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BROWNIAN SLOW POINTS: THE CRITICAL CASE!

By BURGESS DAvis AND EDWIN PERKINS

Purdue University and University of British Columbia
It is known that if B, is a standard Wiener process then
suplim inf,_o4 (Bewn — B)h ™2 =1 as.

Here this is sharpened to P(3t: lim infy_o4(Be+n — B)R™2 = 1) = 1, and
P(3t: B,y — B, = h'2 Vh € (0, «) for some a > 0) = 0. A number of other
theorems of the same flavor are proved. Our results for the critical case for
slow points are not as complete as the above.

1. Introduction. If B,is a one-dimensional Brownian motion defined on a
complete probability space, consider the sets of one-sided and two-sided slow
points defined by

S*(c) = {(t, w) |t =0,IA> 03 |B(t + h) — B(t)| < cvh VO =< h < A}
S(c) =8S*c) NS (c) (c>0).
In Davis [5] and Greenwood and Perkins [7] it was shown that

+ =0 if ¢<1 as.
(1.1) S (")(“’){;é @ if ¢>1.

(Here A (w) denotes the w-section of A C [0, ) X Q.) A related result concerns
the times of rapid increase of B, defined by

I(¢)={(t,w)|[t=0,3A>02B(t+h) —B(t)=cvh V0= h=Al(cER).
In [5] one of us (Davis) shows that

" =@ if ¢>1 as,
(1.2) Ie)(w) {# g if e<1

thus answering part of a question of Knight [8, page 148]. In this work we
attempt to refine results like (1.1) and (1.2) by studying the critical cases, ¢ = 1.
One of our theorems settles the rest of Knight’s question. A number of the
theorems of [5] and [7] were unified and extended in Perkins [9], where it was
shown that for certain random sets A C [0, ©) X Q (including all sets of the form
A, X Q where A, is Borel measurable),

(1.3) dim(A N S*(c)(w)) = dim(A(w)) — No(c) aus.
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780 B. DAVIS AND E. PERKINS

and in particular

+ #OD if Nl(c) <dim(A(w)) a.s.
(14) AN SHe)w) {= B if () > dim(A(w)).

Here dim denotes Hausdorff dimension and \o(c) may be described in terms of
the zeros of certain special functions. The reader is referred to Proposition 1 of
[9] for a precise description of those constants. (Ao(c) = Ao(—¢, ¢) in the notation
of [9]). For our purposes, it suffices to know that A\ is a continuous, strictly
monotone function of ¢ whose values are easy to approximate. If

Z = {(t, w) | B(t, w) = 0},
then (1.4) yielded (Corollaries 6 and 8 in [9])
+ =@ if c¢<Nl(%) = 1.3069 a.s.
(15) Z N 87e)w) {# D if c¢> A1)

_ . =101
o sow {28 1 (a0

Originally, (1.5) appeared in [7], and the first half of (1.6) appeared in [5]. In
examining (1.1)-(1.6) in the appropriate critical cases one can consider the sets
S*(c) and I'*(c) or the slightly larger sets

S*(c*) = {(t, @) | lim supso*| Be+n — Be| ™2 < ¢} = Na> S*(d)
I*(c7) = {(¢t, ®) | lim infyoor (Bern — B)R™Y2 = ¢} = Nace I*(d).

Leaving aside the general results (1.3) and (1.4) for the moment, the discerning
reader will be able to pose at least eight questions concerning the state of affairs
in the various critical cases. We will not obtain a perfect score.

In Section 2, fairly elementary arguments are used to show that I*(17) # &
a.s. but I*(1) = D a.s. (Theorems 2.3 and 2.4). Knight’s original question [8, page
148] was to find a function g such that lim inf,_o+(B(t + h) — B(t))g(t) < 1 for
all t and equals 1 for some t a.s. Evidently g(t) = t~/2 is precisely such a function.

An important tool in previous studies of slow points is the tail behaviour of
the stopping time

T(c) =inf{t = 0| | B(t)| > c(t + 1)Y/3.
Breiman [4] showed that
lim; . t*“P(T(c) = t) = K(c).
To obtain finer results we study the slightly larger times
Tu(a, ¢) = inf{t| |B| > a +c(t+ 1)}, a=0, c=0.
In Section 3 we show that there is a K(«, ¢) such that
P(T,(a,c) >t) < K(a, c)t™! forall t>0.

This theorem plays an important role in the study of S*(c) and S*(c*) in
Sections 4 and 5, respectively. Theorems 4.1 and 4.3 are improvements of the
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corresponding results in Perkins [9] (i.e., the precise formulations of (1.3) and
(1.4)), but they are not as sharp as one might hope. They leave open a fundamental
problem that we have not been able to resolve:

QUESTION. Is S*(1)(w) # D a.s.?

We use Theorem 4.1 to show (Corollary 4.5) that S*(1)(w) is at most countable
a.s. A direct argument similar to those in [9] proves that S*(As'(%2) N
Z(w) = @ a.s. (Theorem 4.7), thus improving (1.5).

In the case of S*(c*), our results are much more precise than (1.3) and (1.4).
To describe an analogue of (1.4) for deterministic sets we need some notation.

NOTATION. # = {¢|3 ¢ > 0 D y: [0, ¢] — [0, ») is strictly increasing,
continuous and ¥(0) = 0}.
IftA=0,let

= {Y € #Z|lim sup,_.¢ (27 (E@™ T = 274

If y € # and A C [0, ), ¢-m(A) denotes the Hausdorff {-measure of A (see
Rogers [10, page 50]). 0

Note that (log 1/t)"t* € #* for all A = 0, ¥ € R but that ¢ € #* and v <\
implies that lim,_o+¢(¢)t™ = 0.

THEOREM 1.1. Let A be an analytic subset of [0, ©). Let ¢ € [0, ).

- 1 if Fyexr™?s3y-mA)>0
P4 n §%c)(w) # D) = {o if VY€ 2% ym(A) =0. O

This is obtained as a corollary to a corresponding result for random sets A C
[0, ©) X © (Theorems 5.2 and 5.3). Several other corollaries are derived from
these theorems. For example, it is shown that S*(1*)(w) is a.s. uncountable,
S*(\sl(e)*) N Z(w) # D as., (Corollary 5.4 (a), (b)), and S*(A\g'(*2)*) N
S~ (A\51(*%))(w) # @ a.s. (Theorem 5.9). (Thus improving (1.1), (1.5) and (1.6),
respectively.)

Assume (Q, & %, B:, 0,, P¥) is a Brownian motion process, i.e., B, is distributed
as a Wiener process and the above Markov process is a Hunt process in the sense
of Blumenthal and Getoor [2, page 48]. We write P for P° which will be the
underlying measure unless indicated otherwise. If S and T are nonnegative
random variables, then

[[S, TN = {(t, w) € (0, ©) X 2| S(w) =t = T(w)}
and
(S]] = {(S(w), ) |w € Q, S(w) < o}.

We use K, K, Ki, - - - to denote constants whose value may change from line
to line, and B(X) denotes the Borel o-field of X.
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2. Points of increase. The following elementary lemma will be used
throughout this work.

