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THE LIL WHEN X IS IN THE DOMAIN OF ATTRACTION OF A
GAUSSIAN LAW!?

By J. KUELBS
University of Wisconsin

If X takes values in a Banach space B and is in the domain of normal
attraction of a Gaussian law on B with EX = 0, E(|| X ||?/L. | X ||) < o, then
it is known that X satisfies the compact law of the iterated logarithm as
described in Goodman, Kuelbs and Zinn [9], Theorem 4.1. In this paper the
analogous result is demonstrated when X is merely in the domain of attraction
of a Gaussian law. The functional LIL is also obtained in this setting. These
results refine Corollary 7 of Kuelbs and Zinn [22], as well as various functional
LILs.

1. Introduction. The interplay between the law of the iterated logarithm
(LIL) and the central limit theorem (CLT) with Gaussian limit has long been
recognized, and the paper by Kesten [13] proved some fundamental results in
this area as well as posed a number of interesting problems. In Kuelbs and Zinn
[22] we examined these questions in the Banach space setting and provided
partial answers to some of the problems posed by Kesten. Our work was also
motivated by Klass [14, 15] and a recent paper of Pruitt [23]. Here we continue
this line of investigation and prove the LIL and the functional LIL(FLIL) for
B-valued random variables in the domain of attraction of a Gaussian random
variable G.

To make things precise we need to establish some notation and discuss the
CLT and LIL.

Throughout B is a real separable Banach space with topological dual B* and
norm || - ||. We also assume X, X;, X;, - - - are independent identically distributed
B-valued random variables, and as usual S, = X; + ... + X, for n = 1. We use
Lx to denote the function max(1, log.x) and we write Lyx to denote L(Lx). The
law of X is denoted by .Z(X).

When saying X has CLT behavior with Gaussian limit G we always are
assuming G is mean zero and G # §,. Such behavior can be exhibited in three
ways. That is, X could be in the domain of normal attraction or satisfy the
classical CLT (we write X € CLT), X could be in the domain of attraction (we
write X € DA(G)), or X could be in the domain of partial attraction (we write
X € DPA(G)). These concepts are defined just as for real-valued X, and Araujo
and Giné [6] or Kuelbs and Zinn [22] contains them explicitly.
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If (M, d) is a metric space and A C M we define the distance from x € M to
A by

d(x, A) = infyead(x, y).

If {x,} is a sequence of points in M, then C({x,}) denotes the cluster set of
{x,}. That is, C({x,}) = {x: lim inf,d(x, x,) = 0}, and we will use the notation
{x,} —— A if both lim,d(x,, A) = 0 and C({x,}) = A.

The classical normalizing constants in the LIL are

(1.1) a, = v2nlsn,

and we say X satisfies the classical compact LIL (we write X € CLIL) if there
exists a nonrandom compact set D C B such that

1.2) {(S, — nE(X))/a,} »>—D w.up.l

The set D is called the “limit set”, and always turns out to be the unit ball of an
appropriate Hilbert space determined by the covariance structure of X. (see (1.4)
and the reference indicated following (1.4)). It is also well known that if
{(Sr — 6n)a;'} is pointwise conditionally compact, w.p.1. for any shifts {5,}, then
E(X) exists and (1.2) holds. Hence the use of nE(X) in (1.2), rather than
arbitrary shifts, does not limit the class of X satisfying the classical compact
LIL. A similar situation occurs if X satisfies the classical CLT or, in our notation,
if X € CLT. That is, if the sequence of laws {#((S, — 8,)/vn) is tight, then EX
exists and Z((S, — nEX)/vn) — #(G) where G is centered Gaussian, i.e.,
X eCLT.

The B-valued random variable X has LIL behavior with respect to the
centerings {0,} C B if there exists a normalizing sequence v, 1 % such that

(1.3) 0<lim sup, | S; — 6. || /yn<® w.p.l

Of course, LIL behavior is more general than the CLIL.
A random variable X is weakly square integrable with weak moment zero (we
write X € WM3) if Ef(X) = 0 for each f € B* and the covariance function

(1.4) T(f, &) = E(f(X)g(X)) (f,g € B¥)

exists and is finite. If X € WM2, the covariance structure of X determines a
Hilbert space Hy(x) C B, and we use K (x) to denote the unit ball of Hx,.
Details of the construction of Hyx) can be found in Goodman, Kuelbs and
Zinn [9].

For real-valued X it is well known that E(X?) < «, X € CLT, and X € CLIL
are equivalent. Further, in this case the limit set is [—o, o] where o® =
E(X — E(X))”. For X B-valued the following result is known; an independent
proof is due to Heinkel [11].

THEOREM A (Goodman, Kuelbs, Zinn [9]; Heinkel [11]). Let X be B-valued
such that X € CLT. Then X € CLIL iff E(|| X ||?/Lz || X ||) < . Further, the limit
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set for the CLIL is Ko where G is the mean zero Gaussian random variable in
the domain of normal attraction of X when using normalization constants vn.

In regard to the more general concept of LIL behavior, we have the following
result and problem due to Kesten.

THEOREM B (Kesten [13]). Let X be real valued. Then, X has LIL behavior
with respect to the centering sequence 6, = med(S,), where med(S,) is any choice
of median S, iff X is in the DPA(G) where G is a mean zero Gaussian random
variable with variance one. That is, there exists a sequence v, 1 % such that

(1.5) 0 <lim sup, | S, — med(S,) | /v, <® w.p.l

iff X € DPA(G) where G is N(0, 1). Further, for every fixed ¢ > 0, {v,} can be
chosen so that

(1.6) n~¥ey, 7 oo,

PROBLEM (Kesten [13]). If (1.5) holds, find the accumulation points of

1.7 {(Sn — med(S,))/vn},
and of the polygonal functions {7,/v.} where

nn(t) = {Sk B med(Sk) t= k/"’: k= 0, 1, e, n

(18) linearly interpolated elsewhere for 0 < ¢ < 1.

If the polygonal functions {5,} defined in (1.8), with centering sequence
{med(S,,)} possibly modified, have a normalized sequence {v,} such that {5,/v,}
has a nondegenerate limit set of functions, we say X has functional LIL behavior.

In Kuelbs and Zinn [22] we partially solved Kesten’s problem for B-valued X
and certain sequences {vy,} provided the centerings {med(S,)} are replaced by
truncated means. Before we state this result we need the following concepts.

If G is a mean zero B-valued Gaussian random variable with u = Z(G), then
u induces a Brownian motion on B with transition measure u.(A) = u(A/~/Z)
defined for Borel sets A of B. For details regarding the construction and properties
of u-Brownian motion consider Kuelbs and LePage [21] or Kuelbs [16].
u-Brownian motion induces a mean zero Gaussian measure W on the real
separable Banach space Cp, the space of B-valued continuous functions on [0, 1]
with norm

(1.9) | f w8 = supose<1 | ft) | (f € Cp).

For W we have the Hilbert space Hy with unit ball Ky which we denote by #
and .7, respectively.
A result proved in Kuelbs and Zinn [22] is the following.

THEOREM C. Let X be B valued and assume X € DPA(G) where G is a mean
zero Gaussian variable. Let K = Koy and % be as described above. Then, there
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exists a subsequence of integers {ny} and normalizing constants d, / % such that

if

(1.10) on = nEXI(| X|| =dr) n € (ng-1, ml
and

(1.11) Yn = V2Lkdy n € (np—y, m
then

(1.12) {(Sn — 8,)/vn} > K w.p.l.

Further, let {n,} be defined as in (1.8) with med(S:) replaced by jé,/n when
t=j/nand n € (ng-,, np). Then, X € FLIL with

(1.13) {nn/'Yn} - % wp.l

where the convergence in (1.13) is in the norm on Cg.

It is perhaps useful to point out that by using the argument sketched in Kuelbs
[18] it also is the case that if X € CLT and E(|| X||%/Ly|| X||) < ®, then the
polygonal functions {7,} defined in (1.8), with med(S:) now replaced by E(S:)
and v, = a,, satisfy

{nn/')/n} —— % wp.l

where % is defined as above and convergence is in the norm on Cs.

Hence if X € CLT and (E || X ||%/L: || X||) < o, then X satisfies a compact
LIL and a FLIL with classical normalizing constants {a,}. Further, if X €
DPA(G), then X satisfies a compact LIL and FLIL with normalizing constants
{vx}, but our proof of Theorem C deals only with the existence of {y,} and not
its regularity properties. In Kuelbs and Zinn [22] we also dealt with certain
regularity properties of the normalizing sequence {vy,} when X € DA(G) and in
situations related to results in Klass [14, 15]. Here we present a refinement of
some of these results obtaining a compact LIL and FLIL with respect to a regular
sequence {v,} when X € DA(G).

NoTATION. We write g(t) ~ f(t) as t — o if
lim, .g(t)/f(t) =1,
and, if there are constants 0 < A < B < ® such that
A < lim inf, ,.g(t)/f(t) < lim sup,_.g(t)/f(t) < B,

we write f(t) = g(t).

