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A LIMIT THEOREM FOR NONNEGATIVE ADDITIVE
FUNCTIONALS OF STORAGE PROCESSES

By KEIGO YAMADA
University of Tsukuba

We consider a storage process X(t) having a compound Poisson process
as input and general release rules, and a nonnegative additive functional
Z(t) = [bf(X(s)) ds. Under the situation that the input rate is equal to the
maximal output rate, it is shown for a suitable class of functions of f that an
appropriate normalization of the process Z(t) converges weakly to a process
which is represented as a constant times the local time of a Bessel process at
zero.

1. Introduction. Let us consider a storage process X(t) which is defined
as a unique solution of the following equation:

(1) X(t) = X(0) — J; r(X(s)) ds + A(t).

Here A(t) is assumed to be an increasing compound Poisson process, i.e.,
(2) A@t) =3P S

where N(t) is a Poisson process of parameter A and {S;, i =1, 2, ...}, is a
sequence of independent and identically distributed random variables independ-
ent of N(t) with a common distribution function F(x) for which the second
moment is finite and F(0) = 0. We assume that r(+) is a nondecreasing nonneg-
ative function defined on [0, ) and r(0) = 0. Then equation (1) has a unique
nonnegative solution (Cinlar and Pinsky [1]).

Let us define the following notations:

F = sup,=or(x) (= lim, .r(x)),

w = ES,, 02=f y* dF(y), k= v\o.
0

Then it was shown in Cinlar and Pinsky [2] that as t — o, X(t) has a limiting
distribution when Au < F, X(¢) — o a.s. when A\ > 7 and that X(¢) — o« in
probability when Ay = F.

The purpose of this paper is to give some functional type limit theorems for
nonnegative additive functionals of the process X (¢) under the last situation, i.e.,

(A1) An =T,

Let f (x) = 0 a bounded measurable function defined on R = (—o, ®), and we will
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398 K. YAMADA

consider the weak convergence problem for a sequence of processes defined by
_ 1 f " _
(3) Zn(f)(t) - k‘/"—l o f(X(S)) dS, n= 19 2’ °

in the following two cases:
Casel. x[f—r(x)]=0forallx=0,ie.,r(x)=rforx>0.
Case II. lim,_wx[F — r(x)] =c>0.

For Case II, it will be shown in Corollary 2 of Theorem 1 that for any bounded
nonnegative measurable function with compact support, Z,,(f) converges weakly
to a null process. For Case I we restrict the class of f to functions satisfying
condition (A3) and show that Z,(f) converges weakly to a process
Z(t) = T(f)Lo(t) where Ly(t) is the local time of a reflecting Brownian motion
at zero and T'(f) is a constant depending on f (Theorem 1). In Corollary 1 of
Theorem 1, f € C¥ (the set of infinitely differentiable nonnegative functions with
compact supports) is shown to satisfy condition (A3) and T'(f) is calculated
explicitly using the Fourier transform of f. Finally in Corollary 3 of Theorem 1,
for any continuous function with compact support the weak limit of Z,(f) is
shown to be the process Z(t) = T(f)Lo(t) where T(f) is the limit of T'(f.),

fmECy, m=1,2, ..., and {f.} are such that there exists a compact set K
satisfying supp( f,.) U supp(f) C K and sup,| fn(x) — f (x) | = 0 (supp(f) is the
support of f).

Some unsolved problems are:

1. to extend our results for Case I to functions such as f (x) = I,g(x), (in
connection with this, see Proposition 1 and Remark 3),

2. to investigate the case where lim, ..x[f — r(x)] = 0. (Case I is a special
example of this case),

3. tofind, in Case II, suitably normalized processes for which the weak limits
are not degenerate on the null process.

There are some general results on limit theorems for the occupation time of
Markov processes (see, for example, Bingham [3], Kasahara [4, 5]). As suggested
by Bingham in [3], the applicability of his result yields the weak convergence
theorem for occupation times of queues in heavy traffic obtained in Whitt [14],
it may be possible to get our theorem from these general results. Here we try,
however, to get our result directly by following the approach of stochastic calculus
used in Ikeda and Watanabe [6, Chapter III, Section 4.4] and Papanicolaou,
Stroock and Varadhan [7, Section 3.5]. In this approach we essentially use the
fact that the processes X, (t) = (1/kvn)X(nt), n =1, 2, - .. converge weakly to
a Bessel process with index 1 + 2c/k? where ¢ = hm,_mx[r — r(x)] is assumed to
exist (Yamada [9], Rosenkrantz [15]).

