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REFLECTED DIFFUSION PROCESSES WITH JUMPS

By Josk-Luis MENALDI' AND MAURICE ROBIN

Wayne State University and Inria-Rocquencourt

A stochastic differential equation of Wiener-Poisson type is considered
in a d-dimensional bounded region. By using a penalization argument on the
domain, we are able to prove the existence and uniqueness of solutions in the
strong sense. The main assumptions are Lipschitzian coefficients, either
convex or smooth domains and a regular outward reflecting direction. As a
direct consequence, it is verified that the reflected diffusion process with
jumps depends on the initial date in a Lipschitz fashion.

Introduction. In this paper we consider a stochastic differential equation
of Wiener-Poisson type in a d-dimensional bounded region with reflecting con-
ditions (cf. [7]).

This kind of problem has been studied in Anulova [1, 2] and Chaleyat-Maurel
et al. [4]. Herein, we extend the results of [6] to more general situations, e.g.
general domains and jumps processes.

By using a penalization argument on the domain we are able to prove the
existence and uniqueness of a solution in the strong sense. Also, it is verified
that the unique solution, i.e. the reflected diffusion process with jumps, depends
on the initial data in a Lipschitz manner.

Let us mention that a similar penalization argument has been used in Ben-
soussan and Lions [3], Lions et al. [5] and Shalaumov [8].

In the first section we treat the case of convex domains not necessarily smooth.
Next, via a diffeomorphism, we extend these results to smooth domains which
are simply connected. Finally, in the section three, we adapt the technique to
general smooth domains.

1. Convex domains. Let (Q, F, P, F;, w;, u:, t = 0) be a complete Wiener-
Poisson space in R* X R7, R? = R™ — {0}, with the Levy measure =, ie.,
(Q, F, P) is a complete probability space, (F;, t = 0) is a right continuous
increasing family of complete sub g-algebras of F, (w, t = 0) is a standard Wiener
process in R" with respect to (F;, t = 0), (u;, t = 0) is a martingale measure in
RT, w.r.t. F;, independent of (w;, t = 0), corresponding to a standard Poisson
random measure p(t, A), namely, for any Borel measurable subset of R,

u(A) = p(t, A) — tw(A)
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320 J.-L. MENALDI AND M. ROBIN

where
E(p(t, A)) = tx(A).

One can refer to Bensoussan and Lions [3], for a detailed study of diffusion
processes with jumps.
Suppose that © is an open subset of R? such that

(1.1) © is convex and bounded
and that we are given measurable functions
£:0->RY g=(ak),
0:0 > RYX R, o= (op(x)),
v:0 X R} = RY v = (vi(x, 2)),
satisfying

4

1g(@)|? + |o(x)|” + J,;,,. | v(x, 2)|°7(dz) = C,,

12) < lgx)—gx")?+ |olx) —alx)]?

+f ly(x, 2) — y(x’, 2)|Px(d2) = Cp|x — x' |7,
Rm

N

for every p = 2, x, x’ in © and some constant C, depending only on p. Note that
P

O is the closure of @ and |-| denotes the appropriate Euclidian norm. Also
assume that
(1.3) x+y(x 2) €0, Vx€O, Vz€R"

This means that all jumps from © are inside ©.

A reflected diffusion process with jumps (y(t), t = 0) and its associated
reflecting process (n(t), t = 0) is a pair of progressively measurable stochastic
processes which are right continuous having left-hand limits such that

(i) y(t) takes values into the closure @ and 5(t) is continuous, has
locally bounded variation and 5(0) = 0;

(ii) dy(t)=g(y(t))dt+a(y(t))dwt+Lmv(y(t),z)dm(z)—dn(t),

(14) t=0, y(0)=ux;

(iii) for every z(t) progressively measurable process which is right
continuous having left-hand limits and takes values into the
closure @, we have

T
J; (y(t) —2(t)) dy(t) =0, VT =0.
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Since (5(t), t = 0) is a continuous process, the last inequality is equivalent to

T
J; (y(t=) — 2(t=)) dyn(t) =0, VT =0

where y(t—), z(t—) denote the left-hand limits at .

The problem (1.4) is referred to as a stochastic variational inequality (SVI)
for reflected diffusion processes with jumps in convex domains.

We approximate this SVI by means of a classical penalty argument on a
diffusion process with jumps in the whole space R“.

Without loss of generality, we may assume that the coefficients g, o, vy are
extended to R preserving the assumption (1.2), in particular, one can take

(1.5) v(x, 2) = v(pr(x), 2), Vx ERY Vz€ERY,

where pr(-) denotes the orthogonal projection on the closure ©.
Consider the stochastic differential equation

dy*(t) = g(¥°(¢)) dt + o(y°(¢)) dw:
(1.6)

1
+ Jl;m v(y' (), 2) du(2) =~ B(y*(®) dt, =0, y(0) =,
with ¢ > 0, x in © and 8 = (id — pr)*, i.e.
(1.7) B(x) = Yegrad(min{| x — y|%: y in ©}).
THEOREM 1. Let the assumptions (1.1), (1.2), (1.3) and (1.5) hold. Then the

SVI (1.4) has one and only one solution (y(t), n(t), t = 0). Moreover, for each
p=1, T>0, we have

(1.8) E{supo<i<r| y°(t) —y{t)|P} >0 as ¢—0,

1 P
;J; B*(y°(s)) ds — n(¢) }—>0 as ¢— 0,

(1.9) E{Suposts’l‘

where 3* denotes the transpose of B8 and the limits are uniform in x belonging to
.