2. Statement of results. If X € DA(G) where G is a centered Gaussian
random variable, then it is well known that E(X) exists, so we use this fact freely
in the statement of our results. Our first theorem deals with the compact LIL for

X € DA(G) with regularity conditions on the normalizing sequence {vy,}. This
result is an extension of Corollary 7 of Kuelbs and Zinn [22].
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THEOREM 1. Let X be in the DA(G) where G is a centered Gaussian random
variable and assume K = K ). Then, there exists a strictly increasing continuous
function d: [0, ©) — [0, ) such that

(2.1) d(t) ~ VtT(d(t))

where T [0, ©) — [0, ) is nondecreasing, slowly varying, and if
(2.2) Yn = V2nLynT(d(n/Lyn)),

then

(2.3) K C C({(S. — nE(X))/va}) wp.l.
Further

(2.4) {(Sp — nE(X))/va} >— K wp.l

iff

(2.5) E(@™d (]| X)) <

where a(t) = t/Lyt.

REMARKS. (I) Some examples appear in Section 6 which show K may be a
proper subset of the cluster set in (2.3).

(II) If X € CLT, then the proof of Theorem 1 will show T(¢t) ~ 1 is possible,
and hence the integrability condition (2.5) is that E(|| X ||?/Lz|| X||) < . Thus
Theorem 1 reduces to Theorem A in this case.

In dealing with the functional LIL when X € DA(G), G centered Gaussian,
recall the real separable Banach space Cp with norm as given in (1.9). Further,
let {ax} € B* be such that {Sa: & = 1} is a C.O.N.S. in He C B where the
mapping S: B* — B is as in Lemma 2.1 of Goodman, Kuelbs and Zinn [9] with
p = Z(G). The polygonal functions of interest in this situation are as in (1.8)
with med(S;) replaced by kRE(X). The limit set involved in the FLIL for X is
the set

./7/={feCBZf(t)EHy(G),OStSI,

(26) , , ,
0= 5 | % an(f6) dsSun and s | [—d-'ak(f(s))] dssl}.
o ds o |ds

The reader can examine Kuelbs and LePage [21] for details on .%, and the
identification of .7 as the unit ball of the Hilbert space Hw where W is u-Wiener
measure induced on Cp by u-Brownian motion. Hence .7 as given in (2.6) is the
same .7 as used in Theorem C.

We now are able to state the FLIL in this setting.

THEOREM 2. Let X be in the DA(G) where G is a centered Gaussian random
vector and assume % is as in (2.6). Let d, T, {v,} be as in Theorem 1 and assume
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the polygonal functions {n,} are as in (1.8) with med(S) replaced by kE(X). Then,
{nn} g CB w'p°1’ and

(2.7) {0/ Yn} —>— 7 wpl,
where the convergence is in Cg, iff

(2.8) E(a™'d (| X)) <o
where a(t) = t/Lyt.

3. Some useful propositions and their proofs. The first proposition
collects some facts about the CLT when X is in the DA(G), G centered Gaussian,
and the second provides a useful upper bound covering certain instances when
we have LIL behavior with respect to the centerings 4, = 0. This upper bound
easily applies to X in the DA(G), G Gaussian, and partially solves a conjecture
of Klass [15, page 154]. Additional remarks can be found after the statement of
the second proposition. The proof of each will follow from a series of lemmas
some of which prove useful at subsequent stages of the paper.

PROPOSITION 1. Let X be in the DA(G) where G is a centered Gaussian
random variable. Then, EX exists, and there exists a strictly increasing continuous
function d: [0, ©) — [0, ©) such that

(3.1) d(t) ~ VET(d(t)) (¢t — )

where T [0, ©) — [0, ®) is nondecreasing, slowly varying, and
(3.2) Z((S, — nE(X)/d(n)) - Z(G).
Further, if

(3.3) Yn = V2nLonT(d(n/Lyn)),

then for every open convex set U in B and t > 0 we have

2 —_
(3.4) lim inf, Q%M log P(S"—‘YEE@ € U) = t%log P(G € tU).

PROOF. Since X € DA(G) where G is Gaussian, we have 0 < E|| X||? < o
for all p € [0, 2) [6, page 150], and hence E(X) exists. It suffices to prove the
theorem for the case EX = 0 as the general case will follow by replacing X by
X — E(X). Further, X € DA(G) implies h(X) € DA(h(G)) for all h € B*.

To define the function d(t) we choose f € B* such that Ef%(G) = 1 (such an f
exists as G # &). Letting n = f(X), we see 0 < E|n| < o, and we define the
strictly increasing continuous function g(t) by

g(t) = (/75 E(Qn 1 I(n| > w) du t>0

35) 0 t=0.

To see that g(¢) is strictly increasing, observe that under the circumstances one
can directly verify that g(¢)/t is nondecreasing, lim, ..g(t)/t = o, and g(t)/t is
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nonzero for ¢ > 0. Hence g(t) = t(g(t)/t) is strictly increasing on [0, ©) and has
a strictly increasing continuous inverse for ¢ > 0. Letting d(t) denote the inverse
of g(t) we then have t = g(d(t)) and hence d(t) satisfies

d(t)
(3.6) dz(t)=tJ; E(In|I(In| > w)du (t=0).
Since g(t)/t 7 « and (3.6) holds d(¢) is such that as ¢ — o we have
3.7 d(t)/s(d(t)) = d(t)/t | 0,
and
(3.8) d*(t)/t / E(f4(X)) = E(* (possibly infinite).

Further, since

(3.9) E(nzl(lnl5r))=—rE(|nII(InI>r))+LE(InII(InI>U))du,

we have by setting r = d(t) and combining (3.6) and (3.9) that
(3.10) d*(t) = tE@m*I(|n| < d(t))) + td®)E(|n|I(| 7| > d(t))).
Now let

(3.11) T@t) = VE@’I(|n] =t)) (0=t< o),
and observe that (3.10) implies

— dE( 7] I(In] > d(t)))
(3.12) d(t) = VET(d(t)) \/1 + ) :

Since 7 = f(X) is in DA(f(G)), we have E@*I(|n| =r)) slowly varying at o, and
since d(t) /' ® as t — =, (3.12) and the “equivalence lemma” of Hahn and Klass
[10], or Feller [8], implies

(8.13) d(t) ~ VtT(d(t)) (as t — )
Hence (3.1) is established with T'(t) as in (3.11) and d(t) the inverse of &(t).
To finish the proof of Proposition 1 we proceed with some lemmas.
LEMMA 3.1. Let X € DA(G) with normalizing constants {d.} and assume
EX = 0. Let h € B* be such that
(3.14) E(h*(Q)) = of > 0,

and suppose we define dy(-) as the inverse of the function g(-) defined as in (3.5)
with n replaced by h(X). Let T}, be the analogue of T for h. Then,

(i) lim,dn,(n)/d, = on, and
(i) Tw(t) ~ 6xT(t) at t— .

In particular, d, ~ d(n) where d(n) is defined by (3.13), and X € DA(G) with
normalizing constants {d(n)}.

(3.15)



832 J. KUELBS

PrOOF. Since X € DA(G) with normalizing constants {d,}, we know from
Corollary 2.12 of [2] that

3<Sn - nE(Xg I X1 <dw)

(3.16) ) — Z(G).

Hence for all h € B*
_?<h<sn - nEXI(| X| < «m»)

dn,
_ 5,(h(s,,) = nE(RX)I(1 X || < d,))
dn,
To prove (3.15) recall from (3.11) and (3.13) that
- (3.18) dn(t) ~ VIVE(R*X)I([MX) | < da(0)))
and hence by [6, page 88], or the classical CLT if Eh%(X) < oo,

3<h(Sn) — nE(h(X)I(| k(X) | = dn(n)))
dn(n)

(3.17)

) = Z(M(Q)).

(3.19) ) — N(0, 1).

Using the algebraic identity

h(Sn) — nE(W(X)I(| K(X) | < di(n)))
du(n)

_ RSy = nEWXI(| X|| = dy) d.
(7,, di(n)
+ EX)I(| X || = dn) = ERX)I(| MX) | < du(n)))]
du(n)
we see by the convergence of types theorem [6, page 21] that
(3.21) lim,(d,/dn(n)) = o3,

and the last term on the right-hand side of (3.20) tends to zero as n goes to
infinity. Hence (3.15-1) holds, and (3.15-ii) follows since (3.15-1) implies

Ti(dn(n)) ~ dn(n)Vn ~ don/vn

(3.20)

and
T(d(n)) ~ d(n)/vn ~ d,/vn.
Hence
Tw(dn(n)) ~ axT(d(n)),

and, since d(n) ~ d, (see the following remark) with T}, and T both slowly varying,
(3.15-i) and the uniform convergence result of [24] together imply that

Ti(dn(n)) ~ Tu(d(n) - dn(n)/d(n)) ~ Tu(ond(n)) ~ Th(d(n)).
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Combining the above we have
Tw(d(n)) ~ axT(d(n)).

Passing from the above equation to (3.15-ii) now follows as T} and T are both
increasing and slowly varying with lim,d(n + 1)/d(n) = lim,d,+,/d, = 1. That is,
if t € [d(n), d(n + 1)], then by the uniform convergence result we have

Tut) _ Twd(n + 1))  Tu(dnsr) _ Tu(oz'dn(n + 1))

T@t) = T(d(n)) T(d(n)) T(d(n))
Tudnin +1) din+1)/Vn+1 dpion
T Tdm) T dmyn | 4
Similarly,

Tu(t) | _Twd() _ duon
Tt) = Td(n +1) dpa

s0 (3.15-ii) is proved.