Let D([0, T, R% be the space of all right continuous R"-valued functions in
[0, T'] with limits from the left, and let us assume that the space D([0, T], R9) is
endowed with Skorohod’s J; topology. All the processes appearing in (1) and (2)
are assumed to be defined on a probability space (Q, &, P) and to be realized in
the space D ([0, »), R') with the extension of Skorohod’s J; topology (Lindval
[8]). The notation X, = X denotes the weak convergence of the distributions of
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the processes X, to a distribution of X. We also denote by Z, —p Z the
convergence of the corresponding random variables in probability.

2. Preliminaries. Under assumption (A1) we can rewrite equation (1) as

t
X(t) = X(0) + f [F — r(X(s))] ds + A(t) — Aut.
0
Let us define processes X,,, B,, M,,n=1, 2, ... as follows:

1
X.(t) = m X(nt)

_ 1 f "
(4) Bn(t)_k\/'—l A [F — r(X(s))] ds

Ma(t) = —é—}n (A(nt) — Munt).

Then we have
(5) Xn(t) = X,(0) + Bn(t) + M,(2).

Note that M,(t) is an Z,;-martingale and & = ¢(X(0), A(s), s < t) is a
sub-o-field of & generated by X(0) and A(s), 0 < s < t. The quadratic variation
(M,) (t) is given by

(M,) (t) = \n(1/k*n)ES? - t = t.
Now let us assume condition (A2):
(A2) lim, ,x[F — r(x)] = ¢ < oo,

Then we have the following result.

LEMMA 1. Under (A1-2), (X,, B,, M,) = (Y, V, W) in D([0, T], R®), T
arbitrary, where Y is a Bessel process with index 1 + 2c/k* W a Wiener process,
and Va cgntinuous increasing process. Furthermore we have

(6) Y(t) = V() + W().

When ¢ = 0, with probability one V(t) increases only on the set of t when
Y (t) = O; that is, equation (6) is the Skorohod equation for the reflecting Brownian
motion Y(t). When ¢ > 0, with probability one V(t) is strictly increasing.

Proor. The fact that (X,, B,, W,) = (Y, V, W) on D([0, T, R®), T arbitrary,
was proved in Yamada [9]. Equation (6) is a direct consequence of this result
and (5). Now let us consider the case where ¢ = 0. Since (X,, B,, M,) =
(Y, V, W), we may assume, due to Skorohod’s representation theorem [10],
that P(A) = 1 where A = {w; X,(t) —» Y(¢) and B,(t) — V(t) uniformly
on each finite t-interval in [0, T]}. Take arbitrary w € A and suppose that

~

Y(¢, w) > 0. Then there exist ¢’ > ¢ such that infi<,< Y(¢, w) > 0 and
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infie,<v X, (t, @) = a > 0 for an « and for sufficiently large n. Then

B.(t', @) = Ba(t, w) = %f Vn[7 = r(vnX,(s))] ds

< % i ft EVRX,(s)[F — r(kvnX.(s))] ds

for su~fﬁciently large n, and the last term converges to zero since X, ~(s) — Y(s)
>0 (f =s=<t’) and kvnX,(s) [F — r(kv'nX,(s))] > ¢ = 0 for s € [£, t’]. Then
since

V(t', w) — V(E, w)

= B,(t', ) = Bu(f, 0) + (V(t', @) — Bul(t’, w)) — (V(£, ©) — Bu(£, w)),
we have V(t’, w) = V({, w). That is V(, w) does not increase at .
Next let us consider the case where ¢ > 0. Take any s < t. Then since Y(t) is
positive for a.e. t, there exists an interval [s;, t;] such that Y(u) > 0 for all
u € [s1, t1] C [s, t]. Thus for a 8 > 0 and for all n, sup.es,,¢;; Xn (4, w) < 8. Then

t
Ba(t, ) = Bals, ) = 5 f EVRXA($)[F = r(EVRXa(s))] ds

for all n. Taking the limit in the above, we have
V(t, w) = V(s, w) = c(ty — 1)/(k*8) > 0.
Thus V(t) is strictly increasing with probability one. O
Since we have shown that the limit process Y(t) of X,(t), which is a Bessel
process of index 1 + 2¢/k? is a continuous semimartingale, following Jacod [11]

we shall define its local time as follows:

