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CRITICAL BRANCHING PROCESSES WITH
NONHOMOGENEOUS MIGRATION

By N. M. YANEvV AND K. V. MiItov
Institute of Mathematics, Sofia

This paper deals with a modification of Galton-Watson processes allowing
random migration in the following way: with a probability p,(in the nth
generation) one particle is eliminated and does not take part in further
evolution, or with a probability r, takes place immigration of new particles
according to a p.g.f. G(s), and, finally, with a probability g, there is not any
migration, p, + ¢, + r.=1,n =0, 1, 2, ... . We investigate a critical case
when the offspring mean is equal to one and r,G’(1) = p, — 0. Depending on
the rate of this convergence we obtain different types of limit theorems.

1. Introduction. Let us have on the probability space (2, #, P) two inde-
pendent sets of integer-valued random variables (r.v.) X = {X;,(k)} and ¢ =
{®;n(m)} where X;,(k) are independent r.v. with p.g.f. Fj,(s) = Es*»® and ¢ is
the set of control functions. Sevastyanov and Zubkov [11] have defined controlled
branching processes {Z,} in the following way:

(1) Zn+1 = ZjEJ Z:Q{Z”) Xjn(k)’ n= 09 19 2’ ]

where J is an index set (which may be infinite).

Definition (1) describes a very large class of random processes. For example,
if J = {1}, F1,(s) = F(s) and ¥,,(m) = m as., then {Z,} is a classical Galton-
Watson process. If J = {1, 2} and a.s. $1,(m) = m, ¥5,(m) = 1, then {Z,} is a
branching process with immigration. If J = {1, 2}, Fi,(s) = f(s), Fa.(s) = g(s)
and a.s. 1,(m) =m, m =0, Py,(m) =0, m = 1, $2,(0) = 1, then we obtain the
model of Foster [3] and Pakes [9]. The Foster-Pakes processes with Fy,(s) =
&n(s) are investigated by Mitov and Yanev [6], [7]. Sevastyanov and Zubkov [11]
studied the probabilities of extinction or nonextinction in the case J = {1} and
©®1.(m) = ¢(m) a.s., where the control function ¥ (m) is nonrandom and integer-
valued. Zubkov [22] considered processes with ¥,(m) = ¢;(m) a.s., where ¥;(m)
are nonrandom and integer-valued functions. Yanev [13] obtained conditions for
extinction or nonextinction when J = {1} and ¥, = {¥1,(0), ?1.(1), ¥1.(2), ---},
n=0,1,2, ..., are independent identically distributed random processes. These
results are generalized for controlled processes in random environments (see
Yanev [14]). Vatutin [12] considered a case J = {1} and ¥,,(m) = max(m — 1, 0)
a.s., i.e. a branching process with constant emigration of one particle. Note that
Yanev and Mitov [15-18], and Nagaev and Han [8], [4] proved asymptotic results
for some particular cases of definition (1). Finally, it is not difficult to see that
definition (1) describes all Markov chains. However, the most interesting case
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924 YANEV AND MITOV

for the theory of branching processes is where a.s. Y jes #jn(m) — 0, m — o,
Note that this condition is fulfilled in the papers cited above.
In the present paper we supose that J = {1, 2} and

(2) #1,(m) = max{min(m, m + Y,), 0}, ¥.(m) = max(0, Y,),
where the independent random variables {Y,}n-o have distributions:

3) P{Y,=-1}=p,, P{Y.=0}=gq, P{Y,=1}=r,,
Pntq.+r,=1

It follows from (1)-(3) that Z, is a nonhomogeneous Markov process and can
be described in the following way:

Y pexZ-10 X, (k) with a probab. p,,
Zpey =1 Y2, Xin(R) with a probab. ¢,,
Y, Xi,(k) + X2,(1) with a probab. r,.

Without any restriction we can suppose that Z, = 0 a.s. It will be assumed that

) F(s) = Es*»=® = Y2, fs', G(s) = Es*=® = ¥, gs',
H,(s) = Es? =YY%y P{Z,=i}s’, |s| =1.

It follows from definition (4) that if g, = 1 then {Z,} will be a classical Galton-
Watson process characterized by the independence of particle evolutions. In
general, definition (4) describes models of branching processes without this
restriction, i.e. processes with particle interactions.