REMARK. Since Ef%(G) = 1 and d(n) = d;(n), (3.15-i) implies d,, ~ d(n), and
hence {#(S,/d(n))} is shift-convergent. Applying Corollary (2.12) of [2] again,
we have X € DA(G) with normalizing constants {d(n)}, and also that
InEXI(| X || = dn) — nEXI(| X|| =dm)) || _

d(n)
Further, we see from Lemma 3.1 that if h € B* with E(h%(G)) = ¢ > 0, then
Eh*(X) = o for all such h or Eh?(X) <  for all such h.

(3.22) lim, 0.

LEMMA 3.2. Let X be in the DA(G) where G is centered Gaussian and assume
EX = 0. Let d(t) be defined as above. Then (3.2) holds with E(X) = 0.

PrOOF. From Lemma 3.1 we have d,, ~ d(n), and since (3.16) and (3.22) hold
we have (3.2) with E(X) = 0 provided
(3.23) lim, | nE(XI(| X || = d(n)))/d(n) || = 0.

To prove (3.23) fix ¢ > 0. Let IIy and @x be the mappings of Lemma 2.1 of [9]
or [18] defined for the Hilbert space H (). Let N be fixed so that
(3.24) E| QNG| <e/4
(see, for example, [6, page 143] for (3.24)).

Let X', X1, X3, --+; S;; G’ be independent copies of X, X;, X, --+; Su; G,
respectively, on some suitable probability space which also supports the X
sequence. Since d(n) ~ d, and Qu is continuous and linear we have by [3], that

’ Q N< s,,> I Qn(S. — Si) |
d(n d(n)

lim sup,E < lim,E

(3.25)
=E|QvG -G <3,
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and

(3.96) lim, £ 1S = nE@uXI(J x|l < d(n)) |

d(n)
Combining (3.25) and (3.26) we easily have

=E||Q~G||<§.

(3.27) lim sup, | PE@XIUXI = d(n) H <
d(n)
Since | x|| = | (Ix + Qn)(x) | = || Onx || + || @vx || and ¢ > 0 is arbitrary (3.27)
will yield (3.23) if we show (since EX = E(IIyX) = E(QvX) = 0)
(3.28) lim, | RE(y XI(| X || > d(n)) || /d(n) =

Since IIy(B) = Ny H ) is a finite dimensional subspace of H ) (of dimen-
sion N if Hg) has dimension greater than or equal to N), and all norms on
finite dimensional subspaces are equivalent, to prove (3.28) it suffices to show

(3.29) lim, || (n/d(n))E(e;(X)I(| X || > d(n))) | = 0

forall j=1, - .., N where {a;} C B* are related to the mappings Il as in Lemma
2.1 of [9] or [18].

To obtain (3.29) fix j and observe that Ea?(G) = 1, and hence by Lemma 3.1
and the remark following its proof we have d I(n) d(n). Further, since «; € B*,

(3.30) doy(n) ~ VT (de,(n))
where
(3.31) T%(t) = E(a}(X)I(| i(X) | = t))
is slowly varying as t — o. Hence for every constant ¢, 0 < ¢ < 1, we have
lim sup, d( ) E(ej(X)I(]| X || > d(n)))
< lim sup, | ——— ( T Elag(X)I(| j(X) | > ede,(n)) )
+ lim sup, p ( ) E((X)I(]| aj(x) | = cdyy(n), | X || > d(n))) l
(3.32) i
VnT,(d.(n))
= lim sup,—5 7~ | E(ei(X)I(]| aj(X) | > cday(n))) |

T% (doy(n))
+ lim sup,cnP(|| X | > d(n))

= lim sup; | E(a;(X)I(| aj(X) | > ct))| = 0

T2 (t)
by the “equivalence lemma” of Hahn and Klass [10] and since X € DA(G) implies
lim,nP(|| X || > d(n)) = 0. Thus (3.29) is verified and since j was arbitrary the
lemma is proved.
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To prove (3.4) and finish the proof of Proposition 1, we establish the following
lemma related to results in [1] and [4].

LEMMA 3.3. Let X be in the DA(G) where G is a centered Gaussian random
variable and assume EX = 0. Let d(t) and T(t) be defined as above and assume
(3.3). Then (3.4) holds.

PrOOF. Let &(x) = T(d(x)). Then we first observe that ®(x) is slowly varying
as x — o, That is, if s > 0
P(sx) _ im T(d(sx)) _ im T((d(sx)/d(x))d(x)) _
(x) = T(d(x)) — T(d(x))

by the uniform convergence result [24] since d(x) / o, T is slowly varying, and
for s > 0 fixed we have

(3.34) min(1, s) < lim sup,_.(d(sx)/d(x)) < max(s, 1).

To verify (3.34) note that the right (left) hand side is obvious if s <1 (s > 1).
Hence we consider the right (left) hand side when s > 1 (s = 1). )

If s > 1, then, since g is strictly increasing with inverse d, we have
g(d(sx) = sx. Further, letting z(u) = E(| n|I(| 7| > u)) we have that

(3.33) lim, . 1

sd(x)
g(sd(x)) = s%d?(x) / J; 2(u) du (from (3.5))

(3.35) d(x) sd(x)
= sk J; 2(u) du / J; 2(u) du (from (3.6))

> sx,

since

d(x) sd(x)
s J; 2(u) = J; 2(u) du

for s = 0, d(x) > 0 as z(u) | 0. Hence for s > 1, sd(x) = d(sx) and (3.34) holds in

this case.
If0<s<1,then

dZ(Sx) 3 fd(sx) /fd(x)

20) s J. 2(u) du A 2(u) du
d(sx) (1/s)d(sx)

=s J; 2(u) du/J; 2(u) du

( . d(x) _d(1/s - sx)

since = = 1 by applying g and using 1 =1
d(sx) d(sx) s s

= s? (since z(u) | 0).
Hence (3.34) holds as claimed.
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Applying (3.2) we have
(3.36) L(S,/Vnd(n)) - Z(G)

where ®(x) = T(d(x)) and @ is slowly varying.
If v,is as in (3.3) and b, = s/ﬁ@(n), then the next step is to verify that

(3.37) lim,y,/b, = .

To verify (3.37) we recall that ® slowly varying implies for all sufficiently
large x we have the representation, see [24, page 2],

(3.38) P(x) = exp{n(x) + j; e(—:)— ds}
where lim, ,.n(x) = ¢, | ¢| < o, and lim,_,.£(s) = 0. Hence

lim inf, 2% = lim inf,v2Len 2/ Len)
bn ®(n)

(3.39) - lim infV3Em expl— | 22 ds}

n/Len 8

= lim inf,(L2n)"2exp{—sup,/L,n<s<n | €() | logan}
= lim inf,(Lyn)Y2 % = oo

where 0, = SUP./L,n<s=n | £(s) | — 0 as n — 0.
Now let p, = [t?n/2Lsn], g, = [n/p,], and r, = v,/tq, where t > 0. Then
() lim,n®*(n/Lyn)gn/vi = t~*

3.
G40 i)t ~ Vprd(w).

Now p.q. ~ n, png. < n. Hence take U open and convex in B, and set U, =
{y: d(y, U°) > ¢} where U° denotes the complement of U. Then U, is open and
convex, and hence

an
(3.41) P(% € tUc) = P<% € tq,,U,) = P(% € UE>.

Since S, = S ¢, + (Sn — Sp,q,) we have

(3.42) P(S,/y, € U) = P(Sp,,qn/'Yn eu,|S. - Sp,,q,, | <evn),

and since p,g, ~ n, X € DA(G) with normalizing constants {b,} and v,/b, —
we have

lim,P(|| S, — Sp,.q,, | <eyn) =1.
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By the independence of S, — S, 4, and S, o, we thus have

2
lim inf, "2/ 12n) (;‘ﬁLZ") log P(% € U)

2
> lim inf, ﬂgé—b"—"—) log P(S—f;"‘—’“ € U,)

2
> lim inf, fﬂzﬁ—l‘zﬁ gulog P<§r£n € tU,)

n

(3.43)

= t%log P(G € tU,)

by (3.40-i) and (3.40-ii) since X € DA(G) with normalization constants
b, = Vnd(n).

Letting ¢ | 0 we have U, ./ U so the lemma holds. Hence (3.4) holds and the
proposition is proved.

The next proposition provides a useful upper bound result. The furnction d,(t)
of the proposition is analogous to the function d(t) of Proposition 1, but here it
depends on a fairly general continuous seminorm q(-) on B.

PROPOSITION 2. Let X be B-valued such that EX = 0 and assume q(-) is a
seminorm on B such that 0 < Eq(X) < « and q(x) < | x| for all x € B. Set
n = q(X) and define g(t) as in (3.5). Let d,(t) denote the inverse of g(t), and let
{v»} be a nondecreasing sequence such that

(3.44) Yn = a, = Landy(n/Layn)

and

(3.45) ' ¥n = VnB(n)

where B(n) is a positive sequence such that for some xo € [1, ©) we have
(3.46) infes,, infe=18([tx])/B([x]) = ¢ > 0.

If

(i)  q(Sn/vn) —prob 0,
(847) (i) lim,yn/dg(n) =, and
(iii)) P(g(X,) > M~, i.0.) =0 for some M < x,
then
(3.48) lim sup,q(S./v») < v2 w.p.l.

