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ON THE RANGE OF BROWNIAN MOTION AND ITS
INVERSE PROCESS

By J.-P. IMHOF

Unaiversity of Geneva

Jump behavior of the first passage time processes for Brownian motion,
its range and BES(3) are compared via their Poisson measures. Explicit
results concerning Brownian motion up to a first passage time of its range are
given.

1. Introduction. X = {X(t), t= 0} will be either standard Brownian motion
BM?* or the “three-dimensional” Bessel process BES*, x = X(0). In their canonical
description on the space of continuous functions, #*(# = #° for BM) and
R*(# = #° for BES) are their laws. Let M(t) = sup{X(s), 0 = s = t},
m(t) = inf{X(s), 0 < s < t} and R(t) = M(t) — m(t). The &-law of this range
was given by Feller [4]. We obtain the density of the Poisson measure for the
pure jump independent, nonstationary increments process of first passage times
of R under 22 Comparisons are made with the apparently not familiar correspond-
ing density for the first passage time process of X under % and the well-known
one under % This leads to relations between expected numbers of jumps >s in
given intervals. Some further results concerning X and R are given in the BM
case, and it is noticed that the first passage time processes of R in the BM and
BES* cases are identical in law over [0, x].

It is convenient to distinguish notationally between 7(y) = inf{s, X(s) = y}
and 0(y) = inf{s, R(s) = y}, to be used when X is BM, and the corresponding
times 7..(y), 0+ (y) to be used only when X is BES, respectively BES*, x > 0. In
this way E6(y) and E,(y) automatically mean £- and %Z-expectations, respec-
tively. We use basic notation from [8] which gives shorter formulas than the one
in [7). For t >0 and all x € R,

pi(x) = (2mt)"exp{—x®/2t}, &(x) = —(8/9x) p:(x).
For t > 0 and reals x, y, z with yz # 0 the following sums are defined,
Pi(x, y) = T p:(x + 2ny),
(1.1) G.(x,y) = 3 g(x + 2ny) = —(6/9x)P:(x, y),
Q(x, y,2) = Pi(x — y,2) — P(x + y, 2).

Sums with no limits indicated are always over n € Z.
For x > 0, g.(x)dt = #(r(x) € dt) and for 0 < x <y ([3], Proposition 8)
Gi(x, y)dt = P(r(x) € dt, 7(x — y) > t). It is well-known ([2], (11.10)) that
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Qi(x, v, 2)dy = #*(X(t) € dy, 7(0) A 7(z) > t) when 0 < x A y =
x V y < 2. The probabilistic interpretation, for the first equation below, and
Example 2 of [7] for the second equation give, when 0 <x =y <z,

w  [Tamna-t2E [Tawraa-

A further useful function, and integral, are for t, y > 0,

y ®
(13)  E(y)= J; Gi(x, y)Gi-s(y — x, ¥) dx, J; E(y) dt =

The definition of E,(y) does not depend on s, 0 < s < t. The integral results, e.g.,
from ([7], Theorem 4)

2x(z — y)
.

(1.4) Z(1+(y) € dt) = 2yE,(y) dt.
One has ([7], Lemma 1)
(1.5) E.(y) = (3/3t)P:(y, y) = —(2t)7(8/3y){yP:(y, ¥)}.

2. Comparison of hitting time processes. Fix y > 0 and abbreviate when
convenient 6(y) = 0. As Z(7(x) € dt, R(v(x)) < y) = G;(x, y)dt, one has for
I<x<y

(2.1) R0 € dt, X(0) € dx) = (3/3y)G.(x, y)dtdx.
Using (1.2) and symmetry, there follows
(2.2) P(X(0) €Edx) = |x|y%dx, |x]|<y.

Integration of (2.1) in x can be taken under d/dy so by (1.1), doubling to account
for X(0) <0,
(2.3) P(0(y) € dt) = 2(3/3y)Q:(y/2, y/2, y)dt, t>0.

The argument of L..T.’s (Laplace transforms) will be denoted A\, and we abbreviate
(2)\)Y2 = X,. Direct computation or [7], Example 3, give for (2.3) the L.T.
ch 2%y, . This was found in a different context in [6]. For BM, the process
0 = {6(y), y = 0} has independent increments. If 0 < y < z the L.T. for the
density of 8(z) — 6(y) is therefore ch®%4y\, - ch™2%z), . The density is given in
the next section.
A well-known p.d.f. (probability density function) is
H(y) =3 (-1)"exp(—%n?y®)
over 0 <y < o ([2], (11.39)). One has

(2.4) Q(¥/2, y/2, y) = (2ms)"2H (s %y).

