IMPROVED ERDÖS-RÉNYI AND STRONG APPROXIMATION LAWS FOR INCREMENTS OF RENEWAL PROCESSES

By J. STEINEBACH

University of Marburg

Let X_1, X_2, \ldots be an i.i.d. sequence with $EX_1 = \mu > 0$, $\operatorname{var}(X_1) = \sigma^2 > 0$, $E \exp(sX_1) < \infty$, $|s| < s_1$, and partial sums $S_0 = 0$, $S_n = X_1 + \cdots + X_n$. For $t \geq 0$, put $N(t) = \max\{n \geq 0\colon S_0, \ldots, S_n \leq t\}$, i.e., L(t) = N(t) + 1 denotes the first-passage time of the random walk $\{S_n\}$. Starting from some analogous results for the partial sum sequence, this paper studies the almost sure limiting behaviour of $\sup_{0 \leq t \leq T - K_T} (N(t + K_T) - N(t))$ as $T \to \infty$, under various conditions on the real function K_T . Improvements of the Erdös–Rényi strong law for renewal processes (resp. first-passage times) are obtained as well as strong invariance principle type versions. An indefinite range between strong invariance and strong noninvariance is also treated.

1. Introduction. Consider a sequence X_1, X_2, \ldots of i.i.d. random variables satisfying $EX_1=0$, $EX_1^2=1$, and $\tilde{\varphi}(t)=E\exp(tX_1)<\infty$ for $|t|< t_0(>0)$. Set $\tilde{I}=\{\tilde{\varphi}'(t)/\tilde{\varphi}(t)\colon t\in(0,t_0)\}$ and $\tilde{\rho}(a)=\inf\tilde{\varphi}(t)\exp(-ta)$. Stimulated by Révész's (1980, 1982) improved strong approximations for the increments of a standard Wiener process $\{W(t)\}_{t\geq 0}$, Csörgő and Steinebach (1981) obtained the following results for the increments of the partial sums $S_n=X_1+\cdots+X_n,$ $n=1,2,\ldots,S_0=0$:

THEOREM A. For $a \in \tilde{I}$, let $\tilde{C} = \tilde{C}(a)$ be the solution of $\exp(-1/\tilde{C}) = \tilde{\rho}(a)$. Then,

$$(A) \qquad \lim_{N\to\infty} \max_{0\leq n\leq N-\lceil \tilde{C}\log N\rceil} \frac{S_{n+\lceil \tilde{C}\log N\rceil}-S_n}{\left\lceil \tilde{C}\log N\right\rceil^{1/2}} - \left\lceil \tilde{C}\log N\right\rceil^{1/2} \alpha = 0 \quad a.s.$$

Assertion (A), rewritten in the form

$$\left(\mathbf{A}' \right) \quad \left| \max_{0 \le n \le N - \left[\tilde{C} \log N \right]} \frac{S_{n + \left[\tilde{C} \log N \right]} - S_n}{\left[\tilde{C} \log N \right]} - a \right| = o \left(\frac{1}{\left[\tilde{C} \log N \right]^{1/2}} \right) \quad a.s.,$$

yields a convergence rate statement in the original Erdös and Rényi (1970) law of large numbers dealing with maximum increments of the partial sums sequence over subintervals of size $K_N = [\tilde{C} \log N]$.

Moreover, for larger K_N , i.e., $K_N/\log N \to \infty$, it holds:

THEOREM B. Let $K_N = [\tilde{K}_N]$ denote a nondecréasing integer sequence with $\tilde{K}_N/N \searrow 0$, $\tilde{K}_N/(\log N)^p \to 0$ for some p > 2 and $\tilde{K}_N/\log N \nearrow \infty$. Then, if

Received April 1984; revised December 1984.

AMS 1980 subject classifications. Primary 60F15; secondary 60F10, 60F17, 60G17, 60K05.

Key words and phrases. Increments of renewal processes, Erdös-Rényi strong laws, strong approximations, strong invariance principles, large deviations.

 $a_N > 0$ is the unique positive solution of the equation

$$\rho^{K_N}(\alpha_N K_N^{-1/2}) = K_N/N,$$

N sufficiently large, we have

(B)
$$\lim_{N\to\infty} \left(\max_{0\leq n\leq N-K_N} \frac{S_{n+K_N}-S_n}{K_N^{1/2}} - a_N \right) = 0 \quad a.s.$$

In addition,

$$a_N \sim (2\log(N/K_N))^{1/2} \sim (2\log N)^{1/2},$$

and, if $K_N/(\log N)^2 \to \infty$,

$$a_N - (2\log(N/K_N))^{1/2} = o(1).$$

Hence, assertion (B) is equivalent to the convergence rate statement

(B')
$$\left| \max_{0 \le N \le N - K_N} \frac{S_{n+K_N} - S_n}{a_N K_N^{1/2}} - 1 \right| = o\left(\frac{1}{(\log N)^{1/2}}\right) \quad \text{a.s.}$$

where the denominator $a_N K_N^{1/2}$ can be replaced by $(2K_N \log(N/K_N))^{1/2}$, if $K_N/(\log N)^2 \to \infty$.