REMARKS. (I) For real-valued X a result related to this proposition is given
in Klass [15, page 154]. See remark (V) below for some related facts. Proposition
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2 also yields a portion of Klass’s conjecture (Klass, [15, page 154]), but it is not
the entire conjecture as condition (3.47-iii) is two-sided, and for real-valued X
we are also assuming lim,a,/d,(n) = ® (when vy, = a,), but this is not always the
case.

(IT) Iflimpan/de(n) = o and g(-) is a continuous, type 2 seminorm on B, i.e.,
E(@X:i+ -+ + X,)) = A Y%, E(g%(X;)) for some A < o and all independent
mean zero B-valued {X}, then lim Eq(S,)/a, = 0 by the proof of Lemma 1 of
Kuelbs and Zinn [22]. Hence (3.47-i) follows from (8.47-ii) when q is type 2.

(IIT) If v, = VnB(n) where 8 is nondecreasing then (3.46) obviously holds
with ¢ = 1. This is the situation considered by Klass [14, 15].

(IV) It is of interest to check when lim,a,/d,(n) = . Since a, =
Lyndy(n/Lyn), and d,(n) satisfies

dq(n) 1/2
d(n) = vn ( fo ) du)

where Y(u) = E(q(X)I(g(X) > u)), we have

o dy(n/Lyn) dy(n) 12
a (';1) = <L2n J(: Y(u) du / J; Y(u) du) .

Now for s = 1, x > 0, d,(sx) =< sdq(x) (since g(d,(sx)) = sx and g(sd,(x)) = sx by
the argument used in Lemma 3.3), and hence

dy(n) jdg(n/Lyn)
J; Y(u) du < 25-1;21"]” f Y(u) du

(j=1)dg(n/Lgn)

dy(n/Lgn)

< ([Lzn] + 1) J(: Y(u) du

as Y(u) | 0. Thus
lim inf,a,/dg(n) > lim infu(Lan/TE ()2

"jdg(n/Lyn) dy(n/Lyn)
ci(n) = f Y(u) du / f Y(u) du,
(j—1)dy(n/Lyn) 0

and hence lim inf, a,/d,(n) = » if

where

limn—»co;j—m;js[LGchj (n) = 0

For example, if

E(@*(X)I(g(X) = u)) _
T8 ¥(s) ds

then, since integration by parts gives

(3.49) lim, e 1,

E(@*X)@X) = w) = J; ¥(s) ds — up(u),



LIL RESULTS FOR X IN DA(G) 839

we see lim, _.uy(u)/ [ ¥(s) ds = 0. Hence (3.49) and y(u) | 0 imply

SUP2<j<L,n Cj(n)

fqu(n/lqn) ) n fd,,(n/L,n)

< SUD2sjsLyn P ¢<(J - Dd"(L_m)) du / A Y(u) du
n n dg(n/Lyn)

<) /L o

Thus, in this case, lim,sup.<j<z,»¢;(n) = 0 and lim,a,/d,(n) = c.
(V) If X € DA(G) where G is Gaussian, EX = 0, and q is a seminorm on B
such that

[ho(x) | =q(x) = |lx|| (x€B)
for some ho € B*, then (3.47-ii) holds. To verify this we show
(3.50) lim,_u?P(q(X) > u)/E(¢*(X)I(g(X) = u)) =0,

and hence by the “equivalence lemma” of Hahn and Klass [10]

lim, J; Y(x) dx / E@X)I(g(X) =su) =1

where y(x) is as in (IV). Hence by the argument of (IV), we have (3.47-ii) as
claimed. Thus it suffices to prove (3.50).

Since X € DA(G), EX = 0, choose f € B* such that Ef*(G) = 1 and define d(t)
as in the proof of Proposition 1. Then, for d(n) < u < d(n + 1) we have

u?P(q(X) > u)
E(@*(X)I(g(X) = u))
- nd*(n + 1)P(q(X) > d(n))
~ nE@X)I(g(X) = d(n)))
nP(|| X|| > d(n))
d*(n) nE(@*(X)I(g(X) = d(n))
d*(n+1) d*(n)

(since q(x) = [ x 1)

—0 as n—o®

since

(i) nP(| X] >dn)) —0
(i) lim,d(n+1)/d(n) =1, and
(iii) lim inf,(n/d?*(n))E(¢*(X)I(g(X) = d(n))) > 0.

The fact that lim nP(|| X || > d(n)) = 0 follows from Theorem 2.10-1 of [2], and
the condition (ii) is easily checked by the properties of d(t). To verify (iii) we
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recall | ho(x) | < q(x) =< || x|| and we apply Theorem 2.10-2 of [2] which implies

lim inf, —— d2( ) E(@*(X)1(g(X) = d(n)))

= lim inf, E(h§(X)I(g(X) = d(n)))

dZ( )

= lim inf, - d2( p ERXOII X = d(n)))

= lim inf, nE(ho (d( )) I( ” d(n)

with § = 1, and we are using the fact that
lim,nh§(EXI(| X || = d(n))))/d*(n) = 0.

This last limit is obvious since EX = 0, and d(n) = «/_r;/Z for all n sufficiently
large. .

’ )) = E(h§(G)) >0

PROOF OF PROPOSITION 2. The proof of this result will proceed via several
lemmas.

LEMMA 3.4. Under the assumptions of Proposition 2 we have
(3.51) lim Eq(S,/v.) = 0.

dy(n) 1/2
d,(n) = «/ﬁ( J; Y(u) du)

where Y(u) = E(q(X)I(g(X) > u)) | 0, we have by integration by parts that

PROOF. Since

(3.52) di(n) = n{E(g*(X)I(g(X) = dg(n))) + dy(n)¥(dy(n))}
and hence
(3.53) dy(n) = nY(dy(n)).
Thus, if
Yin = XI(q(X)) =d)(n)) (1=j=n)
(354 Zin=X; - Y;n 1=j=n),
then

(3~55) EQ(Zl,n + .-+ Zn,n)/7n = n¢(dq(n))/7n = dq(n)/'Yn i 0

as n — by (3.47-ii). Now q(S./vn) = q(Z}=1 Yjn/Yn + X3=1 Z;j /) converges in
probability to zero by (3.47-1) and since q(¥%; Z; ,./v,) —orob 0 by (3.55) we also
have

(3~56) Q(27=1 Y},n/’Yn) —>prob 0.
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Further, since ES, = 0 and (3.55) holds we have

(3.57) q(E(T=1 Yin)/va) = 0.
The next step is to show
(3.58) E(Q(X}1 Yin — E(XF1 Yjn))/vn) = 0

which completes the proof.
Let {Y/,: 1 =< j < n} be an independent copy of {Yj.: 1 <j < nj. Let

Tn= 3} (Yin — E(Y;n) and Tp = ¥k (Yin — E(Yjn).

Then g(T,/v») =prob 0, 4(T'7/¥n) —prob 0 and hence the technique of Hoffmann-
Jorgenson (see, for example, Lemma 6.1(a) of [22]) implies

(3.59)  E(Q(T, — T.)/vn) < 24to,n + 6E(maxi<j=nq(Yjn < Y]n)/vn)

where to, = inf{t: P(q(T, — T7) > tyn) < Yes}. Now lim,to,» = O since q(T,/v»)
—prob 0 and g(T'1/¥n) —prob 0, and since lim,y,/dg(n) =  we have

lim, E(max,<j<.q(Yjn — Y}n)/vs) < lim,2d,(n)/vn = 0.

Thus

(3.60) lim,E(q(T, — T/))/vn = 0,
and since ET}, = 0 we have

(3.61) lim, E(q(T»/v»)) = 0.
Since S, =T, + E(}}-1 Y;n) + X1 Z; » the above gives
(3.62) lim Eq(S./v») =0

as claimed.

The next lemma is a standard result and its proof is essentially that of Lemma
3.2.4 of Stout [25]. As a result we omit the details.

LEMMA 3.5. If {v,} is nondecreasing and (3.45), (3.46) holds, then we have
P(g(X,) > M~y,i0)=0 forsome M<o
if
P@(X,) > My,io0)=0 forall M€ (0, ).

To prove Proposition 2, we now let n, = [p*], K = 1, where [-] denotes
the greatest integer function and p > 1 is to be specified later. We define for
l<=j=nmnandl0<rt=<1

uj = X;1(q(X;) < dy(rne/Lens))
(3.63) vj = X;I(dy(rny/Lony) < (X)) < 7vn,)
w; = X;l(vn, < q(X))),
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and set
(3.64) U=3ku Vo=3Yvy W,=YkL w.

Then S, = U, + V, + W, with ES, = EU, + EV,, + EW,, = 0, and hence for
every ¢ >0

(3.65) P(maX,,<nzn,,,q(Sn) > (V2 + 36)y,) < Lix + Ly + Iy,
where

L, = P(max,,<psn,,,q(Un — EU,) > (V2 + €)v5,)
(3.66) L x = P(maxpcnsn,,, (V. — EV,) > ev,)

Is . = P(maxncnsn,, (W, — EW,) > &v,,).

In view of (3.65) we have (3.48) if we show for each ¢ > 0 there exists p > 1
such that

(3067) limr—»co Zkzr Ij,k = 0
forj=1,2,3.