PrROOF. The method is very similar to [6]. For the sake of completeness we
include the whole adaptation of the proof.

Several steps are needed. First of all, note the following key properties of the
penalization term 3(x) defined by (1.7),

(1.10) there exists a € R?, ¢ >0 such that
: (x — a)B(x) = c|B(x)|, Vx€ERY
(1.11) (x’ — x)B(x) < B*(x")B(x), Vx,x’ € R

Indeed, since © is convex, open and bounded, for any a in © we can find a
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suitable positive constant ¢, proportional to the distance from the point a to the
boundary d©, such that (1.10) is satisfied. On the other hand, because © is
convex, the function 8 is monotone, i.e.

(x" —x)(B(x") — B(x)) =0, Vx,x’ € R
In particular
(x’ —x)B(x) =<0, VxER?Y Vx' €0.
This last inequality and the relation
x' —B*(x’) =pr(x’), Vx’' €R?

imply the condition (1.11).
Now, we will show that for every p = 1, T > 0 there exists a constant C,
depending only on p, T and the constants appearing in (1.2), (1.10), such that

I [7 ) acne °|
(1.12) El >, | B(y°(t))| dt J»ZC, Ve > 0.

Indeed, we set
a(p) = sup{pbi(x)(1 + |x — a|?)™!
(1.13) + p(p — 2)ba(x)(1 + |x — a|?)2
+ bs(x, p)(1 + |x — a|®)P*%:x in RY,
with
bi(x) = Tk (5 — a)gi(x) + 2 Tt iy [ow(x)]3

ba(x) = Y2 Téim1 (xi — @) (% — aj) Dheq on(x)jr(x),

bs(x, p) = Lm [A+]x—a+ v )2 -1+ |x—a|?)?
—p(l+ |x—a|?)P? T, (i — a)yilx, 2)]n(dz).
Since

bs(x, p) = J; (1-1¢)adt Lm (p(1 + |x —a + ty(x, 2)|)P2H(TLy vix, 2))

+p(p—2)A+ |x—a+ ty(x, 2)|?)P*2

C[ZE (= @+ tyi(x, 2))vi(x, 2)Pw(d2),

it is clear that the constant «(p) is finite and can be estimated by means of the
constant C, in the assumption (1.2) on the coefficients g, o, v. Thus, we apply
Ito’s formula to the function

(x,t) > e (1 + |x — a|?)"? «= al(p),
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with the process y°(t), to get
e (1 + | y*(t) — a]*)™”
=sQ+|x—al?)P?+ It)

_1;’ J; e (y*(s) — a)B(y*(s))(1 + | ¥°(s) — a|2)P?" ds,

where I(t) is a stochastic integral. This implies

(1.14) E{|yt)|?}=C, Vte[0,T], Ve>0.

Therefore, taking p = 2 and using the condition (1.10) we obtain
2¢ [*

0

e™ | B(¥*(s))| ds

=1+ |x—-al®)+ j; e~ (y°(s) — a)a(y°(s)) dw;,

. .
+ j; Lm e™(y*(s) — a)v(y°(s), 2) dus(2).

Hence, by using standard martingale estimates on the above stochastic integrals

and (1.14) we deduce (1.12). Note that we also have

(1.15) E{supo<;<r| ¥°(t) |} = C, Ve>0,

for some constant C independent of ¢ and x.
Next, we will prove that for every p > 2 there exists a constant C, depending
only on p, T and the constant C, appearing on (1.2), such that

(1.16) E{supo<i=r | B(¥°()) |7} = CeP*™, Ve > 0.
Indeed, let L be the integro-differential operator
(1.17) Le = Lo® + L,®,
with
a%e 1%
Lo® =% Y ¢=1 <m> Yhe1 Oirojr + D <b;i)gi

L,#(x) = Jn;m [‘P(x +(x, 2)) — P(x) — & vilx, 2) g—i (x)]vr(dz).

Consider the function
P(x)=|Bx)|?, p>2,

which is continuously differentiable and whose first derivatives are locally Lip-
schitzian. Moreover, for some constant C,, depending only on p, the bounds of
g, o and the domain ©, and for almost every x in R¢ we have

(1.18) | Lo# (x)| = Co(] B(x) |77 + | B(x)|P7).
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The crucial point difference from [6], is the fact that
(1.19) |L#(x)| = Ci|B(x)|”~®

holds for almost every x and some constant C;, depending only on p, the constant
C, of (1.2) and the domain ©. In order to establish this last inequality, we notice
that '

L,¢(x) = f (1—1t)dt f Sdia1 vilx, 2)7,(x, z) (x + ty(x, 2)) 7 (dz2),

® (% + ty(x, 2))| = C1BG&x + tr(x, 2)) |7,

2
'é)xié)xj
and
|B(x + ty(x, 2))| < |x+ty(x,2) —y]|, Vy€E€O.
Thus, choosing
y = pr(x) + tv(pr(x), z)

and using (1.5), we verify (1.19). Then, approximating ¥ by smooth functions
and applying Itd’s formula for the process y°(t), we may justify the following
inequality