LEMMA 2.1. Let {T;|i = 1} be a nondecreasing sequence of stopping times and
define N = min{i| T; > 1} (min & = «). Let A; € Fy,, assume
2.1) P(A;| F7,_,) =p for some constant p,

and put To = 0. Assume {T; — T;_1|i = 1} are i.id. and each T; — T;—; is
independent of Fr,_,. Then
(a). Foranye> 0 thereis a 6 > 0 such that

E(T)p'<é=PUNTA)>1—e

(b). If in addition T; — Ti—; < K, for some K, € R then for any ¢ > 0 there is
a 6 = 6(e, Ko) such that

E(Tl)p_l > 6_1 = P(Uﬁl A,) <e.

ProOOF. (a).
PUN'A) = P(UL, A) — P(N<k) (REN)
=1- (1 -p)—-E(T:) (by(21)
= 1 — exp(—pk) — RE(T,).

Now let & = [(E(T,)p) ~?]([x] is the greatest integer of x) and note that E(T})p!
< 6 implies

PWUN'A) =1 — exp(—87 2 + 1) — 82

(b). As{i= N} € 7, it follows from the bound on T; — T;_, that E(N) =<
(1 + Ko)(E(Ty)) L. Therefore if E(T,)p™' > 671,

PWUX, A) = P(UL, A) + P(N > k) < pk + (1 + Ko)(RE(Ty))™!
< pk + (1 + Ko)o(kp) ™.
The proof is completed by letting k& = [6/?p~]. O

LEMMA 2.2. If
T = inf{t = 1| B, < inf,.;B, — 1 + Vt},
then
lim,_,tP(T >t) = K € (0, ).

PrROOF. If m; = inf,<,B; then
(2:2) PAT > t|5) = PR (T >t — 1)
where
T = inf{t| B, < (t + 1)2}.
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Lemma 10(a) of Perkins [9] states that for x = 1
P(T>t—-1)=t"(Wkx) +rtx) V=1,
where y € L%([1, «), exp(—2?/2)dz) and for each ¢ >0,
| r(t, x) | = K.exp(ex®t™)

for some positive constant, A, independent of e. It follows from (2.2) that

P(T>t) = t'l[J; Y(x + 1)(2/7)exp(—x?/2) dx + e(t)]

where

le®)| < t'*KJ; exp(x + 1)2/4)exp(—x%/2) dx. O

THEOREM 2.3. I*(1)(w) = @ a.s. That is, for a.e. w there is no t = 0 and
A > 0 such that

(2.3) B(t+h)—Bt)=+vh for 0<h=<A.

ProOF. For each n € N define a sequence of stopping times
{T?|i=0,1, ---}
by
" —
T?, = inf{t > T? + (1/n)| B, < infrpeeerpienBs — n7V% + (¢ — TF)?)
AN (T? + 1).
If N,, = min{i| T? > 1} we claim that
(2.4) max;=n, T} — Tt-1 — 0.

Fix A > 0. A scaling argument shows that the i.i.d. random variables {T7 — T~}
are equal in law to (T/n) A 1, where T'is as in Lemma 2.2. Therefore Lemma 2.2
gives

E(T? — TR )(P(T? — T > A) 7' =2 n7'Ko f t71 dt(nA)
1

= KyA log n
for some positive constant K,. Now (2.4) is a consequence of Lemma 2.1(b).
Assume t € I*(1) N [0, 1] satisfies (2.3) for some A > 0. Then t € [T}, T%,)
for some i < N,. We now show that T%; — TT = A. Let m = inf,girn rp41/n Bs-
CASE1l. t€[T?+ 1/n, T%:). Thenifs € [0, A],
B(t+s)=B®t) +s2=m+ (t— THY?— n"2 + s (since ¢t < T%1)

>m+ (t+s— THY2—n 2
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CASE2. t€|[T?, T?+ 1/n).If s € [0, A], then
B(t+s)=B{t)+s?=2m+ (s+t— THY? — n~2

In either case we get T%, =t + A = T? + A. Therefore if IX(1) = {(t, w) | (2.3)
holds},
{IZ(1)(w) N [0, 1] # @} C {max;en, TT — TE:1 = A}

The theorem now follows easily from (2.4). O

THEOREM 2.4. I*(17)(w) is a.s. dense. That is, with probability one there is a
dense set of times t such that lim inf),_¢+(B(t + h) — B(t))h~2 = 1.

ProoOF. It suffices to show I*(17)(w) N [0, 1] # D a.s., as a scaling argument
would then show I*(17)(w) is a.s. dense. If A, a > 0, c E R, let
P,.= P(3t € [Aa, a) D B, = B, + c(t — s)2 Vs € [0, t]).
A scaling argument shows that P, . is independent of «. Fix ¢ < 1. We claim that

(2.5) limA_,()*PA,c = 1,
that is
(2.6) P(3te (0,1) DB, =B, +c(t—s)2Vs€E[0,t]) =1.

The above probability is greater than
P(3te(0,1) 3B, =B, +c(s —t)2VsE[t, t + 1])

by a time reversal, and this probability was shown to be positive in Davis [5,
Theorem 3.1]. A scaling argument shows that for any ¢ > 0 the probability in
(2.6) equals

P(3t€ (0,¢) D B, = B, + c(t — s)2 Vs € [0, t]).

The Blumenthal 0-1 law implies that this probability must be one.

Let c, =1 — 1/n and fix ¢ > 0. By (2.5) we may choose A, | 0 such that P, ,
= exp(—¢?/n®) and A; < Y. Inductively define a sequence of stopping times by
To =0 and

Tivy = inf{t = T; + Aia(1 — Ti) | By = B, + cina(t — 5)V2 Vs € [T, t]} A 1.

(It is easy to check that T}, is a stopping time because T; + A1 (1 — T}) is.)
Then, if BT = By, — By for a stopping time T, we have, on {T,_; < 1},

P(T, < 1|97, )w) = P(3t € [Ax(1 — Th-1(w)), 1 — Tp-1(w))
S BIm1@ > BT 4 ¢ (t — 5)Y2 Vs € [0, t])

= Py, = exp(—¢e®/n?).
This gives
2.7 P(T, <1 Vn) = exp{—¢® Y1 1/n?} = exp{—c*r?/6).
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Let T=lim,.T;<1.Ifw € {T,<1Vn}andt € [T;, Ti+1), then
B(t) = B(Tis1) + cin1(Tisa — £)'?
= B(Ti2) + civa(Tivz — Tist)? + cioa(Tisy — £)V2
= B(Ti2) + cis1(Tisn — t)?

v

B(Ti+n) + ci+l(T‘i+n - t)1/2
— B(T) + ¢;s1 (T — t)? as n — .

Therefore lim inf,_o-(B(T + h) — B(T))h™? = 1 on {T, < 1 Vn} and so
(2.7) shows that 17(17) N [0, 1] # D a.s. By symmetry the same is true of
I*(17)njo, 1].

The second statement of the theorem is now immediate from Theorem 2.3. 00

3. A hitting time estimate. In this section we bound the tail of the
distribution of the stopping time )

T.(a, ¢) = inf{t| | B,| > a + c(t + 1)/3}.

We will need a comparison lemma for reflecting (at 0) Brownian motion. Bramson
[3, Lemma 5] showed that if h(t) < g(t) are C' functions then for x < h(0), and
any real number 7y,

(8.1 P*Br<y|B;=h(s)Vs=<T)=P(Br<y|B;,<g(s) Vs=T).