LEMMA 3.6. If e >0, then lim,_, Zkzrla,k = 0.

ProOF. First we observe that (3.53) and (3.47-ii) imply
limy maxn,<nzny; EQ(Wn) /v, < limeng E@@(X)I(g(X) > 1))/ Vn,
(3.68) =< 2p limyn, E(q(X)I(g(X) > d(ns)))/vn,
= 2p limzd(ny)/vn, = 0.

Further, since v, /7, and for ¢ > 0

P(maxp,<nsn,,,q(Wy) > e74,/2) < e P(q(X) > vy,),
we have C such that

lim, Yeorlop < lim, o Tpar Clnge — ni-1) P(@(X) > v,,)

< C limy Snan, P((X) > v,) = 0

where (3.47-iii) and Lemma 3.5 is used to obtain the limit. Hence the lemma is
proved.

LEMMA 3.7. If ¢ >0, then lim, . Sssr L4 = 0.

PrROOF. From (3.68) we have
(3.69) lim, max,,<n<n,,, Eq(W, — EW,)/yn, = 0,
and since (3.51) holds with ES, = 0 we have by Lemma 3.3 of de Acosta and
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Kuelbs [4] that

(3.70) limpmaxn,<psn,,, Eq(U, — EU,)/v» = 0.
Hence
(8.71) limymax,,<nsn,,, Eq(V, — EV,)/v, =0

since V,— EV,=8S, - (U, - EU,) — (W, — EW,).
Hence for k sufficiently large (3.71) implies

(3'72) IZ,k = P(maxn,,<n5nk+1q(vn - EVn) - Eq(Vn,,“ - EVn,,..,l) > 87nk/2)

Arguing as in Lemma 5.3 of Kuelbs and Zinn [22], starting with (3.72) replacing
(5.20) in Lemma 5.3, we thus have the lemma proved.

An exponential moment which is useful in handling the limiting behavior of
the {U,: n = 1} is given in the next proposition. The proof is essentially that
given for Lemma 3.2 of [5], so it is omitted.

LEMMA 3.8. Let Yy, Y,, --- be independent B-valued random variables such
that
(3.73) 9qY)=<c, 1=j=n)

for some measurable seminorm q. Let T,, = ¥}~ Y;. Then
)\2
(3.74)  E(exp{Mq(T») — Eq(TA)]}) = exp{; 2 E(qz(lG))exp(ZAcn)}-

To finish the proof of Proposition 2 we need the following lemma.
LEMMA 3.9. Fore> 0, lim, .o Yoy [1, = 0.

PrROOF. Since (3.70) holds and ¢ > 0, for all k sufficiently large
Iix < P(maXn<nen,, (U — E(U,) — Eq(Uy,,, — EU,,,) > (V2 + ¢/2)v,,).

Since {g(U, — EU,): n; < n < ng,} is a submartingale and e** is increasing and
convex for vy > 0, we have by the maximal inequality for submartingales that for
k sufficiently large

Lk < exp{—v(V2 + ¢/2)vn,}
- E(exp{y[q(U,,,, — EU,,,,) — E(q(U,,,, — EU,,, )]}
Applying the previous lemma we thus have for k sufficiently large that

2
L= exp{—v(& + %)m +L i E(@(X)1(g(X)) < by))e®® |

2 J

where b, = dy(rny/Lyng). Setting v = x/ﬁ/dq(nk/LGk) and checking that
dy(rx) = 7%d,(x) for 0 < 7 < 1, we have for all k sufficiently large and
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any 6 >0

Np+1

€
I, < —Lonyf2 + — — +——F% 7~
Lk exp{ 2nk[ V2  Lyndi(ni/Lany)

oo =)

< exp{—Lonx(2 + ¢/V2 — (6 + p)e*'¥))
since ng+1 < (p + 6)n; eventually and for each0 <7 =<1andallx>0
2E(g*(X)(@(X) = dy(7x)))/di(x) < 1.

Hence, since ¢ > 0 is fixed, we choose p > 1,6 > 0, and 0 < 7 < 1 suf-
ficiently small so that 2 + ¢/2 — (5 + p)e*'> > 1 + ¢/8. This gives I, <
exp{—(1 + ¢/8)Lqn;} for all k sufficiently large, and hence the lemma (and
Proposition 2) is proved.

4. Proof of Theorem 1. Let d, T be as in Proposition 1 (see (3.6) and
(3.11)). Let {v,} be as defined by (2.2). Then, since T ° d is slowly varying by
Lemma 3.3, it is easy to check that

(4.1) Yn ~ V2(a"da)(n).
Hence, by Corollary 7 of [22] (see the proof of Corollary 7), we have that
(4.2) P({(S, — nE(X))y5'} conditionally compact in B) = 1

iff the integrability condition (2.5) holds. Since d™* = g with g as in (3.5), and

(4.3) J; E(In|I(1n| > w) du ~ EM*I(In] <))

as t — o (see the “equivalence lemma” of Hahn and Klass [10] and (3.9)) with
T%(t) = E(p*I(| n| < t)) slowly varying we have the integrability condition (2.5)
equivalent to

(4.4) E(X1/T*N XN /LI X INL | X ||) < oo

where T'(t) = max(T(¢), 1).
Now assume the integrability condition (2.5) holds. Then (4.2) holds, and we
show that under these conditions

(4.5) P(C({(S, — nE(X))/vn}) CK) = 1.
Applying Lemma 1 of [19], we have a nonrandom set A C B such that
(4.6) A = C({(S, — nE(X))/vn}) w.p.L

Hence it suffices to show A C K to obtain (4.5).
If A € K, there exists a € A — K and since K is a compact convex set containing
the zero vector of B we have an h € B* such that

4.7) 0<a= sup.exh(x) < h(a).
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The existence of h € B* satisfying (4.7) follows from the Hahn-Banach theorem
in the following way. Choose ¢ > 0 such that a & (1 + ¢)K. Choose b € (1 + ¢)K
such that

(4.8) infreqrox |2 —all = 1b—al.

Let L=f{b+tla—b):0=<t=<1}. Then LN K = J since x € L N K implies
|x —b] =t]la—b]] <||b— al unless t = 1, and this contradicts (4.8) as
KC(Q+eK;ift=1,thenx=a & (1 + ¢)K. Thus L N K is empty, and, since
K, L are compact and convex sets, the Hahn-Banach theorem implies there is
h € B* such that

(4.9) 0 < sup.exh(x) < inf,c h(x) = min{h(a), h(b)}.

Further, sup,cxh(x) > 0 as sup.exh(x) = h(b/1 + &) > 0, so (4.7) holds.
From (4.6) and (4.7) we now have

(4.10) lim sup, h((S, — nE(X))/v») = h(a) > a w.p.l.

Now the definition of K as being K« () implies (see Lemma 2.1 of [18] for details)
that

(4.11) 0 < a = (E(h*(G)))"2 = o4,

and hence by Proposition 2 (with g(x) = | h(x) | and X replaced by X — E(X))
we have

(4.12) lim sup, | (S, — nE(X))/yn| < on w.p.l.

Hence (4.10) is contradicted, and, as a result, A C K as claimed. Further, since
(4.2) holds and A C K we thus have

(4.13) P(lim,d((S, — nE(X))/yn K) =0) =1

when (2.5) holds.
To see that Proposition 2 applies to X — E(X), note that by Lemma 3.1
(applied to X — E(X)) we have d,(t) = dn(t) and hence

(4.14) tn = Londy(n/Lan) ~ vnon/2

where {v,} is as in (2.2). Hence we have

o qu(n/LG)
-2 = JL
N vLyn A Y(u) du
where Y(u) = E(|M(X) |I(|MX)]| > w)), so a,/vYn »# and (3.45) holds with
Yn = an. The conditions in (3.47) also hold with S, = Y}, (X; — E(X)) and
Yn = a; as defined in (4.14). See remarks (IV) and (V) following the statement
of Proposition 2 to verify (3.47-ii) with v, = «a,. Since the integrability condition
(2.5) implies (using Lemma 3.5 and v, as in (2.2)).

(4.15) P(| X, || > M~,i.0)=0 foral M € (0,x),
and (4.14) holds with ¢, > 0, we have (3.47-iii). That (3.47-i) holds with
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S, = Y1 (X; — E(X)) and v, = a, follows since by Lemma 3.1 (see the proof of
Proposition 1)

(4.16) Z(Sn/d(n)) > Z(G), ond(n) ~ dy(n),

and by (3.47-ii) lim, a,/dg(n) = .

Thus, by Proposition 2 we have lim sup,h(S, — nE(X))/a, < v2 w.p.1, and
since (4.14) holds we thus have (4.12) as claimed and A C K.

Hence if the integrability condition (2.5) holds, then (4.13) and (4.5) hold.
Conversely, if (4.13) holds, then from Lemma 3.5 it is easy to see that if {vy,} is
as in (2.2), then (2.5) holds.

To finish the proof, it suffices to show that if X € DA(G), then (2.3) holds.

To verify (2.3) choose b in K with ||b| %@ < 1. Then fix ¢ > 0 and let
U={x€B: || x—b| <e}. Then, by the C4meron-Martin formula as used in [4],
we have

(4.17) lim inf,_.t"%log P(G € tU) = —%| b | %),
and hence (3.4) implies
2
(4.18) lim inf, w log P(S, — nE(X) € v,U) = —%| bl %)-

n

Thus for each ¢ > 0 and any 6 > 0 there exists no such that n = n, implies
(4.19) P(S, — nE(X) € v,U) = exp{—(1 + §) | b|| %) L2n}.