O (y*()) + ’3 f ¢ (y*(s)) dx

t
=1I@) + J; [(Co + C1)| B(¥°(s)) P72 + Col B(¥*()) P71 ds,
where I(t) is a stochastic integral, precisely

I(t) =pj; B*(y°(s))a(y*(s)) | B(y°(s))1P7% dw,

+p J; J“;T B*(y4(s))v(¥°(s), 2) | B(y*(s)) 1772 dpus(2),

and Cy, C, are the constants in (1.18), (1.19). Hence, using the elementary
inequality

0<AB<A%Yq+BY/q’, 1/g+1/q' =1

for appropriate factors A and B, we deduce
t
1200 Py + 2 f ©(y(s)) ds = I(t) + C(eP™ + ¢?7Y),
0

for some constant C independent of e. Therefore, taking the mathematical
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expectation in (1.20), we obtain
: t
(1.21) E{f e (y°(s)) ds} =CeP? if 0<e<l],
0

for a suitable constant C. Similarly, taking the supremum over ¢ belonging to
[0, T'] in (1.20) and, then, using the stochastic integral estimate

J;t hy(s) dw, J;t Lm ha(s, 2) dus(2) )}

[ T 1/2 T 1/2
=< 3E1<J; | hi(s)|? ds) + (J; ds J];m | hao(s, z)|21r(dz)> },
we have

T 1/2
E{supose=r | B(y°(t)) |7} = CeP*! + CE[ ( fo [ B(ye(t)) |2 dt) }

Since the last term is dominated by

+

E{ supwg(

T
C'E{J; | B(ye(¢))|P~2 dt} + Y E{supos:<r | B(y°(t)) |7},
we deduce for a new constant C that

T 1-2/p
E{suposi<r | B(y°(¢)) |7} < CeP>t + CE{(J; [B(y())]° dt) }

by means of Holder’s inequality. Hence, the estimate (1.16) follows after using
(1.21).

Let ¢, ¢’ be two positive numbers. We will show that for every p = 1,
0 <2q <p, there exists a constant C, depending only on p, g, T, the constant C,
in (1.2) and the domain ©, such that

T p
(1.22) E{('},J; | 8*(y*(£))B(y*" (t)) ] dt) } = Cet

Indeed, we have

T
1 f 8% (y(£)B(y* (£))| dt < AB )
= (supos=r| B(y‘(t))l)<ei,j; [B(y* (1)) dt)-
Since, for r > 2
E{(AB)?} < (E{AP)"(E{B™ DV, r' =r/(r — 1),
from (1.12) and (1.16) we get
E{(AB)P} < CeP/?Vr,

which implies (1.22), if r is chosen sufficiently large.
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Now we will prove that if 2 < 2¢ < p, there exists a constant C, depending
only on p, g, T, the constant C, in (1.2) and the domain ©, such that for every e,
e’ >0

(1.23) Ef{suposs=r| ¥°(t) — y° (£)|P} < C(e + ¢")",

t t P
L[ g as -1 [ groron a }
& 0 & 0
=C(e+¢’)

Indeed, it is clear that by proving (1.23) we may deduce (1.24) after using the
equation (1.6). In order to show the estimate (1.23), we apply It6’s formula to the
function

|
(1.24) E lsupogsr

E— &)

with the process
e =) — ¥ (t)
to get

Iy"(t) - yc,(t)l2 < I(t) + C J; ch(s) _ yc'(s)lz ds
+ % J; (5 (s) — ¥*(s))B(y(s)) ds

2 [ o) =5 8 00 s,

where I(t) is the stochastic integral

I(t) = 2 f (°(s) — y*' (8))[a(¥°(s)) — a(y° (5))] dw,

+2 f fm (9 =y (DY (5*(), 2) = 7 (¥ (5), 2)] dpss(2),

and C is a constant depending only on the constant C, in (1.2). Notice that by
means of standard estimates on stochastic integrals we have, for r > 1,

E{supo<e=7 | I(t) |}
T r/2
= CE{(J; lys(8) — y* (©)]* dt) }

T r
< WE{supost=r| ¥°(t) — y° (£)|¥} + 1/202E-{<J; lye(t) — v ()]2 dt> }

Therefore, by using the property (1.11) and with a new constant C, 2r = p,



REFLECTED DIFFUSION PROCESSES 327

0 =t =< T, we deduce the following inequality

E{supose=: | y°(s) — °'(s)|7} < CJ; E{ly“(s) — y*'(s)|"} ds

J']‘ ’ * Y ] pl
+CE1 —J; | 8*(y° (s))B(y°(s))| ds 1

&
I 1 ’ % (a)€ e’ P‘l
+CE1 ;fo | 8*(¥°(s))B(y° (s))| ds I

which implies (1.23) after using (1.22) and Gronwall’s inequality.
The next step is to define the processes

(1.25) y(t) = lim,_oy*(t),

(1.26) n(¢) = lim, o %fo B*(y*(s)) ds,

where both limits exist in the sense of (1.8), (1.9). Clearly, the estimate (1.12)
shows that 7(t) has locally bounded variation, precisely for any p = 1, T'> 0,

E{(X% In(t) — () [)?} = C(p, T) < +
forevery 0<t<-..-<t,<T, n=1,2,---.