Note that if r, = 1 we obtain the well-known Galton-Watson process with
immigration (see [1]). The critical case with p, = 1 is investigated by Vatutin
[12].

Subcritical and critical processes withp, =p,q.=¢q, rn=r,(p+q+r=1)
are investigated in papers [15-18]. A similar model in the critical and supercritical
cases is studied by Nagaev and Han [8], [4].

In paper [19] we considered a model (4) with F’(1) =1 and p, — 0, ¢, — g,
r, — r, ¢ + r = 1 and the obtained results are similar to ones for the classical
Galton-Watson processes with immigration.

On the other hand, if F'(1) =1, 0 < F"(1) = 2b < o, r, ~ C/log n and
Pn = 0(ry,), then in [20] we found that

lim P{Z,>0}=1—-¢"% 06=C/b>0,

4)

lim P{(log Z,)/logn < x} =e™™® 0=<x=<1,

and

Ox

O<sx=<1.

limP{l—k)g—Z"SxIZ,,>0}=l—e
log n

1—-¢?’

Let F/(1) =1,0< F"(1) = 2b< », r, ~ L(n)/log n and p, ~ C/log n, where
C>0and L(n) is a s.v.f., L(n) — o, r, — 0. Then for the process (4) we prove
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in [21] that lim P{Z, > 0} =1 and for x = 0

lim P{L(n)(l - %) < x} —1—eh
log n

Now we will investigate the process (4) in the critical case F’(1) = 1 when
r.G’(1) = p, — 0. Depending on the rate of this convergence we obtain different
types of limit theorems.

2. Statement of results. It follows from (4) and (5) that

©6) {H,.+1(8) = E{E(s"*| Z,)} = an(s)Ha(F(s)) + pnHA(0){1 — 1/F(s)},
Ho(s) = 1’

where
(7 an(8) = pa/F(s) + gn + 1aG(s).
Repeated application of relation (6) gives
8)  Haa(s) = Un(n, 5) + Tfo pa-sHaa(0)(L = 1/Fi1(s)) Up-1(n, $),

where

(9) Uk(n’ S) = ?=0 an—i(Fi(s)), U—l(n9 S) = 1’
and F;(s) denote the ith functional iterate of F(s), i.e. Fo(s) = s and Fi;,(s) =
F(F;(s)).

From now on it will be assumed that
F'1)=1, 0<F’(1) =2b < oo,
0<m=G'(1), d=G"(1) < o,
mr,=p,—0, n— o

(10)

Set A, =H,(1) = EZ,,B,=H;(1) = EZ,(Z,—- 1), H,= H,(0), R, =1 - H,
= P{Z,> 0} and R,(s) =1 — H,(s).

The moments of Z, can be obtained by differentiating (6) or (8) and using
(10):

(11) Api1 = Yo PrHp, Ao =0,

(12)  Bpe1 = 2b Jio piHi(n — i) + (d + 2m(1 — b)) Xi-o rx — 24,

Detailed asymptotic investigation of relations (6)-(12) gives the following
results.

THEOREM 1. Suppose (10) and p, ~ L(n)n™", where 0 <= v<1land L(n) isa
slowly varying function (s.v.f.).
(i) Ifv=0and L(n) ~ K/log n,0 < a = K/b <1, then lim R, = a/(1 + a)
=B, A, ~ bBn/log n and B, ~ b’n?/log n;
(i) If0<v<1lorv=0and L(n) =o0(1/log n), then R, ~ b"'p,log n,
A, ~ np,/(1 — v), and B, ~ 2bn’p,/(1 — v)(2 — v).
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(iii) In both cases (i) and (ii) if x € (0, 1) then
(13) lim P{(log Z,)/(log n) < x|Z, > 0} = x.

THEOREM 2. Under the condition (10) if p, ~ L(n)n"" and
M(@n) =Yropr— ®, n— o

where L(n)'is a s.v.f., then R, ~ (bn) ™ (L(n)log n + M(n)), A, ~ M(n), and
B, ~ 2bM (n)n.
In addition, if there exists

(14) lim[L(n)log n/M(n)]=K, 0=<K =< oo,

then
(i) foro<x<1

(15) lim P{(log Z,)/log n < x|Z, > 0} = Kx/(1 + K) = P:(x);
(ii) forx>0
lim P{Z,/bn < x| Z, > 0}
= K/(1 + K) + (1 — exp(—x))/(1 + K) = P(x).