To show b € A we apply Lemma 5 of [19] with {a,} replaced by {v.} as in (2.2).
The regularity properties of {v,} make the necessary modifications of the proof
of Lemma 4 in [19] easy to carry out, and hence Lemma 5 of [19] is applicable
with {v,} replacing {a,}. Choosing & > 0 such that (1 + 8) | b || %@ < 1, (4.19)
implies
(4.20) 2n Pl (Sn — nE(X))/vn — bl <e)/n =,
and hence b € A as required. Thus (2.3) holds. Of course, (2.4) now holds iff (2.5)
holds, so the theorem is proved.

5. Proof of Theorem 2. Let d, T be as in Theorem 1 (see Proposition 1
and (3.6), (3.11)), and let {v,} be as defined by (2.2).

First assume integrability condition (2.8) holds. Fix e > 0. For N=1,x €B
let

(5.1) On(x) = IX,; a(x)Sa, Qn(x) = x — In(x)

where {o,} C B* and {Sa,: r = 1} is a C.0.N.S. in H¢(s) as described in Lemma
2.1 of [18]. Then we have (see [18, page 243]) an N, such that for N = N,

(5.2) nKC{x:|x] =¢}
where K = K 4. Hence, by Theorem 1
(5.3) {(Sn — nE(X))/yn} >— K w.p.l,
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and since Qy is a continuous map from B into B we have from (5.2) and (5.3)
that

(5.4) P(w: lim sup, [| @v((Sn(w) — nE(X))/vn) | <€) = 1.

Further, since the polygonal functions are as in (1.8) with med(S;) replaced by
kRE(X), then it is easy to see that (5.4) implies

(5.5) P(w: lim sup, || Qz(1a(+, w)) | w,a/vn <€) = 1.

Hence from (5.5) and the fact that Uy IIn(.7) is a dense subset of .7 it suffices
to prove that for each integer N we have

(5-6) {HN(nn/'Yn)} ad 1—‘[N'% W°p'1'

To prove (5.6) first note that N is fixed, the random variables {IIy(X,):
n = 1} take values in IIxB, and our processes have values in Cp, [0, 1]. Since all
norms on finite dimensional spaces are equivalent, we will replace the B-norm
on IIyB by the Hg norm, i.e., the usual Euclidean norm with respect to the
basis {Sa,: 1 < r < N}, and for f € Cy,5[0, 1] we define

(6.7 I/ ll« = supo<e=: Il (2) Il 2

where || x |2 = || x | ., for x € Hz ().

Hence it suffices to prove (5.6) when (5.7) replaces || f || »,5. To do this we
proceed via some lemmas.

To simplify notation we define

(5.8) nt, w) =Nnme(t,w) O=t=1n=1).
LEMMA 5.1. {£./vn: n = 1} is conditionally compact w.p.1.

PROOF. Fix ¢ > 0 and 8 > 1. It suffices to choose an integer g > 0 such that
if nj, = [8*], then

lim SUPESUP,<n<n,,, SUP|s—t| <29 Il En(t) - En(s) " 27;1 = 3e W.p.]..
Now

Supn,,<n5n,.ﬂ SUp|s—¢| <2~ " En(t) - En(s) "277_;1

= Supnh<n5nk+1 SUpP|s—t) <27 II En(t) - En(s) “27;,,1

< supjs—)<2-7 | &n,,, (£) = Enpr(8) vy

< 3 Supi<j=20 SUPj1=2%e=; | &n,,, () = &yl (G — D279 27y,
so it suffices to show
(5.9)  lim supesupj_i=ss; | &npy(t) = Enpn(G — 1279 ll2vs) <& wp.l.

forj=1,2,...,2%
Let Y = Iny(X) — ENIn(X), Y; = IIn(X)) — ENIN(X]), j = 1. Then the remarks
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following Proposition 2 apply. That is, since Y € DA(II5G) it follows that
(5.10) Im,E|| Yy + -+ + Y, [l2v7' = 0.

To obtain (5.10) we use the fact that || - ||» is an inner product norm (and hence
type 2 and co-type 2); so by Lemma 1 of [22]

(5.11) ElY:1+ --- + Yol = dyy,(n).

On the other hand, by [3]

(5.12) lim,E(]| Y1+ --- + Y, |o/d(n)) = E| G|,
S0

d(n) = dyy),(n)

and hence the remarks (IV) and (V) following Proposition 2 imply lim,d(n)/y,
= 0 and thus (5.10).
Hence, if

o= (2™, e =[G = Dmn2, fi = [jmen2 + 1,
then for all & sufficiently large we have
P(supj-1<gtesj || £nyy () = Enpn(J — D27 L2y, > &)
(5.13) < P(maxe< <, | T, Yill2vn, > ¢)
< P(maxies<q, | 251 Yillovn, > ) < 2P(| T, Yillavn, > o)

by Ottaviani’s inequality as Y1 Yi/vn —prob 0 and v, ~ vn,,,.
To prove (5.9) we now turn to the method of proof in Proposition 2. We define
forl <=j=<np,

’ n ’ n
uj = Y,-l(n Yl = d(szlk» vf = Yf’(”’<L2§k> =Yl = m)

(5.14)
wf = Yil(yn, = | Yjll2),
and set
(5.15) Un=%Yul Va=3Xhv Wi=3L w.

Then T, =Y}, Y;= U, + V, + W, with E(T,) = E(U;) + E(V}) + E(W}) =0,
and hence for every ¢ > 0

(5.16) P2k, Yilloyny > &) s e+ I3 + I3,
where
I, = P(| Ui, — EU., |2 > €vn,/3)
(56.17) Iiw = P(| Vi, — EV,, [l2> ¢vn,/3)
Iie = P(| Wi, — EW, (|2 > evn,/3).
Hence (5.9) will hold by applying (5.13), provided we show for every g8 > 1
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(fixed)
(518) lim, Zkzr Ij,k =0

forj=1,2,3.

The proof of (5.18) for j = 2, 3 follows as for the analogous results in the proof
of Proposition 2. For j = 1 we can also proceed as in Proposition 2 by first
pointing out that there is a constant A < o such that

(5.19) A= nkE<|| Y| §I<" Y| = d<L’:;k>>>/L2nkd2<L::lk> )

To verify (5.19) we recall d(n) = dy;,(n) and E(|| YI3I(| Y|l; < t)) is slowly
varying (see the argument in Remark (V) following Proposition 2), and hence
by (3.52) with g(-) = | -l we have (5.19) holding. Further, since v, ~
V2L,nd(n/Lyn) the argument used in Lemma 3.9 yields, by setting v =
3~/§(ed(nk/L2nk))‘1 and 7 = 1, that for all k sufficiently large

I, < exp{—Lym[2 — 9(evVLynpd(ny/Lang)) 2
- X%, E( VIR Y; N2 < d(n/Lany)))exp(632/e)]}
< exp{—Lymi[2 — (9cs/e’mi)A exp(6v2/e)]}

by (5.19). Since cx/nx ~ B/29! and 8 > 1 is fixed we choose g such that
(9cxA exp(6+/2/e)/e®ny) < Y2, and hence for all k sufficiently large

I{ . < exp{—3/2Lan}

s0 (5.18) holds for j = 1 as well.
Thus the lemma is proved.

For any integer m and f € Cp[0, 1], we let T'f denote the piecewise linear
approximation to f such that

me(k/m)=f(k/m) (k=0a 1”"’m)

and T, f is linear on each of the subintervals [k/m, (k + 1)/m] for k=0, .-,
m-—1.
In view of the equicontinuity of Lemma 5.1 we have

LEMMA 5.2. With probability one, and for any ¢ > 0, there is an integer
mo = mo(w, €) such that
" Fmgn(” (O) - En(" (O) “007;1 <e

for all m, n = m.
Another lemma is the following.
LEMMA 5.3. With probability one and for any ¢ > 0 there is an integer no =

no(w, €) such that || £./¥n — én'/Yn |« < e for all n,n’ = ny provided |1 —n’/n| <
1/n,.
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The proof of Lemma 5.3 is much the same as that of Corollary 2 in Chover
[7] except one must provide some minor changes since the normalizations v,
equal v2nLy:nT(d(n/Lan)) rather than v2nLgyn. Of course, T ° d is slowly varying,
so these adjustments are easy and we omit the proof.