Uchiyama [12, Lemma 2.4] proves this result by first proving a related inequality
for the simple symmetric random walk (by an induction on time) and then using
Donsker’s invariance principle. Uchiyama’s argument goes through with only
minor changes to give us the following version of (3.1) for | B| (Proposition 3.1
below).

NOTATION. If h: [0, ©) — [0, =), let
T, = inf{t| | B;| > h(t)} (inf QD = ).
PROPOSITION 3.1. Let h, g: [0, ©) — (0, ®) be C* functions such that h(t) <
g(t) forallt. If | x| < h(0), then forally = 0,
P|B| =y|Th>t) = P(|B| =y|Tg>t). O
Also required are simpler comparison theorems concerning different starting

points (Lemmas 3.3 and 3.4 below). We include a proof of Lemma 3.3 as it is
short.

LEMMA 3.2. Let {X,|n =0, 1, ...} denote a reflecting simple symmetric
random walk and let P* denote the probability measure P(- | Xo = x). If h is a
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function from the nonnegative integers Ny to [0, ), let
Tw = minfn = 0| X,, > h(n)}.
Then, whenever x — x’ is an even nonnegative integer (x, x’ € Ny),
(3.2) PX.<sy|Thzn) s P’ X.sylTuzn)
for all y = 0, provided that both conditioned on events have positive probability.

Proor. Fixn.LetZy, Z,, - --,Z,, denote simple symmetric reflecting random

walk conditioned not to exceed h(k) at time k for all k =0, 1, -.., n. We will
show for k=0, 1, ..., n, that
(3.3) PZr=ylZy=x)=PZr=ylZoy=1x'), y=0,

by induction on k. The case & = 0 is immediate. We use the fact that, since Z
only makes jumps of magnitude one,

PZy =y|Zr=m) 2 PZr1 =y|lZr=m +2)

for all y and all m. This and summation by parts gives (3.3) for 2 = j + 1 given
(3.3) for £ = j. Note that (3.3) for k = nis (3.2). 0

A routine weak convergence argument now gives us
LEMMA 3.3. If h: [0, ©) — (0, ) is a C* function and x’ < x < h(0), then
P*(|B| <=y|Tw>t) <P (|B| <y|Th>t) VYy=0. O

A similar argument shows:

LEMMA 3.4. If h is as above, then P*(T}, > t) is nonincreasing in x € [0, «), [

Recall that X, = e “?B(e* — 1)is an Ornstein-Uhlenbeck process starting at
Bo, and with generator (%) d?/dx* — (Y%)xd/dx. If p(c) = inf{t| | X;| > c} then
(see Greenwood-Perkins [7, Lemma 3 and Proposition 4]) for any |x| < c,

P*(X, € dy|p(c) >t) converges weakly to a symmetric distribution 5° on [—¢, ¢]
satisfying

(3.4) P™(X, € dy|p(c) >t) = n.(dy)
and
(3.5) Pm(p(c) > t) = exp(—Ao(c)t).

The distribution 7, is the stationary initial distribution of X conditioned to stay
in [—¢, c].

THEOREM 3.5. There is a constant K(a, ¢) such that for all a, ¢ = 0,
P(Tu(a, ¢) = t) < K(a, ¢)t ™ for all t = 0. Moreover K(a, ¢) may be chosen so
that sup{K(a, c)|a = N, 1/N < ¢ = N} < o, for each N > 0.
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PrOOF. Define X, as above and let
pla, ¢) = inf{t| | X;| > ¢ + ae™?.

If
T(c) = inf{t| | B:| > c(t + 1)/3},

then T'(c) = ¢”® — 1 and Ty (q, ¢), = e**? — 1, and so it suffices to show
(3.6) P°(p(a, c) > t) = K(a, c)exp(—tAo(c)).
We first establish the above bound for P™(p(a, ¢) > t). Note that
P (| X(n)| = ylp(a, c) > n)
= P%(|B(e" — 1)| < ye™?| Tu(a, c) >e" — 1)
3.7) < P"(|B(e" — 1)| < ye™?| T(c) >e" — 1) (Prop. 3.)
=P(|X(n)| =ylp(c) >n)
= n.([=y, y]) (by (3.4)).
Now
P(p(a, c) >n+ 1]|p(a, c) >n)

= f P(| X;] < c+ aexp(—%(t + n)) Vi< 1)
0

- P(| X(n)| € dy|p(a, ¢) > n).

The above integrand is nonincreasing in y € [0, ©) (use Lemma 3.4) and so (3.7)
and an integration by parts leads to

P"(p(a, ¢c) >n+ 1]|p(a, c) >n)
= P(|X,| =c+ aexp(—Y(t+ n)) Vt=<1)
(3.8) <1-—Pp(c) <1— e ™?)P(supi=e—2| X;| > ¢ + ae™™?)
=1 — (1 — exp(—Xo(c)(1 — e™?)))
X (1 — P(supe=e—rz| Wi| = (¢ + ae™™?)(1 + Yoe™™?))),

where W, = X, + % [ X, ds is a Brownian motion and we have used (3.5). Of
course P~ could have been used instead of P¢ above. Now

Pe(sups=e—2| We| < (¢ + ae ™) (1 + Yee™?))
< P°(supi=1 W; < e™*(2a + c¢)e™™?)
< (2a + c)e™4,
Substitute the above in (3.8) to get

P(p(a, ¢) > n + 1| p(a, ¢) > n) < exp(—Ao(c) + Ao(c)e™?) + (4a + 2c)e™".
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An easy computation now shows
P™(p(a, ¢) > n) = [1%6 P™(p(a, ¢) > i+ 1| p(a, ¢) > i)

= Ky (a, c)exp(—Ao(c)n)

where Ko(a, c) is bounded if «, ¢ and ¢™* are uniformly bounded, implying

P"(p(a, ¢) > T) = Ki (e, c)exp(—No(c)T), where K;(a, c¢) is bounded if «, ¢, and
¢! are uniformly bounded.

Assume now that ¢ € [N}, N] and « € [0, N] for N fixed. Let T'x(0) be the
first time X, hits zero, and let T be a fixed positive number. Now Lemma 3.4 and
the definition of X, imply that if 0 < s < T and v,, = P(| X,| < ¢ + ae™*?
sst=<T|X,=r)thenv,; <v,,if |y| < |r|. Thus voo < Evx,s < Yo,s-

Now PY(T'x(0) < p(a, c¢)) is easily seen to be nonincreasing for y € [0, ).
Using this fact and the Strong Markov Property for X, and putting v, = 1 if
s =T we get

P(p(a, c) > T) = J; Yo,sP™(T'x(0) € ds, Tx(0) < p(a, c))

(3.9) = v00P™(Tx(0) < p(a, )
= v00PY (Tx(0) < p(a, ¢))n[-N7*/2, N7/2].
Now it is known that
ne(dx) = K.M(=Xo(c), Y, x2/2)e*"? dx,

where M is the confluent hypergeometric function and K, is an integration
constant (see, for example, the proof of Proposition 1 in [9]). Therefore ¢ —
n{[—N7'/2, N7'/2] is continuous and positive for ¢ € [N~!, N] and in particular
is bounded away from zero. Finally,

PV (T (0) < pla, ¢)) = PY(Tx(0) < p(0, N™) > 0.

