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DOMINATION OF LAST EXIT DISTRIBUTIONS

By MinG Liao
University of Florida, Gainesville and Nan Kai University

We first show by an example that, unlike the domination of hitting .
distributions, the process with smaller last exit distributions may not be
obtainable from the one with bigger last exit distributions by killing and
time-change. Then we prove that, under a fairly general condition, the last
exit distributions of a transient Hunt process cannot nontrivially dominate
those of another transient Hunt process.

Section 1. In the recent development of Markov process theory, last exit
times and last exit distributions have become increasingly important. Since the
last exit times of a Markov process can be viewed as the hitting times of the
reversed process, there is a strong “duality” between “hitting” and “last exit.”
For example, it is well known that if two processes have the same hitting
distributions, then they are essentially the same process up to a time-change, i.e.,
any one of them can be obtained from the other by a time change (see [1] Chap.
5). The dual version of this result is also true, i.e., if two transient Hunt processes
have the same last exit distributions, then they are essentially the same process
up to a time change (see Glover [2]). Recall that, given two Markov processes X
and Y, we say that Y can be obtained from X by a time-change if there is a
continuous additive functional A, of X, i.e, a continuous strictly increasing
process A, > 0 adapted to the o fields generated by X and satisfying

Vt<{ and s>0, A, =A,+A 0,

where { is the lifetime of X, such that Y, and X(,) are identical in law. Here 7, is
the inverse of A,, i.e.,

Vt>0, 1,=inf{s>0;A,>t}.

However, “last exit” is essentially different from “hitting”: it is not always true
that a result proved for hitting distributions holds for last exit distributions as
well. This is because, in general, we cannot reverse a process that is conditioned
to start at a certain point to obtain a process with initial distribution also
concentrated on the same point.

Recall a result of Shih. Let X and Y be two Hunt processes on the same state
space E and with semigroups P, and Q,, respectively. We will use D, with or
without subscript, for any relatively compact open set. Shih studied the following
question. Suppose the hitting distributions of X dominate those of Y, i.e., if

(1) Vx € E and D, Py(x,) = Qp(x, ),
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then what is the relation between X and Y? He proved in [3] that (1) implies
that Y can be obtained from X by first a killing, then a time-change.

In this paper we study a similar problem involving last exit distributions. We
first introduce some notation.

For a Borel subset B of E, we use yg to denote the last exit time from B for
either X or Y according to the context, i.e.,

(2) vg = sup{t > 0; X, € B}

or with X replaced by Y. Here we use the convention that the sup of an empty
set is 0. Let L% be the last exit distribution of B for X, i.e.,

Vx€ E andBorelset CC E,
(3)
L¥(x,C) = LE1o(x) = P{X(yg—) € C; v > 0}.
Similarly define the last exit distribution L}, of B for Y. Observe that we have
used the left limits X,_ and Y,_ to define the last exit distributions.
From now on, we assume that both X and Y are transient Hunt processes. By
“transient,” we mean:

(4) VD, yp<oo almostsurely.

REMARK. Lg and L};, as measures, are concentrated on D whereas for a
compact set K, L¥ and LY may not be concentrated on K. So it is easier to
work with the last exit distributions of open sets. By [2], we see that if V D,
L¥ =LY, then X and Y are essentially the same process up to a time-change.

Section 2. The following example shows that, in general, the process with
smaller last exit distributions is not obtainable from the one with bigger last exit
distributions by killing and time-change.

ExAMPLE. Let E = (— o0, 00) and let Y, be the uniform motion to the right
(with unit speed), B, be the one-dimensional Brownian motion, and X, = B, + Y,
i.e., Brownian motion plus drift. Let D be a bounded open subset of (— o0, c0)
and let b = sup{y € D}. It is clear that if x < b, then

Li(x,-) = Lj(x,) = 8,

the unit mass at b. If x > b, then LY(x,-)=0 and L(x, ) = ¢§, for some
constant ¢ > 0. Hence L} nontrivially dominates LY. But Y cannot be obtained
from X by killing and time-change. This is because first Y obviously is not a
time-change of X, and if Z is a process obtained by killing X, then Z must have
killing inside E, i.e., .
(5) ixe€E, P{Z({-)€E}>O0.
But Y has no killing inside E.

However, Y can be obtained from X by a “generalized” time-change. Let

A,=max{s>0; X, =t} and 7,=inf{s>0; X, > t}.
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Then X, is a uniform motion. A, defined above is a continuous increasing
process. Though it is not an addltlve functional of X, it satisfies:
If ¢t— A, isstrictlyincreasingat ¢=u, then

(6)
Vs>0, A, ,=A,+A,00,.

In general, given a Hunt process X, if A, is a continuous increasing process
adapted to the o fields generated by X and satisfying (6), then X, is a standard
process, which can be viewed as obtained from X by a generalized time-change.
This can be proved by adapting the arguments in [1, Chap. 5].

Section 3. Observe that if we kill a Hunt process, we obtain a process with
smaller hitting distributions, but this is not true for last exit distributions. In
general, the last exit distributions of a killed process are not comparable with the
last exit distributions of the original process. In fact, we will prove, under a fairly
general condition, that the last exit distributions of a transient Hunt process
cannot nontrivially dominate those of another transient Hunt process.