In view of these lemmas we will have

(5.20) lim,d(IIn(7,/vs), In%Z) =0 w.p.1
if for every ¢ > 0, 8 > 1 and all integers m = 1 we have
(5~21) I‘m(gn,/‘)’n,,) € (HN'%)c

for all & sufficiently large on a set of probability one. Here, of course, (Ily.%7)° =
{f: If — glle < e for some g € IIx.%7} and the distance d in (5.20) is that given
via | -+ |-

Now (5.21) holds if

(5‘22) Zk P(I‘m‘fnh/‘Ynh $ (HN'%)t) <o

and to verify (5.22) we proceed as in [20].
That is, let E = IIxB and consider the Hilbert space

En=1{(k1, -, kn): K EE,i=1,--, m}

with inner product |||(k;, ---, kn)|ll = (Z2; | kill3)Y? where we recall
I-llz=1"l#,e on E. Let Ky, = {(k1, -+, kn) € Ep: |[| (Ry, -+, k) ||| = 1}
Let Jy, -+, Jn denote the m sets of integers defined by J; = {x € Z*:

(j — Dry, < x < jri} where r, = [ny/m]. Then mr, > n, — m and, of course,
card(J;) ~ ni/m as k — . Hence we will have (5.22) by arguing as in [20] if we
show

(6.23) Yk P(Zies, Yi, Jies, Yi, « -+, Dics, Yi) € v Kil2/m'?) < w.
To prove (5.23) observe that
(5.24) P(Zies, Yir - -+ Diea, Yi) & v KL2/mY?) < 1”14 + I, + I3,
where
I, = P((ZieJ, (uf — E(uf)), ---, Eie.lm (uf — E(uf)))
$ 7"hK;{6/m1/2)
(6.25)  Izx = P(|ll Cies, Wi — E())), - -+, ies,, 0! — E@H)) |
> (¢/6)Yn,/m?)

I3y = P(l| (Ties, Wi — EWy)), -+, Yies,, ! — EW!))) ||
> (/6)yn,/m?).
Now :
(5.26) lim, Yper I/ = 0

for j = 2, 3 as before in Proposition 2 since d(n) = d,y),(n), but for j = 1 we need
an argument other than the exponential moment used previously.
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To verify (5.26) for j =1, we let g1, - - -, gn, be independent mean zero Gaussian
random vectors with values in IIyB and with covariance that of the vector

YI(Il Y |2 < d(ne/Leny))/ T(d(ra/Lang)).

Then the covariance structure converges to that of IIyG as k — . Since all J;’s
are “intervals of integers” with the same number of integers, we can define r,
independent mean zero random vectors with values in E,, as follows:
2= (w/ — Euf, ulsj — Eupsjy -+, Umrgi — Etmnya) 1=j=<r.
T(d(nw/Lyny))
Similarly, with the g’s we obtain independent mean zero Gaussian random
vectors

Gj = (gj, Brytis * gmr,,+j) AI=sj=r)

with values in E,, and covariance structure that of 2; (1 < j < r}).
Now let

h(x) = ¢(lllxll) (x € Epn)

where ¢(t) is three times continuously differentiable on (0, ) and such that

[‘0 0<t=<1+e¢/12
¢(t) = | increasing 1+ ¢/12 <t =<1+ ¢/6.
11 t=1+¢/6

Then, since v,, = v2n,Lyn, T(d(ny/Lany)), we have
1k < E(h(Z}, 2/V2n,Lyng/m)).

Since ||| - ||| is a smooth norm and r = [nx/m] < n,/m, we have by arguing as in
[17, pages 73-78] (also see [4, pages 117-118] for a similar adaptation) that

s/ VB
< E(W32, G Zmbane\) | conk ||| 2 2ruLam
J m m

G; e CErE |l 2 I°
=P Tk —— ‘ >1+ ——) +
( ’ ‘ ‘ 21_1 veryLaony, 12 (2rkL2nk)3/2

3

where C(e) < oo.
Since Gy, - - -, Gy, are identically distributed with values in E,, and covariance
structure converging to that given by the identity map on E,, we have

Ye Pl Zky Gi/V2reLomi ||| > 1 + ¢/12) < o0
by standard arguments, and hence (5.26) holds for j = 1 if
(5.27) Sk reE ||| 21 |11/ (reLang)*? < oo,



852 J. KUELBS

Now
ElllzII° = E(ZEluf — Euj 13)*)/T(d(n/Lany))
(5.28) < m2™2E || u{ — Eu{ ||3/T%d(n/Lyny))
= m2™2E || u] |3/ T*(d(rm/Lara))

by the usual c,-inequality. Hence, since all norms on IIyB are equivalent, we
have a constant 1 = C < o such that

(5.29) [Myxll:< ClOax|| = C*| x| (x€B),

and hence the integrability condition (2.8), which is equivalent to
(5.30) E(NXN1*/(L | XN T* N XN /L2 | X 1)) < 0,
implies

(6.31)  E{ITNX 3L I MNX Nl T2l Ty X |l o/ Lo || T X [ 2)) 7Y < oo,

To see that (5.29) and (5.30) imply (5.31), we observe from (3.5), (3.9), (3.11) and
the “equivalence lemma” of Hahn and Klass [10] that as t — o, t2/T%(t) ~ g(t).
Hence t*{LytT?(t/Lt)} ~ Latg(t/Let) and, since T(t) is slowly varying and
L,tg(t/Lyt) increases, (5.29) and (5.30) easily yield (5.31). Now

(5.32) Eluill}=E Yl Y2 < d(ny/L2n)))

where Y = IIyX and hence (5.28) and (5.31) will imply (5.27) if we show

EN Y3 Y2 = d(na/Lany)))
ry2(Lane)*2T(d(ny/ Lans))
To prove (5.33) we let C denote a finite constant, possibly varying from line

to line, and observe that

(@ de)?ny J 2pj—1<|Y|i=<))
I(B) < C 3y Zj-l nllz/z(LGk)l/Z)Ts(d(a(nk)))

(5.33) I(B) = % <®

1—1

sCYL PG -1<|Yl5i=)) Enkz(«-ld-laxm{ni”(lzznk)3/2T3<d<L:—:u>> |

JPPG —1< | YI3=<))
(a”'d ') (V])

=C 2}11 ]
-14-1 ))1/2 -14-1 *\\3/27713 - -
(a7 d ™ ) (Vi) A (Lol d @) (V])) T[d<Lg(a‘1 FEwY J}))J

JPP(j = 1 < || Y|I3 < j)(Loj)*T(Vj/Lsj)
JYALaj) 2 Td((j/(L2j)?) T2(Vj/ L2 J)))

since  a7'd7a(V]) ~ j/(Lzj)T*(Vj/Loj)), and T o d is slowly varying

<cowye JPU-1<|Yli=<)) sz)~ i)y =
=C Y ) T/ Laj) since d<T2(s) dd7(s)) = s

S CE(| YN3/(La | YI.T* (I Y | 2/L2 || Y2))) <
by (5.31). Hence (5.27) holds and as a result (5.20) is proved.

=C X
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Combining (5.20) and (5.4) we have
(5.34) lim,infee s | 9, — &l =0 w.p.l,

and recalling (5.5) to complete the proof it suffices to prove the following lemma.

LEMMA 5.4. Under the previous conditions
(5.35) C({TIn(na/vn)}) = OInZ w.p.l.

Proor. Fix an integer m > 1 and let 8 = m", n, = g* = m** and
ry = ng/m = m**1 Let

VVJ' = (Yl, Yrk+j’ Tty Y(m—l)rk"'f) 1= J = ).

Then, by the argument in [20, page 404-405], we have (5.35) if for all
(Ri, -+, km) € E,, such that ||| (i, - - -, kx) ||| <1 we have

(5.36) lim inf, ||| m*? B, Wi/yn, — (R1, -+, ka) [l =0 w.p.L.

If Z,, denotes a mean zero Gaussian random vector with values in E,, and such
that the coordinates are independent random vectors with values in IIyB and
law IIxG, then W = W,; € DA(Z.,), and, of course, the normalizing constants
d(n) of Proposition 1 suffice for W. That is, if one builds normalizing constants
d(n) from W and Z,, as in the proof of Proposition 1, then Lemma 3.1 applied to
W and Z,, easily show d(n) ~ dal.(n) ~ d(n); so we can apply the conclusions of
Proposition 1 to W with normalizations d(n) (rather than d(n)). Hence for every
e>0and U={x€E,: ||| x — (ki, ---, k) ||| <e¢}, we have by (3.4) that

nT?(d(n/Lsn))

n

(5.37) lim inf, log P(33- W; € Uyn) = t2log P(Z, € tU).

By the Cameron-Martin translation theorem as used, for example, in [4, page

108], we have

(5.38) lim inf, ot "log P(Z,, € tU) = =% ||| (k1, - - -, k) |II?

and hence for each 6 > 0 there exists ny(8) such that n = n, implies

(5.39)  P(Zf1 W; € Uya) = exp{—(1 + 8) |l| (ky, - -+, kn) [||*Lon}.
Now Theorem 1 applied to W; implies

(5.40) lim supy ||| X% Wi/ (yn,m ™) Il = m™,

so choosing ko such that m™/2 < ¢ we have

(541)  lim infi|[| %, Wi/(vn,m ™) — (ky, -+, km) |l < 2¢ w.p.1

provided

(6.42)  Lm inf, ||| 2%, | Wi/(va,m ™) = (ky, -+, kn) Il S ¢ w.p.l.
Now (5.42) follows from the second half of the Borel-Cantelli Lemma if

(5.43) St P(SL,, , Wi (ymm™) € U) = .
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Since (rx — ry-1)/re = 1 — 1/m* by choosing & > 0, ko such that
(m*/(m* — 1)1 + &) I| By, -, B 12 =A< 1,

we have (5.43) from (5.39). Thus Lemma 5.4 holds and Theorem 2 is proved.

6. Some Examples. Using Theorem 1 we see that if X € DA(G) where G
is Gaussian, then (2.3) holds. In the examples of this section, we will show that
K is possibly a proper subset of C({(S, — nE(x))/v,}) when the integrability

condition in (2.5) fails.

