10! x(sgn t)(I1 (I, dx) — at 1y 5(x)cs dx/x?)
=d aH L\‘O’ yTH(Sgn t)(H(It, dy) —t 1[—1/a,1/a](y)Ci dy/yZ)

1/a
= aH<SH(t) — (c+ — )t J: yi? dy)

_ fat(Su(t) — (cs = c)t(H — 1)@ H = 1)) if H#1,
- la(Sl(t) + (c; — c_)t log a) if H=1. 0O

Examining these results further, we observe that the centering measure in
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(7.1) is superfluous for H > 1, since then already (1.10), without centering
measure, converges absolutely wpl by Theorem 2.1(b), and comparing (1.11) and
(7.1) we find

Xu(t) = Su(t) — (c+ — c-)t/(1 — H).

For H = 1 we do not find any new 1-ss process besides those in (1.11), as observed
in Corollary 7.2. Finally, for H < 1 the restriction of the centering measure to
x € [—1, 1] is not needed, since

(sgn t) f *MEII(1,, dx)
R\[-1,1]

is finite and in fact equals (c, — c-)t/(1 — H). So the only case of interest for us
reduces to

X5(t) == (sgn t) j};\m (I — B, dx)

(7.2) = (sgn t)lim,}o f ) M0 - BN, dx)

\(—e,¢

= Sy(t) — (c+ —c)t/(1 — H) for 0<H<I1.
We call X§; the centered version of Xy (0 < H<1).

REMARKS 7.3. We will not pursue a complete investigation of sets of H for
which (7.2) converges. Instead we restrict ourselves to the following observations.

(a) If ¢, = c_, then (7.2) reduces to (1.11). Thus, all examples of Sections 5
and 6 are in principle also examples for the present one.

(b) If II is a Poincaré process in E, then we can compare the domain of
convergence for the process X3, with that for the process Xj; obtained via (7.2)
from the Poincaré process I N E.. They need not be the same if ¢, = c_.
Consider Example 6.2(a). It is easily seen that Xj cannot converge for H < 1

whereas X§ converges for all H > 0.
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