The required estimate follows from this, the previous comment, and (3.9).

4. Slow points. Consider now the problem of refining (1.3). More precisely
we will try to improve the following results from [9].

THEOREM A (9, Theorem 12]). Assume A C [0, ©) X Q and for some d > 0
there are sequences of stopping times {S?, T*|i, n € N} such that A C UL,
[[S?, T?]] for all n and

(4.1) lim, o E(X3: (TF — SH)%) = 0.
Then dim(A(w) N S*(c)(w)) = d — N(c) VO < ¢ < ® a.s., where a negative
dimension indicates the set is empty.
THEOREM B ([9, Theorem 15]). Assume there are optional sets A; C [0, ®)
X Q such that A,(w) is-a.s. closed and A = U, A;. Then
dim(A (w) N S*(c)(w)) = dim(A(w)) — Ao(c) Ve € (0, ©) a.s.
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Actually Theorem A is slightly stronger than Theorem 12 in [9] (also see the
subsequent remarks) but the same proof works with only minor changes.
If A>0,let Si(c) = {(t,w) | | B(t+ h) —B(t)|h 2= cforall h € (0, A]}.

NOTATION. Weletd,(t) =t% andif a« <0, d, — m(A) denotes the cardinality
of A if A is finite and oo, otherwise.

The following result refines Theorem A.

THEOREM 4.1. (a). Assume the hypotheses of Theorem A. Then
Darge — MA(@) N ST (c)(w)) =0 as. V0O<c<oo.

In particular if (4.1) holds with d = \o(c) then A(w) N S™(c)(w) = D a.s.
(b). Assume the hypotheses of Theorem A but instead of (4.1) suppose only that

(42) lim inf, o(E(ZZ, (T? — SP)?) <o, and sup:| T7 — S7| < K(n),

where K(n), n = 1, are constants approaching 0 as n approaches infinity.
Then for a.a. w and for all n € N,

(4.3) Da-re — M(A(w) N Sz1(c)(w)) < .
In particular if (4.2) holds with d = N\y(c) then A(w) N S*(c)(w) is countable a.s.
ProOF. (a). If A> 0 and S =< T are stopping times, suppose t € [S, T] N
x(c). For each u € [T, S + A] we have
|B(u) — B(T)| = |B(u) — B(¢)| + | B(t) — B(T)|
sclw—8)"+c(T-t)"

<c(u—8)"2+ ¢(T - 8)V2
Therefore

P([S, T) N Si(c) # B| Fr)(w)
=P(|Bw)| =clw+ T - 8)"(w) + (T — S)"*(w)
(4.4) Vo= A= (T - 8) )
= P(|By| = c(v + 1)+ ¢ Vv = A(T - S)(w)™* -1)
=< K(T(w) — S(w))™® (Theorem 3.5),

where K depends on (A, c).
Choose stopping times S? = T? as in the statement of the theorem. Then

E(XZ: (T? = SH™I([S?, T?] N Si(c)(w) # D))
< KE(ZZ: (T? — SP)Y)  (by (4.4))
—0 as n— m,

Therefore @y_» ) — m(A(w) N Si(c)(w)) = 0 a.s. and the proof is completed by
letting A | 0.
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(b). The proof of (4.3) is obvious from the previous argument. If d = A\o(c),
(4.3) means that A(w) N S;-1(c)(w) is a.s. finite, implying A (w) N S*(c)(w) is
a.s. countable. [0

COROLLARY 4.2. Let ¢ € (0, ). If A C [0, ) satisfies @, — m(A) = 0 then
w.p.1 Da—x (A N S*(c)(w)) = 0. In particular if d = \o(c), then A N S*(c)(w) =
D a.s. If Drye) — m(A) < o then A N S*(c)(w) is a.s. countable.

PrOOF. Immediate from the above. 0

The proof of the following refinement of Theorem B is essentially the same
as the proof of Theorem 15 in [9]; the only difference is that Corollary 4.2 above
is used in place of Theorem 13(a) in [9].

THEOREM 4.3. Assume @ € #Z and a = \o(c) satisfy
(4.5) f B(t)t™1dt <o for some e> 0.
0

Let {A,} be a sequence of optional subsets of [0, ©) X Q such that A, () is a.s.
closed and set A = U;_, A,. Then

{w|D = m(A(w)) > 0} C {w|DBa-r — m(A(w) N S*(c)(w)) > 0} a.s.
In particular if (4.5) holds with o = \y(c) then
{w|D@ — m(A(w)) >0} C{w|A(w) N S*(c)(w) #2}. O

A similar result, but with both the hypotheses and the conclusion weakened
will be given in the next section (Theorem 5.8).

COROLLARY 4.4. Let c € (0, ) and A be an analytic subset of [0, ). If D is
as in Theorem 4.3 and @ — m(A) > 0, then Do) — m(A N S*(c)(w)) > 0 a.s.
In particular if (4.5) holds with a = N\o(c), and @ — m(A) > 0, then A N S*(c)(w)
#Jda.s.

PROOF. There is a compact set K C A such that @ — m(K) > 0 (see Rogers
[10, page 122]). The result is now immediate from Theorem 4.3. 0

Theorems A and B are immediate from Theorems 4.1 and 4.3, respectively.
For example, we can find a single null set outside of which the conclusion of
Theorem 4.3 holds simultaneously for all rational (e, c) satisfying a = N\o(c) and
for all the functions @*(t) = t*(log 1/t) 2. This gives us Theorem B. Nonetheless,
there is still a “gap” between Theorems 4.1 and 4.3. Neither result settles the
still unresolved question: Is S*(1) = & a.s.? However, an immediate consequence
of Corollary 4.2 is (take A = [0, n) in Corollary 4.2, and let n — )

COROLLARY 4.5. S*(1) is at most countable a.s. 0
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Since @12 — m(Z(w)) = 0 a.s. (recall that Z is the zero set of B), Theorem
4.1(a) suggests that Z(w) N S*(A\;'(*2)) = & a.s. The hypotheses of this
result, however, require that we cover Z by stopping times, UZ,[[S?, T?]]
so that lim, .-E(Z&, (T? — S?)Y?) = 0. Recall that E((T? — S?)¥?) =
¢ E(L7s— L$y) for some universal constant c, where L{ is the local time of B. (In
fact much more is true—see Barlow and Yor [1]). It is now easy to show that
there are no stopping times satisfying the above conditions. Nonetheless we now
give a direct proof that Z N S*(A;'(2)) = D a.s., similar to the earlier argument
showing that I*(1) = D a.s.

The proof of the following lemma is elementary.

NOTATION. Tjp(x) = inf{t| B, = x}.
LEMMA 4.6. If ¢ > 0, there are positive constants K3, K5 such that

Ki|x|tY? < EX(Ts(0) A t) < K5 | x| t'2

whenever t/x? = e. 0
THEOREM 4.7. Z(w) N ST(\5* (%)) (w) =D a.s.