EXAMPLE 1. X is assumed to be a symmetric real-valued random variable

with probability density function
_Jo x| <1

Then, letting G = N(0, 1) and f(x) = x, we have n = f(X) = X. Hence

6.2) E(InII(InI>u))=2J: xp(x)dx={§/u zus1

and using the notation of (3.5), (3.6) and (3.11) we have

_ /2 O=st=1
(6.3) 8(t) = {t2/2(1 +logt) t=1,

(6.4) T%(t) = 2 j(; x®p(x) dx = 21logt (t=1),
and

(6.5) d(t) =g(t) ~ Vtlogt (t— ).
Thus

(6.6) Yn = vV2nLynT(d(n/Lyn)) ~ V2nLnLa.n
asn— oo,

LEMMA 6.1. If X has probability density given by (6.1) and X;, X,, --- are

independent copies of X, then
(6.7) C({Sn/vn}) = (=, ®) w.p.1.

PROOF. Since X is in the domain of attraction of G = N(0, 1), we have
S7/¥n —prob 0 and hence zero is in the cluster set C({S,/v,}). In view of symmetry
and the separability of R', (6.7) will hold if we show each b > 0 is in C({S,/vx})

w.p.l.
Fix b> 0 and ¢ > 0. Then b € C({S,/v,}) w.p.1 if

(6.8) P(|Sp/vn—b| <eio.) =1.
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Let F, = {| Sn-1/vn| <&/2, | Xu/vn — b| < ¢/2}. Then (6.8) holds if
(6.9) P(F,i.0.) = 1.
Now forn # m
P(F, N Fy) = P(| Xo/vn — bl = ¢/2, | Xm/Ym — b| = ¢/2)
(6.10) = P(| Xo/¥n — b| = ¢/2)P(| X/Ym — b]| < ¢/2)
=< CP(F,)P(F,)
for some constant C < o, since
P(Fp) = P(| Sn1/vn| < &/2; | Xo/Yn — b| =< ¢/2)

(6.11) = P(| Sp-1/vn| < &/2)P(| Xu/vn — b| < ¢/2)

> Y%P(| Xn/vn — b| =< ¢/2)

for all n = no where we use the fact that S,./v, —pb 0 and v,/yn,—1 — 1. Hence
for n, m = ny, we have (6.10) with C = 4. Hence there is a C < « such that (6.10)
holds for all n # m. Applying a well-known extension of the Borel-Cantelli
Lemma (see, for example, [26, page 317]), we have

(6.12) P(F,io0.) =1/C>0,

and since {F, i.0.} is a tail even we have (6.9) from (6.12) and the Kolmogorov
zero-one law. Thus (6.7) holds and the lemma is proved.

Another result which will be useful follows in the next example.

LEMMA 6.2. If X has probability density as given by (6.1) and X, Xs, - - - are
independent copies of X, then for each ¢ = 0, p > 0 there is a C < » such that

(6.13) P(S, = ev,) < C[(1/Ln)**® + L,n/Ln]

for all n = 1. The constant C can be taken uniformly in ¢ for ¢ uniformly bounded.

ProoOF. Let
(6.14) Y = XI(| X | = d(vn/Lyn))
where 7 > 0 and set
(6.15) To = 35 XI(1 X < d(rn/Lon)).
Then, for fixede =0, p > 0, we have |
(6.16) P(S, > eyn) = P(T, = evn) + nP(| X| > d(rn/Lyn))

forall n=1.
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Applying Lemma 3.8 we have
P(T, = ey,) < E(e*Tr)e™*m

= exp{— nE(Y?)exp- {2 )\d< )} - eM’n}‘

= e‘xp{; nT2<d<L2 ))epr 2)\d( )} - exvn}

since nE(Y?) = nT?(d(rn/Lyn)). Setting X\ = v2¢(d(n/Len))™! and taking into
account that d(rx) < 72d(x) for 0 < r < 1 and all x = 0 (see (3.6)), we have

J\n,1,e)=— nT2<d< LG ))exp{ 2)\d< L n)} - 2\v,
TES W
o I

e ][NET(d(n/LG»

(6.17)

" (Lon)2d(n/Lsn)

—exp(2\/-2-erl/2)nT2< <L2 ))((L n)1/2d<L2 >>_ }

Since d(n) ~ vn T(d)(n)) and d(+x) < 7%d(x) with T / o, we have the right-
hand side of (6.18) asymptotic to

(6.19) —e2Lyn[2 — exp(2v2er /2.

Hence for ¢ = 0, p > 0 fixed there is a 7 > 0 such that 2 — exp(2v2er1/2) >
1 — p/2 and hence

(6.20) J\ n, 7,e) < —e?Lyn(1 — p)

for all n = ny(e, p, 7). Note that if ¢ = 0 is uniformly bounded by M then 7 > 0
can be taken so that (6.20) is uniform in ¢ for ¢ = M. Hence for n = nole, p, 7)

(6.21) P(T, = ev,) < exp{—¢*(1 — p)Lyn).
Now for d(7n/Lyn) = 1

o, [ e gy Len
(6.22) nP<|X| > d<L2n>> 2n Lm/LG) y° dy In’

and hence for all n = n,(e, p, 7) by combining (6.16), (6.21) and (6.22) we have
(6.23) P(S, > ev,) < exp{—e*(1 — p)Lyn} + (2/7)(Len/Ln).
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Since p, ¢ are fixed, we now fix 0 < 7 < 1 such that 2 — exp(2v2er/2) > 1 — p/2,
and hence (6.23) implies there is a C = C(e, p, 7) such that (6.13) holds for all
n = 1. Hence the lemma is proved since C can be chosen uniform in ¢ = 0 for ¢
uniformly bounded.

EXAMPLE 2. Let X = (n, 7o) be a symmetric R?-valued random variable
where 5, and 7, are independent random variables with probability density as in
(6.1). Let G = (g1, &2) be a mean zero R%-valued Gaussian random variable where
g, and g, are independent N(0, 1). Then X € DA(G) and if f(x, y) = x, then
f(X) = n, yields a d-function as in Proposition 1 which satisfies (6.3), (6.4), (6.5),
and (6.6). We simply denote this function by d(t) as before and let {v,} be as in
(6.6).

LEMMA 6.3. If X = (m, n2) is as above, X, X,, - - - are independent copies of
X, and {v,} is as in (6.6), then
(6.24) C{Sn/v}) =KUE,UE; wp.l

where
K={(x y:2*+y*=< 1}

E, = {(x, y): y = 0}
E; = {(x, y): x = 0}.

ProoF. Since C({S./v.}) 2 K by Theorem 1, and K = {(x, y): x> + y* < 1}
in this case, (6.24) will hold if

(6.25) C{S./vn) 2 EUE;, w.p.l,
and for (x, y) € KU E; U E; we have
(6.26) (x, y) € C({Ss/vn}) w.p.l.
Since X is symmetric with identical components, (6.25) will hold if we show
(6.27) (b,0) € C({S./vn}) w.p.l.
Let || - || denote the usual norm on R? Then (6.27) holds if for all ¢ > 0
(6.28) P(|| Sp/vn— (b,0) | <eio.) =1.
Now
(6.29) {1 Sn/vn = (b,0) || <eio2{Jniol}
where
=[S |2y <, 2] <o)
" T8 3 | v | 3
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and (x, y)® = x, (x, y)? = y for (x, y) € R Then, as in Lemma 6.1,

(6.30) P(J,) = %P(| XP/vn — b| <¢/3)
for all n = ny, and arguing as in Lemma 6.1 we have
(6.31) P(J,i.0.) =1.

Thus (6.27) holds and since (6.27) yields (6.25) it now suffices to prove (6.26) for
(x, y) EKUE, UE,.
Take (x, ) such that x >0, y >0, x2 + y2> 1. Let p > 0 be such that

(6.32) [(x=p)+(y=p)l1=-p)>1
Then, foralln=1

Sn
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) @
SP<§'L>x—p,§'-'->(y—p))

(6.33) Yn Yn

n n

1 (x—p)2(1—p) Lon 1 (y=p)*(1-p) Lon
2l | — 200 — =2
=€ [(L ) o \In T In

by the independence of the coordinates of X and Lemma 6.2 applied to each
coordinate. Since (6.32) holds, (6.33) implies

1) 2)
- P(S—" > (x - p>)P<S—" > (y — p))
Y v

(6.34) P([| Sn/vn— (x, ) | < p) = C*(1/L,)**
for some 6 > 0 and all n = ny(6). Now (6.34) implies that
(6.35) 2n=1 P(| Sp/vn — (x, ) | < p)/n <

for some p > 0. Since S,/p, —pre» 0 and {v,,} is sufficiently regular, Theorem 3 of
[12, page 1179] can be modified (see [19, page 390] for a similar result) to yield

(6.36) (x, y) € C({Sn/vn}) wp.l
iff foralle >0
(6.37) Yr=1 P Sp/vn — (x, ) | < e)/n = .

Hence (6.35) shows that, for all (x, ) such that x >0, y > 0 and x% + y2> 1, we
have (x, y) & C({S,/v»}). In view of the symmetry of X we thus have (6.26) and
Lemma 6.3 is proved.
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