DEFINITION. The local time of the process Y(t) at a, which we denote by L,
is the unique continuous increasing process with L,(0) = 0 satisfying

Lit) = |Y() —a| = | Y(0) —a| — f sig(Y(s) = a) d¥(s)
(7 <= | Y() —a| — 1Y) —a| — J; sig(Y(s) — a) dV(s)

- J; sig(Y(s) — a) dW(s)>

where sig(x) =1ifx>0,0ifx=0,-1if x <0.
The local time L, defined in this way has the following property.

LEMMA 2. The local time L, of the Bessel process Y (t) is the unique continuous
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process of bounded variation with L,(0) = 0 such that

@) Lo(t) = 1 Y(t) —al +1Y(0) —a| + J; sig(Y(s) — a) dV(s)

= local martingale.

Lo equals V when ¢ = 0 and is a null process when ¢ > 0.

PrROOF. Let L; be another continuous process of bounded variation with
L;(0) = 0 satisfying (8). Then

Ly(t) — L,(t) = local martingale

and this implies L, = L,. By the definition of L,(¢), and since Y(t) > 0 for a.e. ¢
with probability one, we have

t

Lo(t) = Y(¢) — J; sig(Y(s)) dV(s) — J; sig(Y(s)) dW(s)
C) = J; (1 — sig(Y(s))) dV(s) + J; (1 — sig(Y(s))) dW(s)

t
=£ I(y(s).=o; dV(S)

Then since

t
J(: Igy(s)=o; dV(S) = V(t)

when ¢ = 0 by Lemma 1, we have that L, = V. When ¢ > 0, in view of Lemma 1
V(t) is continuous and strictly increasing. Hence, for a.e. ¢, Y(V~(t)) > 0 since
Y(t) > O for a.e. t. Here

V7U(t) = inffs; V(s) > t}.
Then

vie)
Lo(t) = J; Liyvisy=0y ds = 0. O

A direct consequence of Lemma 1 and 2 is the following:

PROPOSITION 1. Assume (Al) and let f(x) = I4(x). Then in Case I,
Z.(f)=Z(f)in D([0, T], R), T arbitrary, where
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ProorF. We note that when a =0,

i‘I“nt __1— nt . _;I._
o Jo f(X(s)) ds = ;k\/ﬁj; [F = r(X(s)] ds = = Bu(t).

In view of Lemma 1 and 2, B,(*) = L(*) in D([0, T'], R), T arbitrary. The case
a # 0 is trivial. 0

REMARK 1. Let us consider a queueing process M/G/1 where customers
arrive according to a Poisson process N(t) with parameter A and service times
{S;, i=1, 2, ...} form a sequence of independent and identically distributed
random variables independent of {N(t), ¢ = 0} with a common distribution
function F(x). The virtual waiting time is defined as the solution X (¢) of equation
(1) where r(x) =1 (x > 0). So I(t) = [ I;o;(X(s)) ds is the idle time up to time ¢,
and Proposition 1 asserts Z,(f)(*) = I(n °)/kﬁ = Ly(*) under the condition
1 =7 = Mu where f (x) = Ijpj(x). This result is also easily obtained by noting that
I(t) can be represented as

I(t) = —info<,<:(A(s) — 5)

when X (0) = 0 and the processes (A (nt) — nt)/k~n converge weakly to a Wiener
process, and then by using the continuous mapping theorems in Billingsley
[16, I, Theorem 5.1] (Whitt [14]). Here we should also note that —info<,<. W(s)
is the local time of a reflecting Brownian motion at zero where W(t) is a
Brownian motion with W(0) = 0 (Ikeda and Watanabe [6, III, Corollary of
Theorem 4.2]). 0