As usual, we use Ty to denote the hitting time of B for either X or Y and for
x € E, let T, = T,,. Consider the following condition, which is weaker than
requiring points to be polar:

(7) VxeE, PYT.<w}=0.

PROPOSITION 1. Assume (7). If VD, L% > LY, then V D, L% =L}, i.e., X
and Y are essentially the same process up to a time-change.

PrOOF. Since the total mass of Li(x,-)is Ppl(x) and V x € D, Ppl(x) =1
= @pl(x), we have

(8) vxeD, L¥x,-)=L¥x,-).

For x & D, let B, be the open ball around x with radius a > 0 so that its
closure B, is disjoint from D. Let D, = D U B, and let y and vy, be the last exit
times from D and D,, respectively. Since x € D L§(x,-) = Lp(x, -). Observe
Y, > 0 P*-a.e. and Q*-a.e. We have

PX(X(v,~) € dz) = Q(¥(v, -) € dz).

Since vy, = y on {X(y, — ) € D},
9) P*y >0} = P*{X(y,—) €D} + P{X(y,-) € B,, vy > 0}.
By transience and quasi-left continuity of X, we have
(10) limP"{X(ya—)EEa,y>0} < PYT,< 0} =

a—0
It follows from (9) and (10),

L¥(x,E) = P"{y >0} = lim Px{X(ya -)e 1_)}

= lim L}(x, D) = llm LD(x D)

a—0

= L¥(x,E).
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Now for x € 9D, choose D, 1 D such that x ¢ D,. Since Ppl(x) = lim, P, 1(x)
and Qpl(x) = lim @, 1(x),

VxeE, L¥x,E)=LYx,E).
Hence we must have Lj(x, -) = L(x, -) because L¥(x, -) = LY(x, ). O

REMARK. It might be interesting to notice that, without assuming.(7), €))
yields

(11) P*yp, >0} = P{y, <yp,>0} + Px{yx = Ypuix) > O},

where v, = v,

Section 4. Now we consider a modified version of last exit distributions.
Define M by

(12)

Vx € E and Borelset CC E,

M (x,C) = M{1,(x) = P*{X(yp—) € C; 0 < yp < {}.

Similarly we define M} with X replaced by Y.

M is the part of last exit distribution that is not obtained from the killing of
X. Since Ppl(x) = Qpl(x) for any x € D, this forces L¥(x, -) = LY(x, -) for any
x € D, which is the key point in the proof of Proposition 1. But this does not
hold for M and M} if X and Y have killing inside E. However, the conclusion
of Proposition 1 holds also for the modified last exit distributions M7 and M}.

PROPOSITION 2. Assume (7). If V D, M > M}, then ¥V D, LE = L}; hence
ME = M.

Proor. By the proof of Proposition 1, it is enough to show (8). Fix x € E.
Let
(13) p(dz) = P{X({ —) € dz} and »(dz) = Q% Y({ -) € dz}.

STEP 1. » > p. If not, for some compact K, u(K) > »(K). Choose D, | K U

{x} with p(dD,)=»(dD,) = 0. By (7), u({x}) = v({x}) = 0, so for sufficiently
large n, p(D,) > v(D,). Let D’ = D, for such an n. We have, with y = v,

Py =) = PX(t ) € D'} > @(¥(t -) € D'} = @y = §).
On the other hand, x € D’,
P{y>0}=1=@*y> 0};
hence
PHO<y<{)<@9{0<y<().
This contradicts MX1 > M}1.

STEP 2. v = p. If not, for some compact K, »(K) > u(K). Let
(14) 8=v»(K)-p(K)>o0.
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Choose D D K so that

— ) — )
(15) u(D)—,u(K)SE and V(D)—V(K)Sg.

By (7) and the quasi-left continuity of X, p({x}) = 0. We may assume x & K,
hence x ¢ D, by choosing D properly. Since .

P{X({-)eD-K) < g,

by choosing first D, O D sufficiently large, then D, > D, U {x} sufficiently large,

and putting G = D, — D, we will have

28
(16) IPx{X(Ya—)€D1,0<Ya<§}—P"{X(f—)EKHS?-
Similarly,

28
(17) @ (Y(vg =) €Dy, 0 <76 <&} - QY[ ~) e K} | < .

Combining (14), (16), and (17), we obtain,
26
MX(x,D,) - M¥(x,D,) = e
This contradicts the assumption that MY < MZ.

SteP 3. Now we show that for x € D, LEf(x) = LY f(x) for any bounded
continuous function f. This will imply (8). First assume

P¥X({-)€ D} =0=Q*Y({ —) € ID}.
Then
Lyf(x) = Mf(x) + P{f(X($ -)); $ = vp}

=MWM+Q&M&L

I&&FM%M+Q@M&)

Since MZX > M} and p=v», LEf(x)> L}f(x). But LE1(x)=1= L}l(x), so
L¥f(x) = LY f(x). Now for arbitrary D, choose D, 1 D such that
Vn, PYX(-)eaD,) =0 and Q¥Y(-)e aD,) =0.
Then vp_1vp and :
LEf(x) = P({(X(vp —))} = limP{ {(X(vp, -))}
= limLj f(x)=1limL} f(x)

= LY f(x). O
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