On the other hand, the condition (1.16) implies that the process y(t) takes values
into the closure ©, almost surely. If we define

0 =2 [ st as

then
dn*(t) = (1/e)B(y*(¢)) dt.
Hence, the property (1.11) proves that

T
J; (y*(®) = 2(8)) dn*(t) =0, VT =0,

for every right continuous process having left-hand limits z(t), which is progres-
sively measurable and takes values into the closure ©. Thus, passing to the limit
as ¢ tends to zero, we obtain the SVI (1.4).

To conclude the proof, let us suppose that (y;(t), n:(t), t = 0), i = 1, 2 are two
solutions of the SVI (1.4). By applying a combined version of the Itd’s formula
and an integration by part to the function

£ )7
with the process
£ = y1(t) — y2(2t)
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we get

Efly@) — ()%} = CE{J; | y1(s) — ¥2(s)|? ds}

+ 2E{J; (yl(s) - yz(s))(dnz(s) — dm(s))}.

Since the last term is not positive, we deduce
y1(t) = y2(t), Vt=0.
Hence, the SVI (1.4) poses a unique solution given by the limits (1.25) and
(1.26).0
REMARK 1. We also have for any numbers p > 2q > 2, the estimates
(1.27) Efsuposi=r| y*(t) — y(¢)|?} = Ce?, Ve >0,

%j; B*(y*(s)) ds — n(t) } < Ce? Ve>0,

(1.28) E{SUPOStST

where the constant C depends only on p, g, the domain © and the constant C, in
(1.2).0

REMARK 2. The reflected diffusion process with jumps y(¢) = y.(t) is Lip-
schitz continuous with respect to the initial data x in ©. Precisely, if p = 2 and
(129) “ " sup{pCi(x, x’)|x — x| + p(p — 2)Ca(x, x") | x — 2" |™*

+ Cs(x, x’, p)|x — x’ | P:x, x’ in RY},
with

Ci(x, x")

=Yk (= x/)(gi(x) — &(x’)) + % Tk That [ow(x) — oulx’)],
Co(x, x")
= Yo Xjm1 (6 — 2/) (%5 — x]) Tkt [ow(x) — ow(x’)][oja(x) — aju(x’)],

Cs(x, x’, p)

=Lmllx—x’ + @, 2) =y’ 2)|P =[x —x"|”
*

—plx—x" |P2 3L (6 — x!)(vilx, 2) — vilx’, 2))]7(d2),

then for @ = ap, T= 0 and x, x’ in ©, we have

T
EJl' yT) = 3 (T)[Pe™T + (@ = o) fo | 9:(t) = ya () | Pe dt}

(1.30)
=|x—x"|"
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Note that the constant «, is finite and can be estimated by means of the constant
C,in (1.2).0

REMARK 3. Assume that the domain © is bounded, convex and smooth, i.e.
there exists a function p(x) from R? into R, which is twice continuously
differentiable and satisfies

O = {x € R%p(x) <0},
(1.31) 90 = {x € R%: p(x) = 0},
[Vpo(x)] 21, Vx € 0.
Moreover, without loss of generality, we may suppose also that
p(x) = |B(x)|, Vx € R\O.

Then, by applying It6’s formula to the function p(x) with the process (y°(t),
t = 0), we have

L[ b0rt601 ds = 0(a) = (@) + 10 + f Lo(y*(s)) ds,
& Jo 0

where L denotes the integro-differential operator (1.17) and I,(t) is a stochastic
integral. This equality and the estimate (1.23) allow us to establish the conver-
gence

lf | B(y°(s))| ds — {(t) }—)0 as e—0
& 0

(1.32) E{SupogsT

with the limit being uniform for x belonging to ©. The process ({(t), t = 0) is
nonnegative, increasing, continuous, progressively measurable and satisfies

(1.33) n(t) =J; n(y(s)) d§(s), Vi=0,

(1.34) () = J; x(y(s) € 00) d{(s), V=0,

where (y(t), n(t), t = 0) is the solution of the SVI (1.4), x(.) denotes the
characteristic function and n = Vp stands for the outward unit normal to ©. [

REMARK 4. In order to obtain the estimates (1.12), (1.14), (1.15), (1.16) and
(1.21), we did not make use of the Lipschitzian character of the coefficients g, o,
v, i.e. the second part of (1.2). This fact allows us to extend the technique of
Theorem 1 to the so-called weak formulation. In that case, the convergences (1.8)
and (1.9) become weak convergence in probability. On the other hand, if we
consider unbounded domains, then similar results can be deduced. 0.

2. Simply connected domains. Let (Q, F, P, F;, w;, u,, t = 0) be complete
Wiener-Poisson space in R" X R7 with Levy measure .
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Suppose that © is an open subset of R? such that

there exists a diffeomorphism of class C*

2.1 between the closure @ and the closed unit ball.