Regarding f for which processes {Z,} were defined in (3), we shall impose in
Theorem 1 the following assumption (A3):

(A3) f: R — R* = [0, ») is a bounded measurable function with a compact
support. Furthermore there exists a bounded measurable function G”(x): R — R
such that

J; J; uG’(x +y —u)dudF(y) =f(x)

and G”(x) — 0 as x — oo,
Let us define functions G and G’ by

G'(x) = J; G"(y) dy, G(x) = J; G'(y) dy.
With respect to condition (A3) we have
LEMMA 3. Suppose that [§ y* dF(y) < «. Then under condition (A3) G(x)

has the following properties:
(1) limyneG'(x) = 2/02(D + f) where

D=J; J; uG’(y — u) du dF(y) and f_=J; f (x) dx.
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(ii) limy_,w(1/AN)G(Ax) = 2/02(D + f)x uniformly on every compact set of x.

Proor. (i) We have

J(: J;uj(: G”(x+y—u)dxdudF(y)=J;f(x)dx, z2=0,
0

J; J; ulG@ez+y—u)—G'(y—u))dudF(y) = J; f(x) dx.

S

Application of the mean value theorem yields

J(: J; uG’(z) du dF(y)

(10) + J; J(: uG"(z + 0(z,y —u)(y —u))(y —u) dudF(y) — D

=£ f(x) dx

where 0 = 0(z,y — u) < 1 and

D=J; J; uG’'(y — u) du dF(y).

Letting z tend to infinity in (10), we get the conclusion by the bounded conver-
gence theorem. :
(ii) This is trivial from (i). 0

For a locally square integrable martingale M, let (M) (t) be the quadratic
process of M. Then we have

LEMMA 4. (Lenglart [12]). Let M,(n =1, 2, - - .) be locally square integrable
Zt-martingales which are right continuous with left limits on a probability
space (Q,,. %, P) with a reference family {£}} which is right continuous and £3%
contains all P-null sets. Then for an arbitrary T > 0, (M,) (T) —p 0 implies
Supo<i<7| Mn(t) | —p 0.

REMARK 2. In [12], M, are defined with respect to a single reference family.
But as far as T is nonrandom, it is easy from the discussion in [12] to see that
the above is true.

LEMMA 5. (Yamada [9]). For each T > 0 there exists a constant K(T), not
depending on n, such that

E[(X.(t) = Xu(s))| Fns] =Kt —5s), 0=ss<t=T.

Application of Itd’s formula yields the above result easily. For the detailed
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discussion see the proof of (i) in Lemma 1 in [9] where 7, — p, = 0 for all n in
our case.

3. Mainresult. LetZ,(f)(t),n=1,2, .., be the processes defined in (3)
of Section 1, and in this section we assume that [ y® dF(y) < . Then we have

THEOREM 1. Assume condition (A1). Then for a function f satisfying condition
(A3), the following result holds:

CASEL r(x) =Fforall x> 0. Then Z,(f) = Z(f) in D([0, T, R), T arbitrary,
where the process Z(f) is defined as

Z(f)(@®) = T(HLe(8), T(f) = R(f) + (2/k))f.

Here Lo(t) is the local time at zero of a reflecting Brownian motion, and R(f) is

defined by
R(f) = %fo J; ufo G”(x) dx du dF(y).

CASE II. lim, ,.x[f — r(x)] = ¢ > 0. Then Z,(f) = Z(f) in D([0, T}, R), T
arbitrary, where Z(f) is a null process.

PrOOF. Let N4(ds dx) be the counting measure of the point process A (t)

and N,(ds dx) be its compensator ([6, pages 43, 60]). Then Na(ds, dx) =
M\ ds dF(x), and X (t) can be written as

t t 00
X(t) = X(0) + J; [f — r(X(s))] ds + f J; xNa(ds dx)
0
where the last integral is defined as

f f xN4(ds dx) = f f xN4(ds dx) — f f xN(ds dx)
0 0 0 0 0 0

(= A(t) — Mut)

and is a square integrable .,-martingale. Now putting

B(t) = J; [F = r(X(s))] ds,

and applying generalized Ito’s formula for the process X(t) ([6, page 66]), we
have