PROOF. Letc = A'(*%) (= 1.3069 ...). For each n € N, inductively define
stopping times {S?, T?|{ € N} as follows:
St =0, T?=inf{t=S7?| |B,— Bsp| >c(t—SF+n™)"} A (SF+1),

and
% =inf{t > T?| B, — Bs»= 0} A (T} + 1).
Let
T =inf{t| |B,| >ct + 1)} A n

S =inf{t > T|B,= 0} A (T + n).

A scaling argument shows that the i.i.d. random variables {S%, — S?| i € Ny}
are equal in law to S/n and the i.i.d. random variables {T? — S?| i € Ny} are
equal in law to T/n. Therefore '

E(S%, — S?) = n™ f EDY (T2 0) A (¢t + n))I(t < n)P(T € dt)
= Kn™! f It < n)(t + Y2t + n)?P(T € dt) (Lemma 4.6)
= Kn™2 f sTV2P(T = s) ds
0

> Kn™'2 f s'ds [9, Lemma 10(a)]
1

= Kn™'2 log n.
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If A € (0, 1), then
P(Tt — St =z A|Fs;) = P(T = nA) = P(n, A) < Kan™V2

Therefore lim, .« E(S?%, — S?)/P(n, A) = lim,_..K4 log n = . Lemma 2.1 shows
that if N,, = min{i| S} > 1}, then

(4.6) maxianT? - S:l —p 0.
Fix A€ (0, 1) and let
A={o|lt,t+ 11N Z(v) #D Vt < 1}.

Suppose w € A and t, € Z(w) N SX(c)(w) N [0, 1]. The definition of A implies
that for all i < N,, S = inf{t > T7,| B, = 0} and therefore ¢, € {S, T"] for
some ip < N,.. If u € [to, to + A], then

|Bu— Bsg| = |Bu| = | By — B,| = c(u—t)"? < c(u— SL+n")2,

and therefore T}, — S?: = A. It follows that

AN{w|Z(w) NSic)w)N[0,1]# 3} C {max;<n T? — S? = A for all n}.
As the set on the right is null by (4.6), we obtain

P(ZN8S™c) #9) = P(A°) <1.
A scaling argument and the Blumenthal 0-1 law now shows that
PZNS*)#@)=0. O

In [7] and [9] sets of asymmetric slow points were also considered, i.e., sets of
the form
S8*(c1, ¢2) = {(t, )| A > 03 B(t + h) — B(t) € [c;h'?, c;h?] YO < h < A}

(—o = ¢ < ¢y < ),

Actually Theorems A and B were proven for sets of this form where —\o(c) is
replaced by A\o(c;, c2), the largest eigenvalue of

Yy (x) = xp’(x) = -W @), ¥ € L¥(cr, 2], exp(-x%/2) dx)
V() =0 if |¢| <o
(then Ao(c) = No(—c, ¢)). In [7, Theorem 19] it was shown that
S*er. ¢)(@) M Z(w) {;ﬁ D as.if Nlc, ) <¥% V—o <¢; <y < o0,
=0 as. if Mlcy, ) >
The proof of Theorem 4.7 in fact goes through in the asymmetric case and shows
S*er, e)w)NZ(w) =D as.if Nole,c2) =% and |c;| <o, |cz]| <oo.
We mention this because it is interesting to note that

S*0, ©)(w) N Z(w) # D as.and A(0, ) = .
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The first statement is clear as S*(0, ) N Z is the countable set of the starts of
positive excursions and for the second see Proposition 1 in [9].

5. On the size of S*(c*). In this section we obtain more precise results for
S*(c*), similar in spirit to those obtained in the previous section for S*(c). Recall
that

S*(c*) = {(t, w) | lim supp_o+| Bisn — B:| ™2 < ¢},
and
P = Y € 7| lim supr_oy (2 NP2t = 27N,

We first give sufficient conditions (Theorem 5.2) and necessary conditions
(Theorem 5.3) for a random set A C [0, ©) X Q to intersect S*(c*). These
conditions extend to points which are simultaneously slow for 2 independent
Brownian motions and this independent Brownian motion allows one to estimate
the size of A N S*(c*)(w) itself (Theorem 5.5). Theorem 1.1 and the other results
concerning S*(c*) mentioned in the introduction follow as corollaries.

In order to accommodate an independent Brownian motion B’, we enlarge
our probability space. Start with a Brownian motion B and a probability space
for which (., #, &1, B,, 0,, Pf) is a Hunt process and let (Q,, %, ¥ 7, B/,
6%, P%) denote another such space. We will work on

(2, & P") = (@ X Oy, A X F, P* X P),

where % X % denotes the usual completion of & X % with respect to the
measures {P* X P*} and P* X P? is the extension of P* X P”. Let {#]}, respectively
{%,}, denote the filtration obtained by completing {F; X {&, Q}}, respectively
{F 1 X %}, in the usual way. Let {#/} denote the larger filtration obtained by
completing {# X .# Z}. Our primary concern is with the original Brownian motion,
B, and hence with the filtration {%}. We abuse the notation slightly by consid-
ering B as a Brownian motion on (2, & %, P¥). P* will denote P*® and the
underlying measure is understood to be P = P° unless otherwise indicated.

Define S* (c) and S~ (c) as before but with B’ in place of B. We often write
S*(c)(wy) for S*(c)(w) and S* (¢c)(w;) for S*(c)(w), where w = (w;, wz) for some
w; € Q.

LEMMA 5.1. If ¢y € #* (for some \ = 0) then there is a @ in #* such that
lim,_o+y (t)D(t) = 0.

PrOOF. If A = 0, B(t) = ¢(t)"/? does the job. If X > 0, then (log (n + 1))
(27 < (log n)Y(27™) for large enough n, say n = N. Define @ on [0, 27V7"]
by setting @(2™"!) = (log n)¥(2™), D(0) = 0, and then extending & by linear
interpolation. 0

THEOREM 5.2. Let {A,} be a sequence of (&;)-optional sets such that A,(w) is
a.s. closed, and let A = U, A,.
(). Ify € #M9 (0 <c <), then

{w|Yy — mA(w)) >0} C {w|A(w) N S*(cH)(w) # D} as.
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(b). If § € F 2O then
fw|y — mA(w)) >0} C{w|Aw) N S*(c)(w) N S+’(c'+)(w) #J
and A(w) N S*(c*)(w) N ST (¢ )(w) # D} as.

ProoF. We only prove (b) as the proof of (a) will then be clear. It suffices
to show that
{w|y — m(A(w) >0} C {w]A N S*c) NS () (w) # T},

as the other inclusion follows by symmetry. We may and do assume Xo(c) +
)\o(C,) =<1.
We assume first that for each w, A (w) is a closed subset of [0, 1] and will show

(1) {oly — m(AW)) = o} C {w|A N S*c) N S* (") (w) # B}

We may, and shall, assume y is defined on [0, 1]. Let {¢;|j =0, 1, 2, - -} decrease
strictly to ¢’ (the exact values of {c;} will be specified later) and define g, on
(0, 2™) by

gw) =cu+ 1Y if ue2"7,2") j=0,1,2 ---
Let U, = inf{t| | B’(t) | > g.(t)} A 2". Thenfor k€ {0, --., n — 1},
P(U, = 21U, = 29

(5.2) *
‘ = f PY(| Bi—gt| < pop-r(t + 1)V2 Vit € [25, 25*1]) du™*(y),
0

where

w"*dy) = P(|B’(2" | € dy| U, = 2%).
Proposition 3.1 and Lemma 3.3 imply that
(5.3) #™ ([0, ¥]) = P"ss(| Byt| < y| T(Cn-s-1) > 25).