In other words there is a one-to-one map ¢ from a neighbourhood of © into a
neighbourhood of the closed unit ball B in R such that ¢ and its inverse ¢!
are three times continuously differentiable satisfying

Y(0) =B, ¢(60) = JB.

For instance, if © is a bounded simply connected set in R? with a smooth,
connected and orientable boundary d©, then the condition (2.1) is verified.

On the other hand, assume we are given coefficients g (x), o (x), v (x) satisfying
(1.2) and (1.3), and also a vector field » defined in a neighbourhood of the closure
©, which is twice continuously differentiable such that

(2.2) v(x)-n(x) =2e>0, Vx €90,

where n(x) is the outward unit normal to © at the point x.

A diffusion process with jumps (y(t), t = 0) and with instantaneous reflection
at the boundary d© in the direction » is a right continuous process having left-
hand limits, which is progressively measurable and satisfies

(i) y(t) takes values in the closure © and there exists an increasing
continuous process {(t), with {(0) = 0, such that

(i) dy() =g(y(¢)) dt + o(y(¢)) dw:

(2.3) + J,;m v(y(8), 2) due(2) —v(y(2)) dS(t), t=0,

¥(0) = x;
(iii) d¢(t) =x(y(t) €00)d{(t), t=0,

where x (y € d0) denotes the characteristic function of the boundary d©@. The
stochastic process ({(t), t = 0) is called the associate increasing process to the
reflected diffusion process with jumps (y(t), t = 0).

THEOREM 2. Under the assumptions (1.2), (1.3), (2.1) and (2.2) there exists a
unique solution of the stochastic equation (2.3) for each x belonging to .

PrROOF. The point is to build a diffeomorphism between © and the closed
unit ball B such that the direction » is transformed into an outward normal
direction. Hence, by using It6’s formula, we determine a SVI (1.4) on the ball B,
which can be solved by means of the Theorem 1. Thus, going back to the initial
domain © via the diffeomorphism, we establish the existence and uniqueness of
solutions for the problem (2.3). The construction of such a diffeomorphism is
based on an idea of Williams [9].

Because of the assumption (2.1), there is a diffeomorphism between © and B
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i.e. for some 9, 6; > 0,
$1: ® + 0B — B + 5,B
together with its inverse are three times continuously differentiable such that
¥1(0) = B, ¢1(d0) = IB.

Notice that if C;, C, are two curves in © + 6B with nonzero angle, then y,(C,),
¥1(C;) are also two curves of B + 6, B with nonzero angle. This fact, which is
valid for any smooth diffeomorphism, allows us to verify the condition (2.2) is
preserved by 1, i.e. for some 0 <¢; <1

r(x)-m(x) =¢, Vx €9B,

where n,(x) stands for the outward unit normal to B at the point x in dB. Note
that »,(x) is indeed a tangent vector of a curve C at the point x, provided the
curve Y1 (C) possesses »(y) as a tangent vector at the point y = ¢71(x), i.e.

n = VV%,

with Vy,; being the matrix of the first derivatives of ;.

Now the problem is reduced to the case ©® = B, in which we only need to
transform v, into the normal. To this end, we consider a vector field f(x) which
is twice continuously differentiable on the open set

0<|x|<1+6
and satisfies
fx) =nk), if |x|=1,
f(x)-x = Yoe,| x|, forevery «x,
fix)=|x|x, if |x|=<%.

Notice that the assumptions made on the direction » and the diffeomorphism vy,
ensure that », is twice continuously differentiable and, therefore, the vector field
f can be constructed. Thus, we define for some 62 > 0

Yo: B+ 8,B — B + §,B

by means of an ordinary differential equation. Let x(t, @) be the unique solution
of the initial value problem

dx/dt = f(x), x(%%) = Yea,

where |a| = 1. We set
1y = 1Y if |y
2 () {x(lyl,y/lyl), if |y

This means that the curve
{ta:0 =t<1+ 0} in B+ 6B
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becomes the curve
fta:0=t=%}U{x(ta):%e<t<1l+§} in B+ §B.

Clearly, the classical theory of ordinary differential equation guarantees the
smoothness of the diffeomorphism ¥, and by construction

vy = V¥, = ny,
where n; is the outward unit normal, i.e. n,(y) = y. By the way, note that if
v(x) = Mx)v'(x), Vx,
with A being smooth and satisfying
AMx)=e’ >0, Vx €90,

then the reflected diffusion processes with jumps (y(¢), ¢ = 0) and (y’(t), t = 0)
associated with the direction v and v’, respectively possess the property

y(t) =y’ (¢), Vt=0
di(t) = My(t)) dg’(t), Vi=0

where ({(t), t = 0) and ({’(t), t = 0) are the increasing processes corresponding
to the directions » and v’ respectively. This completes the proof. 0

REMARK 5. The hypothesis (2.1) is not really needed. It suffices to know that
the domain © is such that it can be transformed into a convex set ©’, via a
diffeomorphism of class C? with the property of mapping the direction » into the
normal n’ of @. Note that the problem of characterizing domains © having the
property just mentioned is an open question for us. However, it is clear that ©
could have only a piecewise smooth boundary and still satisfy the above
property. O

3. Regular domains. Let (Q, F, P, F;, w;, w;, t = 0) be a complete Wiener-
Poisson space in R" X R} with Levy measure =, and g(x), o(x), y(x) be
coefficients satisfying (1.2).