THEOREM 3. Assume (10) and Y50 pr < %. Then R, ~ A/bn, lim A, = A and
B, ~ 2bAn, where 0 < A = Y 5-0 prHy < . In addition, for x = 0

(17) lim P{Z,/bn < x|Z, > 0} = 1 — exp(—x).

COMMENTS.

(1). Since the critical Galton-Watson process satisfies all conditions of Theo-
rem 3 then we obtain a natural generalization of the classical Kolmogorov and
Yaglom results (see [1] or [5]). The explanation is that the Borel-Cantelli lemma
and the conditions Y p, < © and Y, r, <  ensure that eventually immigration
and emigration cease and hence long lived lines of descent behave like those of
the simple branching process.

(2). The limit distribution (13) from Theorem 1 is an analog of ones proved
by Foster [3] and Nagaev and Han [8]. Note that our process is nonhomogeneous
while the models of Foster and Nagaev-Han are homogeneous Markov chains.

(3). The most interesting is Theorem 2. Since lim 4, P;(x) = lim,joPs(x) it
follows that we obtain all “essential” nondegenerate sample paths of the process
{Z,} which are two different types:

(i) Z, ~ n® with probability K/(1 + K), where & € U(0, 1);
(ii) Z, ~ &n with probability 1/(1 + K), where £ € Exp(1/b).

(4). It is interesting to consider some particular cases of Theorem 2.

(i) If L(n) ~ (log n)*L,(log n), where p > —1 and L,(n) is a s.v.f., then
M(n) ~ (log n)**'L,(log n)/(p + 1). Now (14) is fulfilled with K = p + 1.

(ii) If L(n) ~ L,(log log n)/log n, where L,(n) is a s.v.f., then M(n) ~ L,(log
log n)log log n. Now, from (14) it follows that K = 0. Hence, from (16) we have
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Py(x) =1 — e7%, i.e. the classical Yaglom’s limit theorem. On the other hand,
R, ~ L,(log log n)/bn and A,, ~ L,(log log n)log log n, i.e. we do not obtain the
Kolmogorov’s asymptotics.

(iii) If L(n) = exp{(log log n)?}, it is not difficult to see that from (14) one
obtains K = . Obviously, this corresponds to the case P;(x) = x in (15).

(5). It is very unexpected that the obtained asymptotic results are similar to
those in [6] and [7] for processes with decreasing state-dependent immigration.

3. Preliminaries. We will need the following well-known results for a
critical Galton-Watson processes (see [1] or [5]):
(18) 0<F,0)<=F,(s)<1, F.(s)11,
uniformly for 0 =s < 1;
(19) Qn(s) =1 — Fu(s) = (1 — s)(1 + ea(s))/(1 + bn(1 — 5)),
where lim ¢,(s) = 0 uniformly for 0 = s < 1;
(20) @.=1-F,(0) ~1/bn, n— o,

LEMMA 1. Under conditions (10) Ux(n, s) = 1 + a,(s), n — o, where
an(s) = O(X 0 pn-jQ?) uniformly for k<= nand 0 <s =< 1.

ProOF. From (7) and (10) we have

(21) 1= aus) = ‘%f(s'—)s—) (F(s)

On the other hand, under conditions (10) for0 =s =<1
{l—s—b(l—s)Zsl—F(s)sl—-s,

1 - G(s) _1—F(s))
m(l —s) 1-s )

(22) ml—s)—d(l-s)2=1-G(@s)<m( —s).

Now from (18), (21) and (22) it follows that
—(d + m)pe(1 — 5)2/mF(0) = 1 — ax(s) < bp(1 — 5)*/F(0).
Hence, for some positive constant Cand 0 <s <1
(23) 1= ar(s)] < Cpe(l —s)2 k=0.