As the integrand on the right side of (5.2) is nonincreasing (use Lemma 3.4), we
can use (5.3) and integration by parts to obtain

P(U, =z 2¥'| U, = 2%) = P™ri(T(Cn-t-1) > 25| T(Cps-1) > 2%)
= 27%En-k-1)  (by (3.5)).
A similar, but simpler, argument shows that

P(T(c) = 2 T(c) = 2%) = 27,
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Combine these results to see that
P(T(c) N U, = 2 T(c) A U, = 2F) = 272 Nns1) k=0, ..., n — 1.

Equality here would have simplified things. We use random stopping to achieve
the same effect. Let V, € {2¥|k =0, 1, .-, n} U {=} denote a random variable
whose distribution satisfies

9 2(0)Molenp-1)
P(T(c) N U, = 2" | T(c) A U, = 2%’

P(V,=2¥V,=2% =

k=0,---,n—-1
P(V,=00)=1—= Yo P(V, =25,
By enlarging our original space (@i, %, F:, Pi), if necessary, we may
assume there is a sequence of independent .#-measurable random variables
{VIIn €N, i € N}, independent of B and B’, such that V7 is equal in law to V,.
Let A’ = A U [[2, «)), and define &, on (0, 1) by
&) =cit+2™Y if te[277,27), j=0,1,2, ...

If Dg = inf{t = 0| (¢, w) € E} denotes the début of a set E C [0, ©) X Q define
sequences of stopping times as follows:

1=Da
T? =inf{t> S| | B{ — B&| > g.(t — SP) or | B, — Bsp| > c(t — S? + 27")"/3}
AN(SF+(VEA2M)2™)
Sta= DA’n{[T{:m)).
A scaling argument shows that the i.i.d. random variables {T} — S?| i € N} are
equal in law to 27U, A T'(¢) A V,), where V,, is independent of U, and T'(c). If
W, = U, A T(c) N V, then the definition of the law of V, guarantees that
P(W, = 2| W, = 2%) = 27O € for K€ {0, .-, n— 1},
(5.4) giving P(W, =25
= exp[(log 2)(—kMo(c) — Xia-k Mo(c:))]P(Un A T'(c) = 1),
k=0,1,.--,n.
Let @(t) = t~ O™y (¢), d; = Ao(c’) — Mo(c:) | 0, and

N, — max{i| S} = 1} = N, = min{m | Y2, (T} — S}) > 1}.
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Then
E(Zi ¢(T? = S1)
< E(N;)E((T} — S})»@*™I3(T7 — St))
= 21+nE(W")—lE(W’);o(c)+Xo(c') DW.2™) A 1))2—n(x.,(c)+xo(c'))

< 2n(1—xo(c)-).0(c'))+1l:2g;3 f I(2k < Wn < 2k+1)2(k+1)(xo(c)+xo(c’))®(2k+1—n) dP

+ 2" O P(W, = 27) + z(z-")]
+ [Theo P(W, = 2%)2%7]
= K2r0 O 525 expl(log 2)((k + 1)Ae(c’)
= Yk Mo(e))IB(25 ) + B(27)]
+ [Z2-0 exp[(log 2)(—kXo(c) — Tk Mo(c:)) + B)]]  (by (5.4))

K[5-o 25540 (2 )]
= [T#oo expllog 2){(n — A)Mae) + Ao(c) = 1) + S d)]]

K[32-o 2729g3(27))
= 2= expl(log 2)(—2(1 = A(c) — No(c)) — 24 d])

< K[3?-0 exp|(log 2)(-2 d)}B(27)).
Now choose ¢; | ¢’ so slowly that
= [2( + 1) + log(@(27 )@ (27) H](log 2) 7.
This is possible since lim sup;_.@(27)@(27) ™" < 1. Then
2% < 2 (1)B(27)

and therefore

E(XM (TP — SP) = KB(1) $%=0 /72 = Ki.
By Fatou’s lemma we have
(5.5) lim inf, e Shn Y(T? — SP) < as.

Fix » so that (5.5) holds and ¢y — m(A(w)) = o. Choose n; 1 ® so that
Zf:"f Y(T™ — S) remains uniformly bounded in k. As

A(w) C U [S, T,
one must have a A = A(w) > 0 such that

max<y, Ti* — S* = A Vk.

If i, = N,, satisfies T’:" — Si* = A, then by taking a further subsequence we may
assume Sj* — to. It is easy to check that { € A(w) N S*(c)(w) N S*(c’*)(w) and
the proof of (5.1) is complete for A(w) a closed subset of [0, 1].
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In general we may assume that A, C [[0, n]]. By Lemma 5.1 there is a
Y € MO gatisfying lim,_ o+ (£)¥(t) ™ = 0. By the above we may fix w
outside a null set so that (5.1) holds for each A, with ¢ in place of y. If ¢ —
m(A(w)) > 0 then ¢ — m(A,(w)) > 0 for some n and hence ¢y — m(4,(w)) = oo.
(5.1) implies that A.(w) N S*(c)(w) N S*(c’*)(w) # D and the proof is
complete. [0

The next result gives sufficient conditions for A N S*(c*)(w) to be a.s. empty.

THEOREM 5.3. Let A C [0, ©) X Q be #([0, ©)) X F-analytic, and let
¢, ¢’ € (0, ).
(a). Assume for each ¢ € #™ there are (%)-stopping times S? < T?
(i, n € N) such that (T} — S?) is defined and

(5.6) ACUZ[[S?, Tl foreachn, and lim, .E(3Z, ¢(TF—S?))=0.
Then A N S*(c*)(w) =D as.

(b). Assume for each ¢ € #™*C) there are (%;)-stopping times satisfying
(5.6).

Then AN S*(c*) N S* (¢’ )w) =D as.

PROOF. It suffices to prove (b) as (a) will follow by simply assuming ¢’ = o«
throughout the argument. If {c;};~0 is a sequence decreasing to c, let
S+({Cj}) = {(t, @) | supo<n=z-i| Be+n — Byl h V2 < ¢iforj=0,1, -- -1

We claim it suffices to fix such a sequence {c;} and a corresponding sequence {c; }
decreasing to ¢’ and then show A N S*({¢;}) N S*'({ef P(w) = D as. (S*'({c}}) is
defined using B’). Indeed if A N S*(c*) N S*(c’*)(w) # D with positive
probability, then by the Section Theorem (see [6, page 64]) there is a random
variable R € [0, ] such that [[R]] C A N S*(c*) N S*'(c’*) and P(R < «) >
¢ > 0. Define random variables X; and Y; by
X = {supms,z-f( |Brsn — Bl V) Ve if R<e
J c+ 27 if R=o

v, = 18Pochz2i(| Bhen — BR| A7) Ve’ if R <e
T et + 27 if R=o,

Then {X;} and {Y;} decrease a.s. to c and c’, respectively. An elementary argument
shows there are sequences {c;} and {c;} decreasing to ¢ and c¢’, respectively such
that

PX;<ciand Yi<c¢/ VJENy) =1 —¢/2
Therefore
P(S*({g}) N S* (fe/}) N A(w) # @)
=2P(R<w X;<cand Y; < ¢/ Vj E No) = ¢/2.