In order to be able to treat domains which are not simple connected, we
assume that @ admits the following representation

( there exists a function p(x) from R? into R which is twice continuously
differentiable and such that

3.1) < O ={x € R%p(x) <0},
30 = {x ER%:p(x) =0},

L IVp]|=1 on 90,

and also
(3.2) © is bounded.
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Note that without loss of generality, the function p(x) may satisfy

(3.3) p(x) = | x — a|, if the distance between x and © is greater than some
) 6 > 0 for a suitable a in O.

On the other hand, it is clear that under the hypothesis (3.1), we may construct
a Lipschitzian function pr(x) from R¢ in itself such that

satisfying dist(x, ©) < do,

where 6, is a positive constant and dist(x, ©) stands for the distance between the
point x and the set ©. Hence, we can extend the definition of the coefficients g,
o, v to the whole space R?, in such a way that (1.2) is preserved. In particular,
for every x in a neighborhood of © we have

(3.4) { | — pr(x) | < dist(x, ©) and pr(x) € O, for every x in R?

(3.5) v(x, 2) = y(pr(x), 2), Vz € RY.
Instead of (1.3), we assume
(3.6) x+ty(x,2) E0Q, VxE€O, VzER?, Vte|[0,1]. .

Notice that from (3.4), (3.5) and (3.6) we deduce

3.7) dist(x + ty(x, 2), ©) < dist(x, ©), for every x in R?
) satisfying dist(x, ©) <dpand any zin R}, 0 <t =<1.

Suppose we are given a function M(x) from a neighbourhood of the boundary
dO into the set of symmetric matrices d X d, which is twice continuously
differentiable and such that for every x,

(3.8) 2*M(x)z = 6|z|% Vz€ERY

for some constant 6 > 0. Remark that any vector field »(x), which is twice
continuously differentiable in d© and satisfies (2.2), can be represented as

3.9) v(x) = M(x)n(x), Vx
for some matrix satisfying (3.4). Note that
n(x) = | Vp(x)|'Vp(x),

with Vp being the gradient of the function p.
We construct the following vector field 3(x) defined and Lipschitzian on the
whole R¢,

(3.10)  B(x) = pT(X)x ()M (x)Vp(x) + (1 — x(x))p* (x)Vp(x),
where x (x) is a smooth function satisfying
0=<x(x)<1, Vx€RY
x(x) = 1 in a neighbourhood of d©
x(x) = 0 if either p(x) = |x — a| or M(x) is not defined,
and p* denotes the positive part of the function p given in (3.1). Notice that in
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view of (3.1) and (3.3), we may suppose without loss of generality that
(3.11) |[Vp| =1 outside of ©.
Consider the stochastic differential equation

dy*(t) = g(y°(¢)) dt + a(y*(t)) dw,

(3.12) 1
+ Jn;m v(¥°(t), 2) due(z) — =~ B(y*(t)) dt, t20, y(0) =x,

i.e. the same equation as (1.6), but with a different 8, and denote by
1 t
(3.13) £ot) = ;J; pT(¥°(8)) | Vp(y°(s))| ds, t=0.

THEOREM 3. Assume the conditions (1.2), (3.1), - .-, (3.11) hold. Then the
problem (2.3) has one and only one solution (y(t), {(t), t = 0). Moreover, for each
p=1,T>0, we have

(3.14) E{supo<i=r| y°(t) — y()|?} >0 as e¢— 0,
(3.15) E{supo=i=r| () — §@)|P} >0 as e—0,

where the limits are uniform in x belonging to ©.

PRrROOF. The methods to be used are essentially the same as those of Theorem
1. We just need to establish some key facts before applying the technique
developed in [6]. First we will prove that for some constants K, > 0, K > 0, and
any x, x’ in R we have

(3.16) dist(x, ©) < p*(x) = Kodist(x, @),
B17)  pT(@)(x" — x)Vo(x) < p*(x)p*(x') + Ko™ (x)|x — x"|?

where dist(x, ©) stands for the distance from the point x to the set ©. Indeed,
the inequality (3.16) follows from

1
pT(x) = J; (x —a)Vp(a + t(x — a))x(a + t(x — a) & Q) dt,

for any a in ©, and in view of (3.11), if we take
K, = sup{|Vp(x)|:x in R - O}.
Similarly, the identity
p(x") — p(x)

1
=(x' —x)Vp(x) + J; (x" = x)[Vp(x + t(x" — x)) — Vp(x)] dt

yields (3.17) with
2K = sup{| Vp(x) — Vp(x')||x — x'|':x, x’ in R}
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A second clue is that we can find a constant ¢ > 0 such that
(3.18) Vp(x)-8(x) = cp*(x)| Vp(x)|, Vx € R
Indeed, from (3.8) and (3.10) follows, for the same & > 0 of (3.8),

Vo(x)-B(x) = p*(x)x (x) (Vo (x)-M(x)Vp(x))
+ o7 (@)1 = x(x))(Vp(x)-Vo(x))
2 [ox(x) + A — x(®)]p*(*) | Vo (x)|?
which implies (3.18), after using (3.11) and choosing
¢ = min{1, é}.