G(X() = GX(0) + L G'(X(s)) dB(s)
+ f f {G(X(s—) + x) — G(X(s-)) — G'(X(s~))x}Na(ds dx)
0 0

+ J; J; {G(X(s=) + x) — G(X(s=))}Na(ds dx)
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where the last integral is defined as a stochastic integral with respect to the point
process A (t) ([6, Section 3, Chapter II]). Rewriting the above yields that

G(X(¢) = G(X(0) + J; G'(X(s)) dB(s) + J; G'(X(s—)) dM(s)

+ A J; f(X(s)) ds + N(¢)

where

M(t) = J; J; xNa(ds dx) (= A(t) — Iut)

and
N(¢) = J; J; {G(X(s=) + x) — G(X(s=)) — G"(X(s=))x}Na(ds dx).

Note that N(t) is a locally square integrable #-martingale and its quadratic
process (N) (t) is given by

(N) (¢) = J; J; {G(X(s—) + x) — G(X(s—)) — G'(X(s—))x}>\ ds dF ().

([6, page 62]). Then we have
1
o/ GeVn X, (2))

_ 1 f .
=i G(kvVn X.(0)) + A G’ (kvVn X.(s)) dB,(s)

+ f G’ (kVn X,.(s—)) dM,(s) + ~>\—f f(X(s)) ds + N,(t)
0 kvn Jo

where N,(t) = N (nt)/k\/—r—z and B,, M, were defined in (4) in Section 2. Then
noting equation (5), the above can be written as

1 2D
m’G(kx/ﬁ Xa(0) = = Xa(0)
a  =amExo-Lx0+ [ <G’(k\/ﬁ Xulo)) - @) dB,(s)
kvn P 0 o2
t 2D )\ nt
+ f (G'(kJﬁ Xa(s=)) = —) dM,(s) + —= f f(X(s)) ds + Ni(2).
o P kvn Jo
Let us define three dimensional processes H,,n=1, 2, --., by
H,(t) = <i G %0 - 2 X,0), | (G' (kv X, (s)) — @) dB,(s),
kvn [} 0 02

f (G"(kJE X,(s)) — ‘i—D) dM,,(s)).
0 2
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Then we shall show the following: (A) H, = H in D([0, T], R®), T arbitrary,
where the process H is defined in Case I, as

H(t) = ((2f/a2) Y(8), —=AR(f)V(t), Ha(t)),

H;(t) is a continuous martingale and, in Case II,

H() = ((27/02)Y(t), J; (21—: sig(Y(s)) dV(s), Ha(t))-

(B) supo<t<7| Nn(t) | —=p 0 as n — o where T is an arbitrary nonrandom number.
Once (A) and (B) are proved, this implies that the process Z,(f) converges
weakly in D ([0, T'], R!), T arbitrary, to a process Z(f) where, in Case |,

2f

Z(f)@) = Y(t) +R(AVE) -5 Ha(t)

and, in Case II,
200 = L vy - 2 [ sigvn avee) - £ o

Note that in Case I,

J; sig(Y(s)) dV(s) =0
(Lemma 1), and so
Z(f)t) — R(f)V(t) = f Y(t) f 31g(Y(s)) dv(s) — % Hj(t).

Since f = 0, the limit process Z ( f)(t) is increasing, and so Z(f)(¢) — R(f)V(¢) is
a continuous process of bounded variation. Thus by Lemma 2

Z(H)(©) - ROV = f;f Lo(®)

where Lo (t) is the local time at zero of a reflecting Brownian motion. Furthermore
in Case I, V(t) = Ly(t) (Lemma 2), and hence

Z()(¢) = (R(f) + fi)Lo(t).
a2

Thus we have shown the conclusion for Case I. Similary in Case II,

Z(F)(t) = faiz Lo(¢)

where Lo (t) is the local time at zero of the process Y(¢). But in view of Lemma
2, in Case II Ly(t) is a null process. So we get the desired conclusion for Case II.
Now let us show (A) and (B). To see (B) first, by Lemma 4, it suffices to show
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that (N,) (T) —p 0. We have

1
(Na)(T) = 2~ (N)(nT)

T 3
= ;35 fo fo {G(kVn X, (s) + y) — G(kvVn X.(s))
— G'(kVn X,(s))y}? dF(y) ds.

