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TWO EXAMPLES CONCERNING A THEOREM OF BURGESS
AND MAULDIN

By Lurz W. WEIS

Louisiana State University

We show that for the transition kernels (u,) of a certain random walk in
R? and the Radon Transform in R? there is no subset K of positive Lebesgue-
measure such that (u,),ex is completely orthogonal.

Let X and Y be complete metric spaces, and % (X), #(Y) the corresponding
classes of Borel sets. Burgess and Mauldin have proved the following theorem
for a transition kernel (u,),cy of probability-measures on (X, #(X)).

THEOREM ([1]). Assume that for distinct points y,, y» € Y the measures p,,
and p,, are always mutually singular. Then there is a set K C Y homeomorphic to
the Cantor set such that the kernel (u,),ey is completely orthogonal, i.e., there is a
Borel map ¢: X — K such that

(X —9¢y)) =0 forally€E€Y.

Burgess and Mauldin asked if for a given atomless probability measure v on Y
one can choose K in such a way that v(K) > 0. In [2] Gardner gives a counter-
example which even shows more, but is somewhat artificial. In this note we want
to point out that there are also “classical kernels” like the transition kernel of
certain random walks and the kernel of the Radon Transform for which the
question posed by Burgess and Mauldin has a negative answer.

1. A random walk. Let X = Y = R2 v is Lebesgue’s measure on R? and
w the rotation invariant probability measure supported by the unit circle S*.
Then

uy(A) =p(A —y), y€ER?

defines the transition kernel of a random walk on R? with the following proper-
ties:

a) uy, and u,, are mutually singular for y, # y,.
b) If (uy)yek is a completely orthogonal kernel for a Borel set K C R? then
v(K) = 0.

ProOOF.
a) Clear since two distinct circles intersect in at most two points.
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b) Assume to the contrary that there is a Borel set K, C R2 v(K,) > 0, and a
Borel map ¢: R? — K, such that

(e (y)) =1 forall y€E K,.

Choose a bounded Borel set K C K, with v(K) > 0. Since the support of u,,
y € K, is contained in a large enough ball B, = {x € R*: | x| < r}, we can modify
¢ in such a way that K and ¢~ (K) are contained in B, and still

(o2 (y)) =1 forall y€ K.

Choose Borel functions g, on B, with | g,| = 1 on K and g, — 0 in the weak
topology of the Hilbert space Ly(B,, v) and put f,: = g, © ¢. Consider the
convolution operator

T: L2(Br’ v) g LZ(BI" v), Tf = XBr(f * ”’)-
For y € K, we obtain

Tfa(y) = J;z f(x) dpy(x) = ga(V)y(67(¥)) = &n(y). -

In particular, we have | xKTf. ||z, = v(K)"/? and xKTf, — 0 weakly for n — c.
But, this leads to a contradiction because we shall now show that T'is a compact
operator. First, we observe that the Fourier-Stieltjes transform i(x) goes to
zero as || x| — . Indeed by the rotation invariance of x and the substitution
u = cos a, we have

ﬁ(x) = f e‘f“'y) dﬂ(y) = f e-ilxlicose g,

1
; 1
0 1-u’

The last term goes to zero for || x | — % by the Riemann-Lebesgue-lemma applied
to the one-dimensional function (1/v1 — u?)x(0,1)(u). Given ¢ > 0 we choose
now a large enough ball B, such that | i(x)| < ¢ for x & B,. If ¥ denotes the
Fourier transform in L, (R?, v) and M; stands for multiplication with the function
i we can write

T = xB.9M;7 ' = xB,.9 xB;:M;7 ' + xB,F xB:M; 7 L.
Since xB, xB, is a compact integral operator and || xBsM; || < ¢ for arbitrary
¢ > 0 it follows that T: Ly(B,, v) = Ls(B,, v) is compact.

REMARK. As an example of a Cantor set K C R? such that (u,),ex is
completely orthogonal (as in the theorem), we may take the classical Cantor
subset K of {0} x [0, 1].

In order to find a separating function ¢ consider the continuous maps

p:Kx8S' 5K, p(x,y)=x and ¢: KXS'>R? qx,y)=x+y.
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If BC K X S' is a Borel cross-section for the map q: K X S* — Im(q) (see [5] I,
Theorem 4.2), we define ¢ on Img by ¢ = (p|s) ° (q|s)™" and extend it to a
Borel map ¢: R2 — K. For x € K we have

¢_l(x) -] (x + Sl)\UyEK,y#xy + Sl, l"x(UyEK,y#xy + Sl) =0
and therefore u.(¢(x)) = 1.

2. The Radon transform. Let X = R®and Y = §% X R™. y is the three-
dimensional Lebesgue-measure on X and v the product of the rotation invariant
measure on S? and the one-dimensional Lebesgue measure on R*. If K w,p for
(w, p) € 82 X R* denotes the two-dimensional Lebesgue-measure on the hyper-
plane {x: (x, w) = p}, then the Radon Transform R: L,(X, p) — L,(Y, v) is given
by

Rf(wa P) = J(;w)=p f(x) dﬂ(w,p)(x)-

Of course, in order to have a transition kernel (u,p))wpey Of probability
measures, it would be necessary to introduce densities for the measures y ) but
we prefer to deal with the “classical” Radon transform. We claim:

a) u,, and u,, are mutually singular for y;, y, € Y, y; # ys.
b) If (uy),ek is a completely orthogonal kernel for a Borel set K C Y then
v(K) =0.

ProoFr.

a) Clear.

b) The Radon Transform also acts as an operator R: B(D) — B(FE) where
B(D) and B(E) are the bounded Borel functions on D = {x € R®: | x| < 1} and
E = 8% X [0, 1] resp. Assume that there is a K C E with v(K) > 0 and a Borel
function ¢: D — K such that

uy(D — ¢ (y)) =0 forall y€ K.
Then
(*) xkR({fEB(D):0=f=<1}) ={ag: g EB(E),0<g =1}

where a(w, p) = pup) (D) for (w, p) € K and zero otherwise. Indeed, for g € B(E),
0 =g =1, choose f = g ° ¢ and observe that for (w, p) € K

Rf(w, p) = J; 8 ° ¢(%) dup)(x) = p@p (D) - f(o, p).

But (*) leads to a contradiction because by [3], pages 28-29, R(B(D)) contains
only functions for which the partial derivative 3/dp exists v— almost everywhere.
For a characterization of complete orthogonality in terms of surjectivity condi-
tions like (+), see [6]. One could also prove b) with an argument similar to the
one in 1b) since it is well known that the Radon-Transform R: Ly(D) — Ly(E)
is a compact operator. [0
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REMARK. For a fixed w € S?, the kernel (,),erx/.) is completely orthogonal
with an obvious separating function ¢.
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