Now, we will show that for every constant o > 0 there exist constants C, A
depending only on the constants C, in (1.2), 6 in (3.8), « and the domain © such
that

(3.19) Efexp(af(t))} = Cexp(At), VE=0, Ve>0,

where ({°(t), t = 0) is the stochastic process (3.13). Indeed, by means of Itd’s
formula applied to the function p(x) with the process y°(t), we get

p(y* (1)) = p(x) + I(¢) + f Lp(y*(s)) ds
(3.20) - 0
—;J; Vo (y*(s))-B(y*(s)) ds, t=0

where L is the integro-differential operator (1.17) and

I(t)=fO Vo (y*(s))o(y(s)) dws+J; J];mvp(y%))-v(y‘(sx 2) dus(2).

Since p(x) is bounded from below, the inequality (3.18) implies
(3.21) c(t) =Co+ Cit+ I(t), Vt=0,

for some constants Cy, C; depending on p, g, s, v, and the same c of (3.18). Again,
by using It6’s formula for the function

£ — exp(ac™'f)
and the process I(t), we have
t
Efexp(acI(t))} = 1 + a%c2C, f Ef{exp(ac™'I(s))} ds, t=0,
0

where C; is a suitable constant depending only on p, ¢ and vy. Hence, Gronwall’s
inequality implies

Efexp(ac™!I(t))} < exp(a®c™2Cyt), t=0.
This fact together with (3.21) yield the estimate (3.19) with

A= ac'C; + a%%C,, C = exp(ac™Cy).
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It is clear that from (3.19) follows

(3.22) Ef|¢@®) P} =C, Ve>0
and going back to (3.20), we deduce

(3.23) E{suposi<r| y*(t)|7} = C, Ve>0,

foranyp=1, T>0.
Let us show that for any p > 2 there exists a constant C, depending only on
D, T, the constant C, appearing in (1.2) and the domain ©, such that

(3:24) E{suposi=rlp* (y°(t)]P} = CeP*7l, Ve > 0.

Indeed, similar to Theorem 1, (1.18), (1.19), and in view of inequalities (3.7) and
(3.16), we verify that

|Le(x)| = Ci[p*(x)]P" + Cao[p*(x)]P%, Vx € RY,
for some suitable constants C,, C; and
Px)=[p"(x)]", p>2,

with L being the integro-differential operator (1.17). Hence, by using Ito’s formula
for the function ¢ (x) we deduce (3.24), after noting that

Vo(x)-B(x) = plp*(x)]P'Vp(x)-B(x) = pc?(x),

with the same ¢ of (3.18).
Therefore, it follows

1 7 , P
E{(; J; pt (¥ (@) p™(y° (2)) dt) }’ < Ce% Ve e’ >0,

with p = 1, 0 < 2¢g < p and some constant C.
At this point, we apply It6’s formula to the function

(3.95) {(z, %' §) > £* Q) + Q)¢ exp(-af),
' Q(y) = x(»M7(y) + (1 — x(¥))Id,

where Id stands for the identity matrix and x the function of (3.10), with the
process

£=y(t) — y*' ()
ye=y(t), yi =y (t),

Co=¢o(t) + ¢ ()
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to get
el ¥ (t) — ¥ (t) | 2exp(—as)
= £¥Q(y) + Q(y!))éexp(—aly)

=I@) + CJ; | ¥°(s) — ¥° (s)|%exp(—at,) ds
+(C = ca) J; | ¥5(s) — y°'(s) | %exp(—ag,) (d{(s) + d§'(s))
+ % J; By (NIQ(Y*(5)) + Q(y* (sNI(y* (s) — ¥°(s))exp(—af,) ds

+2 f B (DR () + Q(y (sN(y°(s) = ¥ (s))exp(—axs) ds,

where ¢, C are positive constants and the stochastic integral satisfies

t r/2
E{supo<i<r| I(t)|"} = CE-{(J; | y°(t) — y"(t)l“exp(—2a§‘t) dt) }

Hence, by means of (3.10) and (3.17) we have
By —y)
=p" (N = yIVe(y)
+ o (Mx (YA = x(WN(y" = y)*[-2Id + M(y) + M7 (y)]Vo(y)
=p W (y) + K" (W) y—y'|?
+ Gl (Me™ (') + oWy —v"1%,
and
BIIRW) — QYN —y) =Cely’ -yl
for some constants C;, C,. Thus, noting that

deet) = (1/e) p™ (y°(8)) | Vo(y°(s)) | ds,
we obtain

c|y*(t) = ¥ (t)|*exp(~at)

<I(@¢) +C J; | y¢(s) — ¥°'(s) | 2exp(—ass) ds

t

¥ gf P 60" () do + f p*(3(s))p* (¥ (s)) ds,

provided the constants « and C are sufficiently large. Therefore, as in Theorem
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1 and in view of (3.19), we get

(3.26)  Ef{suposi=r|y°(t) =y (t)|?} < C(e + ¢’)% Ve, ¢’ >0,

for 2 < 2¢g < p, T'> 0 and some constant C. Hence, from the stochastic equation
(3.12) follows

(327  Efsuposi=r|n°(t) = 1 (t)|P} < Cle + ¢')% Ve, e’ >0
where C is another constant and
¢
r® =2 fo B*(y(s)) ds, = 0.