Relation (10) and (23) show that a,-;j(Fj(s)) — 1 as n — o uniformly for
j < nand0 < s < 1. Therefore, from (9) as n — o we obtain

log Ui(n, s)
= Tkolog(l — {1 — anj(Fj(s)}) ~ = Tjeo {1 — an—j(Fi(s))}.
On the other hand, from (18) and (23) for k < n and 0 < s < 1 it follows that
(25) | $teo {1 — an-(Fj(s))} | = C T}eo Pa—i@Qf-

Now relations (24) and (25) prove the lemma.

(24)
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LEMMA 2. Under conditions (10) asn - and 0 <s =<1
(26) Hpi1(s) = 1 = Theo Qu(s)Pn-sHn-k + an(s) + Ba(s),
where
an(s) = O(Zje0 Pn-jQF), Bn(s) = O(an(s) Theo Pu-rQs(s)).

ProOF. It follows immediately from the representation (see (8))

1 — Fpi(s) D
Fre1(s)(1 — Fo(s)) *"7*

Hpi1(s) = Up(n, s) — Yk Qe(s)Ur(n, s) H,._,

using Lemma 1 and the fact that
lim(1 — F(Fx(s)))/(Fr+1(8)(1 — Fi(s))) = 1

as k— o uniformly for 0 <s<1.

LEMMA 3. Assume (10) and p, = O(1/log n). Then for0 <s < 1
(27) Rp+1(s) = Xk-o Qu(s)pn-rHn-r + O(1/log n).

PrROOF. From Lemma 2 and (18) it will be sufficient to show that
(28) 2k=0 Pn-tQr = O(1), Y}-0 pnrQ% = O(1/log n).
Indeed, since p,, = C/log n, n = N, then
Zﬁio Pan-kQr = (C/log n) Ti-0 Qx + Qn Y =0 Dk,
Yo p2o-Q% = (C/log n) Ti-0 Q% + Q3 Th-o Di,
and we obtain (28) because of (20) and 37, p» = O(n/log n).
LEMMA 4. Suppose (10) and p, = o(1/log ). Then lim R, = 0.
PROOF. For each ¢ > 0 there exists N = N(e) such that p, < ¢/log n, n = N.
Therefore, relation
0 < X80 QuPn-r =< (¢/log n) Tfo Qk + Qu Ti-0 Ds
shows that lim Y- Q:pn—r = 0 because of (20) and 37— pr = o(n/log n). The
rest follows from Lemma 3.
LEMMA 5. Under conditions (10) if additionally R, — 8 = 0 and for some
s=s(n)
(29) lim{min(1/ax(s), n) Ti=o Qu(s)Dn-k} = o,
then as n —

(30) R.(s) ~ (1 = B) Tk-0 Qk(s)Pn-t-
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PrROOF. From (26) it follows that
Ry41(s)
= (1 = B) Yk-0 PkQn-r(s) + Th=0 (B — Re)PrQn-r(s) — an(s) — Bnls).
For ¢ > 0 there exists N = N(¢) such that | R, — 8| <e, n = N. Therefore,
(32) | TR0 (B — Ri)DkQn-r(s) | = 2Qn-~ Yo Px + & Th-n+1 PrQu-i(s).

Now relation (30) follows from (31) using Lemma 2, (32) and (29).
Further we will use Lemma 5 with application of the following results.

(31)

LEMMA 6. Under conditions (10) if additionally
(i) p.~L(n)n ", 0=<v <1, then

(33) o = Yo Dn—jQF = O(pn);
(ii) p» =o0(1/n), then
(34) op = O(I/n)’ Yn = ZZ=0 pn—ka = O(IOg n/n)'

PROOF. (i) Since L(n) is a s.v.f. then L(nx)/L(n) — 1, n — o, uniformly for
x belonging to every finite interval 0 < a; < x < a, < ® (see Seneta [10], page 2).
Hence, for every ¢ > 0 there exists N < o such that forn = N (1 —¢)L(n) <
L(nx) < (1 + ¢)L(n), x € [, 1]. From here, (10) and (20) for n = 2N we obtain

op = NP0 Pn-rQ% = Tk<nsz + Dnjo<k=n
= C(1 + e)(L(n)/n*) Sk<ne Q% + Q22 Ti=nsz P = O(py).