This proves the claim.
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Now fix sequences {c;} and {c/} as above and define functions g, and &, on
[0, 2" — 1) by

gn(u) = ¢, + cj(u + 1)V2

i nl— o j= -
g’n(u)=C,',+C,~'(u+1)1/2} lf 2 15u<2 y J 0, 1’  n 1.

Let
U, = inf{t| | B;| > g.(t) or | B{| > &.(t)} A (2" — 1),
and write c.; for ¢s5). Then
P(U,=2"—1) = P(IBu| < o + cilu+ )V Vu< 2"~ 1)
(5.7) x P(|BL| < ¢} + c/mlu + Y2 Vu < 27" — 1)

< Ko(zn—\/; _ 1)—)«,(0,57)-%(0'-4;) < K2—(n—~/r_t)(>\o(cJ,;)+Ao(c’J;))

where K is independent of n (by Theorem 3.5). Now define y: [0, 1] = [0, ) by
letting

1;(2_") = 9~(n=YR)(gleym)+HolelR) n=1223...
¥(0) =0

and extending ¥ by linear interpolation. As ¥(27") decreases to 0 as n — o, it is
clear that Y € #Z. In fact y € #*) hecause

lim SUpPp_ey (27" )P (277) 7 < 27N
which is easily verified because Ao(c;) and Ao(c/) increase to Ao(c) and Ao(c’)
respectively. Let ¢ (t) = ¥/(2t) € # O+,
Let {S?, T?| i, n € N} be stopping times satisfying (5.6), and let
g(t) =ct/? if 27 '<¢t=27 and g(t) =cjt"? if 27 '<t=<27
If t € [ST(w), TF(w)] N S*({c;j})(w), then for each h € [0, 1 — (TT — S7)],
| B(T? + h) — B(T?)| = | B(T? + h) — B(¢) | + | B(T}) — B(¥) |
=g(Tr+h—-1t)+g(T?—1)
< g(h + T? — ST) + g(T? — SP).
Similarly if ¢t € [S?, T?] N S* ({c}}) then

|B'(T? + h) — B'(T?) | = &(h + T? — S7) + &(TF — S7).
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Therefore on {w| T? — S w) € (274, 27™™])} (m € N) we have
P([S?, TF1N S*(ei}) N S*'({ef}) # @ | Frp
= P(|B(h)| =gh +27) +g2™), |B'(h)| = g(h +27) + §(2™)
Vhe[o,1—-2"))

= P(|B(h)| < gn(h) and |B'(h) | < gn(h) Vh € [0, 2™ — 1]) (scaling)
=PWU,=2"-1)
< Ky(@2™) (by (5.7) and the definition of V)
= Ky(@™) = Ky(T? - S?).

It follows that there is a constant K such that

P([S?, TP N 8*(g) N S*'({ef}) # @ | Frp) < K $(TF = SP),

as this is trivial if T? — S* > 1. Therefore
P(A 0 S*({g;)) N S*'(fef N(w) # D)
< E(Z%1 P(S?, TP N S*({e)}) N S*'(fef}) # @ | Frw)
= KE(XZ ¢(TF — S7))

—0 as n—o [
Theorem 1.1 is now an easy consequence of Theorems 5.2 and 5.3.

PROOF OF THEOREM 1.1. Let A be an analytic subset of [0, ©). Assume that
¥ — m(A) > 0 for some ¢ € # ™, By Rogers [10, page 122] there is a compact
subset K of A such that ¢ — m(K) > 0. Theorem 5.2 now shows that K N
S*(c*)w) # D as.

Assume now that ¢ — m(A) = 0 for each y € #™©, The stopping times in
(5.6) may now be taken to be constant times. Therefore Theorem 5.3 implies
that A N S*(c*)(w) =D as. O

Recall that Z denotes the zero set of B.

COROLLARY 54. (a). S*(1*)(w) is a uncountable dense subset of [0, ©) a.s.
(b). S*(Ao'(*2)*) N Z(w) is dense in Z(w) a.s.

PROOF. (a). Suppose S*(1*)(w) is a.s. countable. Then there are random
variables {R;|j € N} (0 = R; = ») such that S*(1*)(w) and U{, [IR;]] are
indistinguishable subsets of [0, ) X Q (see [6, page 167]). By Lemma 5.1 there
is a @ € #* such that lim,_o+t@(t) ™! = 0. Then @-m is not a o-finite measure
on [0, 1] (see Rogers [10, page 79]) and so there is an uncountable collection of
disjoint compact subsets of [0, 1], {A;| i € I}, such that &-m(A;) = « for each i
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(see Rogers [10, Theorems 57 and 59]). As
I= {i € I|P(R; € A;) > 0 for some j € N}

is a countable set we may choose i, € I — I. Therefore we have P(S*1")(w) N
A;)) = 0, a result that contradicts Theorem 1.1 since @- m(A;) = oo. It follows
that S*(1%) N [0, 1] is uncountable with probability p > 0 (here we are using the
non-obvious fact that {w|S*(1*)(w) N [0, 1] is uncountable} € # —see [6, page
163]). A scaling argument now shows that S*(1*)(w) N [0, ¢] is uncountable with
the same probability, p, for each ¢ > 0. The 0-1 law shows that p=1.

The fact that S*(1*)(w) is a.s. dense is obvious.

(b). If Y(t) = (2t log log 1/t)*/2, then by Taylor and Wendel [11] ¢ — m(Z N
[0, t]) = LY(B) for all t = 0, a.s., where L9(B) is the local time of B. It follows
that if ¢(¢) = (¢ log 1/t)"/2 € #*/? then w.p.1 for any rationals 0 < r < s,

Zw)N[r,s]l#8=¢ —m(ZN]r s]) = .

Apply Theorem 5.2(a) to the countable collection of optional sets {Z N [[r, s]]| 0
< r < s rationals} to conclude that w.p.1 whenever 0 < r < s are rationals then

Zw)N[r,s]#@=2ZNS*A' (%)) w) N[r,s]#a. O

We next use the independent Brownian motion B’ to estimate the size of
A(w) N S*(c*)(w) for certain random sets A € ([0, ©)) X FA X {J, Q,}. Note
this is no real restriction on A as we are interested in the Brownian motion B on
the original (Q,, #, # 1, Py).

THEOREM 5.5. Let ¢ € (0, ®) and a > A(c). Let A € ([0, ©)) X FH X
{D, Q).

(a). Assume A = U, A, where A, is (%)-optional and A,(w) is a.s. closed. If
€ 7, then {w |y — m(A(w)) > 0} C {w | Ba-ryy — m(A N S*(c*)(w)) > 0} a.s.

(b). Assume for each ¢ € #“ there are (%,)-stopping times S < T? such that
A C UL, [[S?, T?]] for each n and lim, o E(X2, ¢ (T? — S?) = 0. Then

¥v—mAw) N ST (cM)(w)) =0 VyE ZM) g5

PROOF. (a). If a = Ao(c), this is just Theorem 5.2 (a). Assume a > \o(c) and
choose ¢’ so that N\(c) + No(c’) = a. Theorem 5.2 (b) implies that for all w,
outside a P¢-null set N;,

9 ¥ —mAw, @) >0=ANS*c") NS (") w1, wg) # D
5.
for P9 — a.a.w,.