Now, let us verify that for every T > 0, p > 2 we have
(3.28) Efsuposir| {*(8) = £ ()P} >0 as ¢ ¢’ —0.
Indeed, define the processes

a.(t)

= [x(y* )M (y*())Vp(y*(t)) + (1 = xo(y V(¥ (N Vo(y(®)) |,
t=0,
b.(t)
= [x(y*@O)M 7y t)Ve(y(t)) + (1 — xo(y* V(¥ (EN] | V(¥ () |7,
t=0,
where x is the same function of (3.10) and x, is a smooth function such that
xo(x) = x(x) in a neighborhood of R¢\©
xo(x) =1, Vx € O.
It is clear that
dn(t) = a.(t) d{°(¢),
and since (a-b denoting the scalar product of vectors a and b)
a.(t)-b.(t) = x*(y°(t)) + [1 = xo(y* ()
+ x (¥ ()1 = xo(¥°@))] Vo (y*(¢))
AM(y* (@) + M7 (¥ )IVa(y°(£) | Vo(y(£) |

we have
(3.29) I x1(y°(¢)) — @.(t)-b.(t)| = Cp™(y°(¢)), Vt=0, Ve>0,

with C an appropriate constant and x; a smooth function equal to one in a
neighborhood of R4\ ©, precisely

X1 = X2~
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Also note that
(3.30) |a. ()] + |b:.(t)] =C, Vt=0, Ve>0,
for some constant C, and by means of (3.26) we get
(3.31) E{supo<i<r| b.(t) — b (¢)|P} = C(e + &')9, Ve, ¢’ >0,
where 2 < 2¢ < p, T'> 0 and a suitable constant C. Hence, the identity
dge(t) — di'(t)
= [x1(¥° (1)) — a.(t)-b.(£)] di*(t) + a.(t)-[b.(¢) — b.r(2)] AS*(2)
+ [dn(t) — dn® ()]-b. () + [a. ()b () = x2(y* ()] A (2)

together with (3.22), (3.24), (3.29), (3.30) and (3.31) prove that (3.28) holds
provided we know that

p

} -0

J; b.r(s)-[dn*(t) — dn®' (¢)]

E- supo=:=<
(3.32) { Po<t=T

as g e’ —0.
In order to establish (3.32), consider the process
b.s(t) = hs(y°(t)) 6 >0,
where h;(x) is a smooth function and satisfies
| b(t) — b,s(t)] = C8, Vt=0, Ve 6>0,

and some constant C. Thus, it follows

U; be(s)-[dn*(s) — dn*'(s)]

= Co(s*(8) + £ () + J; be,s(s)-[dn°(s) — dn® ()]

But, by using Itd’s formula to calculate the stochastic differential of b, ;(s) and
after an integration by parts, we can dominate the last term by the expression

Cssupo<i<r | 0°(t) — n* (&) | + | I(2)],
where the stochastic integral I(t) satisfies

E{supo<¢<r| I(t) |p} = CpE{SuPOStsTl n°(t) — ﬂc’(t) |7},

for some appropriate constant C,. Clearly, from this we deduce (3.32).
Next, it is easy to verify from the above properties that the processes

(3.33) y(t) = lim._0y°(t), t=0,
(3.34) $(t) = lim,0$°(t), t=0,
are well defined, solve the problem (2.3) and satisfy (3.14), (3.15).
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In order to show the uniqueness of solutions, suppose we are given two
solutions y;(t), :(¢), i = 1, 2, of the problem (2.3). Then, applying It6’s formula
to the function (3.25) with the processes

£ = n(t) — x2(2),
Ye =), ¥/ =y(t),
¢ = §1(t) + $i(0),
we deduce
E{|y:(t) — %:(8)|?} =0, Vt=0,

after using the fact
(3.35) (x" —x)Vp(x) < K|x' —x|? Vx€O, Vx’ €0.
Note that the inequality (3.35) follows from (3.17). 0O

REMARK 6. Let us mention that Remarks 1, 2 and 4 extend to these general
smooth domains. In particular (1.30) holds for a suitable constant «,, different
from (1.29). This Lipschitz continuous property can be deduced by using It6’s
formula to a function similar to (3.25). Note that the clues are the inequalities
(3.17), (3.19) and (3.35). Also, the constant o, may be estimated by means of C,
in (1.2), Kin (3.17) and C, XA in (3.19).0

REMARK 7. It is clear that we may consider an evolution version of either
(1.4) or (2.3). Also, it is possible to use stopping times and random variables as
the initial data. All results extend to this situation with obvious changes. 00

REMARK 8. The techniques of this paper permit us to give a stochastic
interpretation to several analytical results related to the Neumann problem of
Hamilton-Jacobi-Bellman equation, variational inequality or quasivariational
inequality for an integro-differential operator, as studied in Bensoussan and
Lions [3].0
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