Since, with probability one, kvVn X,(s) — © as n — ® for a.e. s, we have with
probability one

G(kvVn X.(s) + y) — G(kVn X.(s)) — G’'(kvn X.(s))y > 0 (n — )
for a.e. s. While we have
| G(kVn X, (s) + y) — G(kvVn X.(s)) — G'(kvVn X.(s))y|? = Ky?,

K a constant. Thus by the bounded convergence theorem, we have that
(N, )(T) — 0 with probability one.

Next to see (A), it suffices to show that (i) {H,} is tight in D([0, T, R®), and
(ii) any weak limit of {H,} is identified as H. Let H, = (HL(t), HZ(t), H3(t)).
Then we can show that

(12) E[(H,(t) — H(5))?| Fns) = K(t —5), t>s, i=1,2,3
where K is a constant not depending on n. Then this implies also that
E[|H,(t) — Ho(s) |*| Fns]l = K'(t —5), t>5,

where K’, a constant, does not depend on n, and from this we at once obtain
tightness of {H,} by checking a sufficient condition for tightness in Varadhan
[13, page 51]. To see (12), first we note that

1 1 2
{m G(kVn X.(t)) — P G(kvn Xn(s))}

= % (G’ (£.)RVR(X,(t) — Xa(5))}?2 < K(X,(t) — X.(s))?, K a constant,
where min(kvn X.(t), kvVn X.(s)) < & < max(kvn X,(t), kvn X.(s)), and we
used the boundedness of G’(*). Then by Lemma 5, we have

E[(HA(t) — Hi(8))?| Fns] = K(t — 5), s<t,
where K does not depend on n. Next we have
(H%(t) — Hi(s))* = K(B,(t) — Ba(s))®
where K does not depend on n. Then equation (5) and the fact that
E[(M,(t) — M,(3))?| Fns]l =t — 5
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imply that E[(H2(t) — H%(s))?| F.s] < K(t — s). Finally we have
E[(H3(t) — H3(5))?| Fnsl

=EU (G(kJ’X(u))——) d (M, )(u)|y]

= K[(Mn)(t) = (Mp)(s) | Fns] = K(t — 5)

where K is a constant not depending on n. Thus we have shown (12). To identify
any weak limit of {H,} as H, since (X, B,) = (Y, V) in D([0, T], R?) we may
assume, in view of Skorohod representation theorem [10], that with probability
one, X,(t) — Y(¢) and B,(t) — V(t) uniformly on every compact set of ¢ in
[0, T']. Then by Lemma 1 and 3 we easily obtain that with probability one,

HA(®) = = Gk X)) = 22 X,(0) — y Ly = mo
kvn
uniformly on every compact set of ¢ in [0, T']. Then this implies H L= H; in

D(0, T), R
Next we show that with probability one,

J; (G’(k«/n X, (s)) — —20D) dB,(s) — —AR(f)V(t)
2
for each t in Case I, and

f <G’(k~/r_z Xn(s)) — 2) dB,(s) — f 2—;Fsig(Y(s)) dVv(s)
0 g2 0 02

for each t in Case II. Indeed in Case I, if we define the process B;'(t) by

B;'(t) = inf{s: B,(s) > t},
then it is not hard to see X,(B;*(t)) = 0 for all ¢t. (Draw the graph of B,(¢) and
X, (t).) Then

f (G'(k& Xo(s)) — @) dB,(s)
0 g2

()
- f (G'(k& X,(Bi'(s))) — Q) ds
0 ag

= —AR(f)B,(t) = —AR(f)V(t) for each ¢t

with probability one. In Case II, since V(*) is continuous and strictly increasing
and since B,(t) converges to V(t) uniformly in ¢-compact set (Lemma 1), this
implies B;'(t) — V7(t) for each t. Then uniform convergence of A X, to Y
implies X, (B;!(t)) — Y(V~!(¢)) for each t. Then for each s

I.wv—x(s,bo,(a (kv X, (B7(5))) — Iz’)—ﬁmg(wv-%s»)
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from Lemma 3 (i). Thus

fo (G'(kJﬁ X, (s)) — @) dB(s)

[

B, (t)
- f (G'(kJﬁ X,(B7(s))) —@) ds

02

0] oD
= J; IIY(V‘l(s))>0)<G,(k\/r_l X, (BZ(s))) — 6_) ds
2

V() t
- f 2 Gig(Y(V(s))) ds = f 2 Gg(Y(s) dVI(s).
0 [ 2 0 02

In the above we used the fact that Y(V~(¢)) > O for a.e. t (see the proof of
Lemma 2). This completes Case II.