LEMMA 1. Fix y > 0. The three functions of s (0 < s < o)
(2-5) 2Ps(0’ y) - (l/y), (l/y) - 2Ps(y, y)7 Qs(y/27 y/27 y)

are positive, decreasing with limit 0 as s — o, and for s | 0, P,(0, y) ~
Q:(¥/2, /2, y) ~ (2mws)™V2,
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PROOF. A standard theta function transformation formula ([1], (19.2)) gives
2P,(0, y) = (1/y) T exp{—n’=’s/2y*},
2P,(y, y) = (1/y) 3 (—=1)"exp{—n’=s/2y?}.

Positivity, decrease and the limit 0 at infinity for the first two functions (2.5)
follow by inspection, and therefore hold also for their mean Q,(y/2, y/2, ¥).
Writing (27s)Y2P,(0,y) = 1 + 2 ¥ .-0exp{—2n®y*/s}, and (2.4), give the behavior
near 0.

For BM, the Poisson measure describing the hitting time process = has density
f(y,s) = (2xs®)2y, s > 0 ([9], p. 27). Call respectively f.(y, s) and f *(y, s) the
densities of the Poisson measures relative to the pure jump processes 7., and 6 of
hitting times of BES, and of the range of BM. Also, let N(y, s), N.+(y, s) and
NZ(y, s) be the numbers of jumps >s taken by 7, 7, and 6 up to y. Thus, e.g.,

Yy % 'y o
(2.6) E6(y) = J; J; sf®(z,s)dsdz, EN%®(y,s)= J; f fE(z, t) dt dz.

THEOREM 1. Fory,s>0,
2.7 fR(y, s) = —2(3/9s)Qs(¥/2, ¥/2, y) > f+(y, 8) = —2(3/3s)P,(0, y).

PROOF. The density f#(y, s) is determined ([9], p. 146) by

Yy o
ch? %y)\* = exp{J; J; (1 — e™)fR(z s) ds dz}.

This is satisfied if
z 1
f (1 —e™)f%(y, s) ds = A, th éy)\*
0

or, setting f®(y, s) = —(9/3s)F(y, s), if sF(y,s) —» 0 fors | 0 and F(y, s) is a
decreasing function of s vanishing at infinity having L.T. (th Y2yX,)/%A, . Thus,
F(y, s) =2Q.(y/2, y/2,y) ([7], Example 3) is, refering to Lemma 1, the solution.
Proceeding similarly for fi(y, s), 7+(y) has the L.T. yA,/sh yA, and one now
seeks F(y, s) with L.T. (2 ch yX,)(A, sh yA,)™ — (Ay)™". This gives F(y, s) =
2P,(0, y) — y~* which, by Lemma 1, has the required behavior. Finally, writing

2Q:(y/2, /2, y) = [2P,(0, y) — (1/y)] + [(1/y) — 2P:(y, ¥)],

the desired inequality follows from Lemma 1.

REMARK 1. For an intuitive justification of f® > f., one may interpret
f®(y, -) as a density for the duration of a Brownian excursion from (—, 0] U
[y, ) while fi(y, *). is one for the duration of an excursion of BES from
[y, ®), or equivalently of a Brownian excursion from (-, 0] U [y, =)
starting at y and conditioned to end at y, indicating that f* > f,. Notice also
that E6(y) = y?/2 > Er.(y) = y?/3.
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LEMMA 2. For 0 <y < oo, respectively 0 < s < », the functions

_ 1 [”?
(2.8) H(y)=;J; H(z) dz, Hi(s) = 2P,(1, 1),

H,(s) = 2P,(0, 1) — 2(2ws)™Y/2

are p.d.f.’s. The density of H, is the convolution of the density 2E,(1) of H; with
the density g,(1).

PROOF. The fact is obvious for H. For H;, refer to (1.4) and (1.5). For H,,
definition (1.1) gives the limit 0 for s | 0, and Lemma 1 gives the limit 1 for
s 1 . The L.T. 2 exp{—X,}/(X, sh\,) of H, therefore gives for (d/ds)H,(s) the
L.T. (\,/sh \,) - exp{—A,}, product of those of the stated densities.