(ii) For every ¢ > 0 there exists N < o such that p, < ¢/k, k = N. Hence, for
n = 2N
an = Yr=n/2 Pn—leze + Yn/2<k=n pn—le2e

< 2/n Sienp Q% + Q2 (Zk=nsz Px) = 0(1/n)
and
Yn = stn/Z pn—ka + 2n/2<ksn Pn—ka

< (2¢/n) Tk=ns2 Qk + Qn Zr=n/2 Pr = o(log n/n).

4. Proof of Theorem 1.
(i) Using (27) from Lemma 3 with s = 0 we can see that for some 0 <6 <1

(35) {Hn+1 = 1 - (inszn(l—é)Hk) Eisna pn—iQi + O(I/IOg n)’
H,i1 = 1 — (SUpr=na-sHr) Dizns Pn-iQi — Lns<izn Pn-iQ + O(1/log n)

On the other hand, for each ¢ > 0 and large enough n
Yksns Pn-kQr < (K + ¢£)/(log n(1 — 8)) Yr<ns Qr — (K + ¢)/b,
Sksns Pn-k @k = (K — €)/log n) Trsns @ — (K — ¢)/b,
Zns<kzn Pn-tQk = Qns) Lk=na1-» Px ~ /l0g n.
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Thus from (35) it follows 1 — « lim sup H, =< lim inf H, < lim sup
H, =1 — «lin inf H,. Hence, (1 — a)(lim sup H, — lim inf H,) < 0 and lim
H,=1/1+ a).

The asymptotic behaviour of A, and B, follows immediately from (11) and
(12) using Theorem 1 ([2], Chapter 8, Section 9).

(ii) By the same theorem

(36) k=0 Px ~ npa/(1 — v),

and for each 6 € (0, 1) and s € [0, 1]

37 Dk=ns PrQn-k(8) < Qns) Dk=ns D = 0(pplog n).
On the other hand, if L(u) is s.v.f. then (see Seneta [9], page 2)

(38) L(ux)/L(u) -» 1, u— oo,

uniformly in each finite interval 0 <a < x < b < 0.
Thus for each ¢ > 0 and large enough n we have for0 =s <1

RY
. (1—‘6—);9(_’1‘) Dksna-s) Qk(8) = Xnscksn De@n-r(s)
(39) "

< (1 + ¢)2L(n)
- (ns)®

Now, from (37) and (39) with s = 0 it is not difficult to obtain (using (20))
that

(40) Y -0 DkQn-r ~ b~ 'p,log n.
Hence, by Lemma 6 (29) is hold with s = 0 and from (30) we obtain that
R, ~ b™'p,log n because of Lemma 4 3 = 0.
Now from (11) and (12) using Theorem 1 ([2], Chapter 8, Section 9) it is not
difficult to see that A, ~ np,/(1 — v) and
B, ~ 2bnA, — Y7 kprH}, ~ 2bn?p,/(1 — v)(2 — v).

(iii) To prove (13) it is sufficient to show that

ZkSn(l—a) Qx(s).

Sn(u, x) = k-0 Pr@n-r(exp(-un™))
= Yk=ns + Zns<k=n ~ (1 — 2)pn/(1 = B),
Indeed, (41) follows from (37) and (39) using (19) and the fact that
Se<ns {(1 — exp(—un™))"' + bk} ~ b7'(1 — x)log n, n — .

Hence, by Lemma 6 (29) is fulfilled with s(n) = exp(—un~), and by (30)
(Lemma 5) and (41) we obtain

) lim, .. E{exp(—uZ,n™%) | Z, > 0}
42
=1 — lim,_-R,(exp(—un™))/R, =%, 0<x<1.

(41)

Thus by the continuity theorem for Laplace transforms ([2], page 408) it
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follows from (42) that lim P{Z,n™ < y|Z, > 0} = x for each y > 0 which is
equivalent to (13).