Finally we will show that H? = Hj in D ([0, T'), R') where Hs(t) is a continuous
martingale. Let H; be any weak limit of {H?}. Then for a subsequence of {H3},
H% = H, in D([0, T), R"). We note that H, is a continuous martingale. Indeed
since {(H}, Hz, H3,)} is tight in D([0, T'], R®) and since H, = H, and H, = H,
in D([0, T), R'), we may assume that (H}, H?, , H3) = (H,, Hz, H3) Then by
(B) and from (11), we have that \Z, (f) = Z = H, — H, — H;. But since the
process AZ,(f)(= AZ.(f)(t)) is contmuous its weak limit Z is also continuous.
Then since H, and H, are continuous, H; must also be continuous. To see that
H, is a martingale, it suffices to note that {H3} are martingales and that

t 2
sup, E[H3(¢)]? = sup,,E J; (G'(kJﬁ X.(s)) — i—D) ds < oo,
2

Now let H; be another weak limit of {H3} Then as in the case of Hs, for a
subsequence of {H3}, \Z,» = Z = H, — H3 Then since any weak limit of
{AZ,.}(A > 0) is continuous and i 1ncreas1ng, Z@t) — Z(t) = Ha(t) — Hi(t) is a
continuous martingale of bounded variation. More precisely, there exists a
probability space with a reference family which is an extension of probability
spaces with reference families supporting (Z, H,) and (Z, H;) and these processes
can be regarded as those defined on the extended probability space with the
reference family (see [6, page 89] for the notion of extension of probability space
with a reference family). Then as such processes it holds that Z(t) — Z(t) =
Ha(t) — Hi(t) and this implies that H; = H; on the extended probability space,
and hence any weak limits of {H3} have the same probability law on
D([0, T], RY). Thus {H3} converge weakly to a continuous martingale H; in
D([0, T), RY).O

In the sequel we seek a class of f for which condition (A3) holds and then
extend Theorem 1.
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COROLLARY 1. f € Cg satisfies condition (A3), and G” is given by

Y § iex T(E)
G (x)—Re<27r L EH(;,:) dg)

f(g) = J: e *f(x) dx (Fourier transform)

where

H(¢) = J; J; ue ¥~ dy dF(y)

1 . N
= Iz (—iut + 1 - F(§))

F(£)=J: e ¥ dF(x).

Thus in Theorem 1, if f € C%, then R(f) is explicitly calculated as

R(f)—— f f f Re<27r f oit ;I((‘?) dg) dx du dF(y).

PROOF. We can easily show that H(£) # 0 for all £&. On the other hand if
fE C%k, then | f(£)| =0(|£|™) as | £| — o for any n = 1. Thus

|f(&)]
|H(&) |

and this implies

=o0(|&|™) as |¢{] > » forany k=1

1F0))
L |H()| %<7

An _ _1_ —ix; f(g)
G = o f_w SH(!,:) d

Hence

is well-defined, and it is easy to check that
© Y
f f u@”(x + y — u) du dF(y) = f(x).
0 0
Since f(x) is real-valued, we have

J(: J; uG”(x + y — u) du dF(y) = f(x).

Clearly G”(x) is bounded, and G”(x) — 0 as x — ® by the Riemann Lebesgue
theorem. 0
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COROLLARY 2. For any bounded measurable nonnegative function f
with compact support, in Case Il Z,(f) converges weakly to a null process in
D([0, T, R), T arbitrary.

PROOF. For any f with the above property, there exists a function g € C%
such that f(x) < g(x) for all x. Then
0 = Z.(f)(t) = Z.(8)(t).