REMARK 2. The above convolution and reference to Theorem 3.5 of [10]
show that Hy(s) = #(L < s), where L is the duration of the Brownian excursion
across 7(1). It will be shown elsewhere that the time L~ between the start and
the maximum of said excustion has p.d.f. #(L~ < s) = H(xs2).

We have from (2.6), (2.7),

ENR(y, S) =2 AI; Qs(é, g, Z)dz,
Y 1
EN.(y, s) = J; [ZPS(O, z) — ;:l dz.

For EN(y, s), the corresponding integrand is 2(2ws)™"2. By (2.4) and the
inequality in (2.7), one has therefore

EN(y, s) > EN®(y, s) > EN.(y, s).

Specifically, EN®(y, s) = H(ys™/?)EN(y, s) and, at y = 1 for brevity, f(1, s) —
fRQ, s) = (8/3s)(Ha(s) — Hi(s)) which, as H, < H, shows f(1, s) < f&(1, s) for
0 <s < some sy, f(1, s) > fR(1, s) for s > so. This is clear also when considering
the pathwise passage from BM to its range.

Further comparisons are better made about N(y, z, s) = N(z, s) — N(y, s),
0 <y <z 0<s, and the corresponding N%(y, z, s), N.(y, 2, s). Let

A, = ENR(}’, 2, S) - EN+(y, 2, S), A2 = EN()’, 2, S) - EN+(y, 2, S).

(2.9)

‘COROLLARY. Fori= 1,2, with ® being the unit-normal c.d.f.,
A; = In(2/y) — 4 Tn=o 2n + )7 [B((2n + i)2s7V2) — &((2n + i)ys~?)],
1 — Hi(sy™®) < Ai/In z/y <1 — Hi(sz2).

PROOF. Considering in (2.9), and correspondingly for EN(y, z, s), integrals
over (y, z) shows that

A= f E =4 Y=o ps((2n + i)v)] dv = f %[1 — H;(sv™?)] dv.
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Term-by-term integration on the one hand and use of the bounds on H;(sv™?) at
v =y, z on the other gives the results.

3. Brownian motion prior to §(z). Let 0 <y < z. The density for 6(z) —
6(y) can be obtained by conditioning for instance on X(8(y)) > 0, reviewing
possibilities and carrying out some calculations. This gives

P0(z) — 0(y) € dt)
= (8/02){Q.((z — ¥)/2, (z — ¥)/2, 2) + Q.((z — ¥)/2, (z + y)/2, z)}dt.

The L.T. is easily checked from [7], Example 2.

Theorem 2 below parallels results of Williams ([10], Theorems 3.1 and 3.5).
We give the proof because the same pattern can serve to establish in elementary
fashion several known path decompositions. As pointed out in [10], direct
comparison of #* and %#* transition densities gives when x, z > 0, for all A in
the o-field # = ¢{X(s),0 <s < t},

(3.1) F*(A, X(t) € dz) = (2/x)P*(A, X(t) € dz, 7(0) > t). .

Consider the formal event A = {X(y;) €dx;,j=1, -+, k},0=u<u; < - -+
<u,<r,0<ux x, -, x < 2. Writing t; = u; — u;—, and extending (3.1) to
optional ¢ ([5], page 100) one has with the abbreviation

Q = H;’=2 Qtj(xj—l, Xjs z)dxh
(3.2)  F*(A, 7+(2) € dr) = (2/x)@Q: (x, x1, 2)dx, QG- (2 — X, 2)dr.

Now as [(8/0x)Q:(x, %1, 2)]x=0 = 2G.(x,, 2) and Q;(0, x;, 2) = 0, one has for x | 0,
limQ;(x, x1, 2)/x = 2G:(x1, z). Thus (3.2) leads to

(3.3) (A, 74(2) € dr) = 22G; (%1, 2)dx, QGr—y, (2 — Xk, 2)dr.
Those finite dimensional densities determine the law of BES considered
up to 74 (2).

Going back to BM, let 6 = 0(z), ¢ = inf{s > 0, X(s) = M(0)} if X(0) < 0,
o=inf{s >0, X(s) =m(#)} if X(#) >0andlet p =0 — 0.