5. Proof of Theorem 2. From the conditions of the theorem and (19) it
follows that for each ¢ > 0 there exists ny = ny(e) such that for n = n,

(1—-¢)n'L(n) =p, < (1 + e)n"'L(n)
43) (1 —=o)/{1 =) +bn} = @Quls) = (A +e)/{(1 —s)7" +bn},
O0=ss=<1.
Therefore, for some N fixed, no < N < n — no, we have
(44) k<N PrQn-r = ((1 + ¢)/b(n — N)) Yi<n pr = O(1/n),
(45)  Xn-N<ksn PrQn-x < (1 + ¢)L(n)/(n — N)) Tr<n @ = O(L(n)/n)

and

(46) b_l(]- - C)ZIn = ZNskSn—N kan—k = b_l(l + 3)2In9
where
(47) I, = TN (L(R)/k(n — k)) ~ n7"(M(n) + L(n)log n).
The last relation follows from representation
L(k L(k L(k
I, = n_l{ RN “%l + YNsksns " (_ )k + Yns<k=n-N n—f—-—)k}’ 0<o<l,

because Yn<r=ns L(k)/(n — k) = {n(1 — 8)}7' Sn=k=ns L(k) = O(L(n)) and
Znasksn—NL(k)/(n — k) ~ L(n)IOg n.

Relation (44)-(47) and Lemma 6 show that (29) is fulfilled with s = 0 and by
(30) we obtain R, ~ (bn)"(M(n) + L(n)log n).

The asymptotic behaviour of A, and B, follows from (11) and (12) using [2]
(Ch. 8 Section 9) and the fact that L(n) = o(M(n)).

Now, from (43)-(45) it follows that for each ¢ > 0 there exists n;, = n,(¢) such
that for some fixed N, n, < N <n — n,,

(48) (1 — &)*Vo(u, x) < Ti-0 PrQu-r(exp(—un™) = (1 + £)2V,(u, x) + ¢,
where (similarly to (47)) foru>0,0<x<1,and n — o

Va(u, x)
(49) = vd L(k)
TSN kfb(n — k) + nuY
Therefore, (48) and (49) yield (29) with s(n) = exp(—un) and by (30) and
(14) we obtain
(50) lim R;'R,(exp(—un™)) = {1 + (1 — x)K}/(1 + K).

The conclusion (15) now follows from (42), (50) and the continuity theorem
for Laplace transforms.

~ (bn)"(M(n) + (1 — x)L(n)log n).
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In the same way, it is not difficult to show that for u > 0

k=0 PrQn-r(exp(—u/bn))
(61) __uM(n) + u N L(k)
bn(l+u) bn(l+uw) <" M Q+udHn-k
Since SN L(k)/((1 + u™)(n — k) < u/n =N L(k) = O(L(n)) and L(n) =
o(M(n)) it follows from (51), Lemma 5, Lemma 6 and (14) that
lim R;*'R,(e™**") = u/(1 + u)(1 + K).

Hence, lim E{e“%*"|Z, >0} = K(1 + K)™' + {(1 + u)(1 + K)} ™}, u > 0 and
by the continuity theorem (16) follows.

6. Proof of Theorem 3. From conditions of the theorem it follows that
pr» = 0(1/n) and by Lemma 4 lim H, = 1. Then from (11) and (12) lim A, = A
and B, ~ 2bAn because of Y\7o tH;pi = Y i1 Yok Hipj — n Y k=n+1 Hrpr = 0(n).

On the other hand, from Lemma 2 and Lemma 6 ((34)) one can find that

(52) Rp41(8) = Yk=0 Qn-i(s)PeHr + 0(1/n).
For each ¢ > 0 there exists N = N(¢) such that
(53) Yk=n+1 Hipr < Ae.

Then for n = N and O < s < 1 using (18) one obtains that
Qn(s) ko Hipr < Wy(s)
= Yh-0 HiprQu-i(s) < Qu-n(s) Si=0 Hxpr + (1 — 5) Si-n+1 PrHe.

From here, putting s = 0 and using (53) it is not difficult to see that
W,.(0) ~ A/bn and from (52) R, ~ A/bn.

On the other hand, from (54) putting s = exp(—u/bn), u > 0, and using (19)
and (53) one can prove that

(1 — ¢)(@/(1 + u)) < lim inf R;*W,(e™*") < lim sup R;' W, (e™"*")
= (1 + e)(u/Q + u) + eu.

From (55) and (52) it follows that lim R, (e “*")R;' = u/(1 + u), u > 0.
Therefore, lim E{e™*4~**| Z, > 0} = (1 + u) ™%, u > 0, which proves (17) by the
continuity theorem for Laplace transforms ([2], page 408).

(54)

(55)
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