But in view of Theorem 1 (Case II) and Corollary 1, Z,(g) = 0 (a null process is
denoted by 0) in D([0, T], R), T arbitrary. Thus Z,(f) = 0 in D([0, T, R), T
arbitrary. 0

COROLLARY 3. Let f be a nonnegative continuous function with compact
support. Then for Case 1 Z,,(f) = Z(f) in D([0, T, R), T arbitrary with Z(f)(t)
= T(f)Lo(t). Here T(f) can be determined as T(f) = lim,_T(fx), for any
sequence of f,, € Cx such that supp(f.) U supp(f) C K (a compact support) and

supxlfm(x) - f(x) I —0 as m— o,
PROOF. (suggested by Y. Kasahara). Let f,, m=1,2, --., € Cg be such
that supp(f,.) U supp(f) C K (a compact set) and sup,|f.(x) — f(x)| — 0 as
m — . Then lim,_.T(f,) exists and does not depend on the choice of {f,.}.

Indeed let g € Ck be such that 0 < g(x) < 1 for x € R and g(x) = 1 on K. Since
sup,| fm(x) — f(x) | = 0 as m — o, for an arbitrary ¢ > 0

sup, | fm(x) = fu(x) | <e
for sufficiently large m and n. Then by the definition of g,
—eg(x) = fm(x) = fu(x) = eg(x), x ER.
Then for sufficiently large m and n,
—eT(8) = T(fn) — T(fa) < T(g).

(Note that T'(f), f € C%, is linear and nonnegative, i.e., T'(f) = 0 if f = 0.) Thus
{T(fx)} is a Cauchy sequence and has a limit T'(f) = lim,,—.»T(f.). Next we will
show that Z,(f) = Z(f) in D([0, T'], R), T arbitrary, where Z(f)(t) = T'(f)Lo(t).
For an arbitrary ¢ > 0, take m so large that sup,|f.(x) — f(x)| < ¢ and
| T(fn) — T(f) | <e. Then we have

| Za(F)(E) = Z(f)() |
= | Zn(f)@) = Zn(fm)@) | + | Zn(fm)(£) = T(fn)Lo(?) |
+ | T(fn)Lo(t) = T(f)Lo(2) |
< ¢Z,(8)(t) + | Zn(fn)(t) = T(fm)Lo(t) | + eLo(t) = Sn(2).

The process S, (t) converges weakly to the process ¢(T'(g) + 1)Lo(t). But ¢ was
arbitrary, hence the process | Z,(f)(t) — Z(f)(t)| converges weakly to a null
process, which was the desired result. 0



412 K. YAMADA

REMARK 3. From the proof of Corollary 3, we can say that there exists a
measure u on R such that

T(f)=J; f(x)u(dx)

for any f € C%. (Note that T'(f) = 0 if f(x) = 0 for x = 0. Hence u((—%, 0)) = 0.)
Thus for any bounded measurable function f with compact support T'(f) can be
defined as the right-hand side integral in the above. Then in view of Proposition
1 we conjecture that

T(La () = {(1)/ el

i.e., the measure u has a mass on {0}. Once this is verified it is not difficult to
show that for functions such as f(x) = Ij,5(x) or f(x) = Ia8(x), Z.(f) = Z(f)
where Z(f)(t) = T'(f)Lo(t).

REMARK 4. As was mentioned in Remark 3, there exists an appropriate
measure u on R such that Z,(f) = Z(f) where Z(f)(t) = T(f)Lo(t), T(f)
= [ f(x)u(dx) and Lo(t) is the local time at zero of a Bessel process. While it is
known that

%fo fB(s)) ds = T - LE(+)

where B(t) is a Brownian motion with B(0) = 0, f a bounded measurable function
with a compact support, L§ () the local time of B(t) at zero, and f = [Z. f(x) dx
(Ikeda and Watanabe [6, III, Theorem 4.4]). In the above both the limit processes
are constants times local time processes at zero of a Brownian motion or a Bessel
process, and these constants are the integration of f with respect to some measures
on R. In Kasahara [4, Theorem 1] the situation was clarified under which such
measures appear for general Markov processes. However, the direct application
of his result to our problem seems to be difficult.
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