THEOREM 2. For Brownian motion X, the process {| X(¢ + u) — X(o)|,
0 < u < p} is BES considered up to 7.(z).

PROOF. Suppose, e.g., X(c) > 0. For s, t > 0 let ¢* be the time when
M(s + t) is (first) achieved. One has for 0 < w, y < z ([7], Theorem 2).

PMs+t)Edy,c*Eds, X(s+t)Ey—dw,7(y —2)>s+t)
G4 = 2G,(y, 2)G:(w, 2)dydsdw.
Therefore, in the notation of (3.2),
PocE€ds, X(c) Edy, X(c +u;) Ey—dx;,j=1, -+, k, p Edr)
= 2G,(y, 2)Gy, (x1, 2)dydsdx, + QG,—,,(z — x, 2)dr.
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2fst(y,z)dsdy=z,
0 o

comparison with (3.3) gives
P(X(0)>0,X(0c) - Xo+u)€Edx,j=1, -+, k p €Edr)
= WH(A, 7.(2) € dr).

As

Adding the corresponding result for X (o) < 0 gives the conclusion.

Maximality of the density (2.2) at the ends of its support suggests that the
last zero before o generally occurs “close” to o. Let ¥ = supis < o, X(s) = 0}
and » = ¢ — v. We can by scaling consider z = 1 only, so now § = 6(1). For
t,u,r>0and | x| <1, one has

P(y €dt, n € du, p € dr, X(0) € dx)
=2Q:(| x|, | x|, VE.(1 — | x|)E,(] x| )dtdudrdx.

This is obtained by choosing times s’ € (¢, t + u), s” € (t + u, t + u + r), using
(5.2) of [7] for the pre-s’ part of the path, (3.4) above for the s’-s” part and (1.3)
when integrating over possible values of X(s’) and X(s”). The integrals in (1.2)
and (1.3) therefore give

P(n € du, X(0) Edx) =2|x|(1 — |x|)E.(1 — | x|)dudx.

This corresponds to the fact that conditionally on X(0) = x, the y-to-o part of
| X | is BES over [0, 7..(1 — | x| )], and ¢ is a splitting time, so (1.4) and (2.2) can
be applied. Using (1.5) one obtains after some calculations

P(n = u) =n(ur/2)Y? = 8u Y =0 1/(2n — 1)3[@((2n — 1)u~V2) — W]
The following values confirm the smallness of 5:
u: 1/100 1/16 1/4 1/2.25
P =<u): .35 J72 .96 .99
Further information can be obtained along similar lines. For instance,
PM(y)/MO)Edx| X(0<0)=21—x)3-(1—-—x2+2xInx)dx, 0<x<1.

We end with some remarks concerning the range of BES*, x > 0. Suppose the
event A in (3.1) is symmetric with respect to level x: A = 2x — A, and such that
AC{T(0) A7(2x) >t}. For 0 <y <z, (3.1) gives

R*(A, | X(t) — x| € dy)
= R%* (A, X(t) € x + dy) + Z#*(A, X(t) € x — dy)
= 1+ (y/x)F*(A, X(t) € x + dy) + (1 = (y/x))P*(4, X(t) € x — dy)
The latter two probabilities are equal by hypothesis, hence
R*A, | X(t) — x| € dy) = (A4, | X(t) — x| € dy).
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This implies in particular that {R(t), 0 < ¢ < 6(x)} and {#(y), 0 < y < x} have
the same law under #* (when we should write 6..) as under & For y > x on the
other hand, the increments of 8, are no more independent. From (2.1) and (3.1),
onehasfor0<z<zx Ay,

Z*(0+(y) € dt, X(0+(y)) € x — dz) = (1 — (2/x))(3/9y)G:(2, y)dtdz,
hence
F(XO+(y) Ex—dz) = (1 —2xVzy2dz, 0<z<xAy.
If “y, |” stands for “0.(y) occurs while X is decreasing”, this gives

x _J¥%—y/3x for 0<y=<au,
x* (¥, |) = {x2/6y2 for x<y.

For 0 < y < x, one obtains more specifically the simple result
Z*(0+(y) € dt, |) = %L2(0(y) € dt) — 2(t/x)E.(y)dt.

4. Acknowledgment. The referee’s comments and suggestions for im-
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