The measurability condition on A allows us to write A(w;) for A(w:, wp). Fix
w & Ni. If ¥ — m(A(w;1)) > 0, then (5.8) and Corollary 4.2 imply that
Dy — m(A(w1) N S*(c*)(w1)) > 0. Note that in applying Corollary 4.2, A (w;)
N S*(c*)(w;) plays the role of the deterministic set A and we work with the
Brownian motion B’. As Mo(c’) = @ — Ao(c) this completes the proof of (a).

(b). If & = No(c), this is immediate from Theorem 5.3 (a). Assume A\o(c) < a
and choose ¢’ so that Ao(c) + Ao(c’) = a. By Theorem 5.3 (b) we may fix w;
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outside a P{ null set so that

Aw) N S* e (w) N S* (¢ ) we) =D for PY — a.a.ws.

Now apply Theorem 1.1, using A (w;) N S*(c*)(w;) as our deterministic set and
B’ as our Brownian motion. We obtain ¢ — m (A (w;) N S*(c¢*)(w;)) = 0 for every
Y € #M) = e~

An immediate corollary to (a) is
COROLLARY 5.6. Forallc=1,B,_ ) — m(S*(c*)(w)) >0a.s.0

Our final objective is to refine (1.6) on the existence of points which are
simultaneously slow from the left and right. Although we have not been able to
decide whether or not S(A\;'(%2))(w) is empty, Theorem 5.9 below settles this
question for S(A\5'(*2)*)(w) and in fact goes a little farther.

The following result is undoubtedly known in greater generality but as we
could not find it in the literature, we include a proof of the simple case we need.

LEMMA 5.7. Let (Q, Z, P) be a probability space and let £* denote the universal
completion of &. Assume A, € ([0, ®)) X & is such that A,(w) is closed for each
o If Y € #Z and A = Uj-, A, then {w |y — m(A(w)) = 0} € £* and if P(y —
m(A(w)) = 0) = 1, there are £*-measurable random variables {S?, T?| i, n € N}
such that A C UZ, [[S?, T?]] and lim,_E(Z2Z, ¢(T? — S?)) = 0.

PROOF. Assume first that A(w) is compact for each w. Let {S;|j € N} be an
enumeration of all the finite sets of open intervals with rational endpoints. Define
a sequence of functions on Q by

oy = J2res; W[ I]) if A(w) C Uses; [

Xj(w) = {oo otherwise.

(Here | I| denotes the length of 1.) Then {w | X;(w) = oo} is the projection onto Q
of A\(Ures, I X ) and hence is in £* (see [6, page 43]). Let S; = {(u}, vi) |i=1,
-+, n;} and let J, = min{j| X; < 2™} (min @ = ). On {w|J,(w) < %} define
gr = {u}]" if i<ny

1 if i>n,

J. . .
n _ vi~ if lan”
T _{1 it i>ny
and on {w|J,(w) = o}, let (S, T?) = (0, ®). Then {¢ — m(A(w)) = 0} =
Nn=1 {Jn, < 0} € £*. Assume now that N, {J,(w) < } is a set of probability one.
On this set we have for all n
o Y(T? - S7) =< 27

and hence E(X%; ¢(T? — S?)) — 0 as n — . It is clear from their definition
that {S?, TT} are universally measurable and A C UZ, [[S?, T?]).
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In the general case we may assume A = U, A, where A,(w) is compact for
each w. It is now obvious that {y — m(A(w)) = 0} € £*. Assume this set has
probability 1. By the above there are universally measurable random variables
{St™, TP™|i, n, m € N} such that A, C U;[[SP™, TP™]] and E(TE, (| TP™ —
S»™|)) =27 ™. One now has A C U, ,[[S»™, T?™]] and

limp B (Zin ¢ (| T?™ — SP™])) = 0. O

THEOREM 5.8. Assume {A,} is a sequence of {F;}-optional sets such that A, (w)
is a.s. closed and let A = Uy, A,. If o > N\o(c) and there is a ¢ € #* such that
Py — m(A(w)) > 0) > 0, then there is a @ € #* ™ such that P(@-m(A(w) N
S*(c).(w)) > 0) > 0.

PrOOF. Choose ¢’ so that a = Ao(c’) + Ao(c). Theorem 5.2 (b) implies that
AN S*c) NS* (c”)(w) # B with positive probability. Now apply Theorem 5.3
(a) to the Brownian motion B’ on (2, % F{, P), using A N S*(c) as the
([0, ©)) X F -analytic set. That result shows there is a @ € #FM¢) = ga—%0
and an & > 0 such that whenever {S;, T;| i € N} are & /-stopping times satisfying
AN S*(c) CUZL[[S;, T:]] then E(X; @(T; — S;)) = e. In particular this is true
whenever S; and T; are ¥ ¢-measurable random variables. Now apply Lemma 5.7
to the % ([0, ©)) X #§ measurable set A N S*(c). Note that the hypotheses of
that result are satisfied since we can write A N S*(c) = Up_; A, N S}-(c).
Therefore one sees that P(@-m(A N S*(c)(w)) >0)>0.0

THEOREM 5.9. If ¢, ¢’ € (0, ®) satisfy Ao(c) + No(c’) = 1, then S*(c*) N
S7(c’)(w) # D a.s., and is therefore a.s. dense. In particular with probability 1
there is a t = 0 such that

lim sup,_o| B(t + h) — B(t) | h™Y2 = A5 (%) (= 1.3069)
but there is no t = 0 for which
lim supp_o| B(t + h) — B(t) | A™¥2 < A5 (%).

PrROOF. The previous theorem with A = [0, ©) and « = 1 show there is a
Y € #1700 = 70 guch that ¢ — m(S™(c’)(w)) > 0 with positive probability.
Now apply Theorem 5.2 (a) with A = S7(c¢’) to conclude that S~(c’) N S™(c*)(w)
# @ with positive probability (note that A = U;—; S -1(c’) so that the hypotheses
are met). A scaling argument and the Blumenthal 0 — 1 law shows this probability
must be one. The second statement is immediate from the above and (1.6) (the
latter is also an easy consequence of Theorem 4.1 (a)). O

A similar argument yields

THEOREM 5.10. If ¢, ¢’ € (0, ) satisfy Mo(c) + No(c’) = Y then S*(c*) N
S7(c’) N Z(w) # D a.s. In particular w.p.1 there exists t = 0 such that B(t) = 0
and

lim supy_o| B(t + h) | A™2 = \g'(4) (=165 ---)
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but there are no t such that B(t) = 0 and
lim supj_o| B(t + h) | 7Y% < X5 (%4).

PROOF. As A = Z satisfies the hypotheses of Theorem 5.8 with a = %, there
is a ¢ € #Y27C) gyuch that P(y — m(Z N S*(c’)(w)) > 0) > 0. By reversing B
from 7 = inf{t | LY(B) > N} we can conclude that P(y — m(Z N S™(c")(w)) > 0)
> 0 (see the proof of Theorem 7 in [9]). An application of Theorem 5.2 (a) now
shows that Z N S~(c’) N S*(c*)(w) # @ with positive probability and hence with
probability one. O
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