In a recent paper, Deheuvels, Devroye, and Lynch (1986) were able to show that a better rate $O(K_N^{-1}\log K_N)$, $K_N=[\tilde{C}\log N]$, can be obtained in (A'), the latter being best possible. Their approach has been based on a large deviation theorem of Petrov (1965) and a more precise estimate of the dependencies between overlapping subintervals. An improved version of (B') seems to be unknown.

In what follows X_1, X_2, \ldots is a sequence of i.i.d. random variables satisfying

- (i) $EX_1 = \mu > 0$,
- (ii) $0 < \operatorname{var}(X_1) = \sigma^2 < \infty$,
- (iii) $E|X_1|^3 < \infty$,
- (iv) $\varphi(s) = E \exp(sX_1) < \infty$, $s_1 < s \le 0$ (for some $-\infty \le s_1 < 0$).

Put $I=\{\varphi'(s)/\varphi(s):\ s_1< s< 0\}$ and $\rho(1/a)=\inf\varphi(s)\exp(-s/a)$. Setting $S_0=0,\ S_n=X_1+\cdots+X_n,$ and $M_n=\max(S_0,S_1,\ldots,S_n),$ we consider the processes $\{N(t)\}_{t\geq 0}$ and $\{L(t)\}_{t\geq 0},$ where

$$N(t) = \max\{n \geq 0 \colon M_n \leq t\},\,$$

$$L(t) = \min\{n > 0 \colon S_n > t\}.$$

 $\{N(t)\}\$ was introduced by Heyde (1967) as a "generalized renewal process". For nonnegative X_i 's,

$$N(t) = \max\{n \geq 0 \colon S_n \leq t\},\,$$

and hence reduces to the "ordinary" number of renewals up to t under "failure-times" X_1, X_2, \ldots . Clearly, L(t) = N(t) + 1, and L(t) is known as the "first-passage time" (from [0, t]) of the random walk $\{S_n\}$.

In a joint work, Retka and Steinebach [see Retka (1982) and Steinebach (1984)] proved the following analogues of Theorems A and B for the "ordinary renewal process". Note that $X_i \ge 0$ implies (iv), with $s_1 = -\infty$, and $I = (\mu_1, \mu)$, where $\mu_1 = \operatorname{ess\,inf} X_1 \geq 0$:

THEOREM C. For $1/a \in I$ let C = C(a) be such that $\exp(-1/C) = \rho^a(1/a)$. Then

(C)
$$\lim_{T\to\infty}\left(\sup_{0\leq t\leq T-C\log T}\frac{N(t+C\log T)-N(t)}{\left(C\log T\right)^{1/2}}-\left(C\log T\right)^{1/2}a\right)=0\quad a.s.$$

Thus, (C) yields a convergence rate statement

$$\left(\mathrm{C'}\right) \quad \left|\sup_{0 \,\leq\, t \,\leq\, T \,-\, C\log T} \frac{N(t \,+\, C\log T\,) \,-\, N(t)}{C\log T} \,-\, a\right| = o\!\left(\frac{1}{\left(\log T\,\right)^{1/2}}\right) \quad \text{a.s.}$$

in the Erdös-Rényi law for the ordinary renewal process [see e.g., Steinebach (1979) for the latter result].

Moreover, for subintervals of larger size, the following holds:

THEOREM D. Suppose

(iv')
$$\hat{\varphi}(s) = E \exp\{-s(X_1 - \mu)/\sigma\} < \infty, |s| < s_0 (> 0),$$

put $\hat{\rho}(a) = \inf \hat{\varphi}(s) \exp(-sa)$, and let $\{K_T\}_{T>0}$ denote a nondecreasing positive function satisfying

- (v) K_T/T is nonincreasing,
- (vi) $K_T/\log T \nearrow \infty$, (vii) $K_T/(\log T)^p \to 0$ for some p > 2.

Then, if $a_T > 0$ is the unique positive solution of

(viii)
$$\hat{\rho}^{K^{1/2}d_T}(\mu a_T/\sigma d_T) = K/T$$
,

where $d_T = (K^{1/2}/\mu) + a_T$, $K = [K_{T}]$, T sufficiently large, we have

(D)
$$\lim_{T \to \infty} \left(\sup_{0 \le t \le T - K_T} \frac{N(t + K_T) - N(t) - K_T/\mu}{K_T^{1/2}} - a_T \right) = 0 \quad a.s.$$

REMARK 1. (a) Similarly to Csörgő and Steinebach (1981), Remark 2, setting $\hat{\psi}(s) = \log \hat{\varphi}(s), |s| < s_0, \text{ we have}$

$$\hat{\psi}(s) = s^2/2 + O(s^3), \qquad \hat{\psi}'(s) = s + O(s^2) \qquad (s \to 0),$$

and

$$-\log \hat{\rho}(a) = a^2/2 + O(a^3)$$
 $(a \to 0)$ by (iv').

(b) The definition of a_T differs from its counterpart in the partial sum case. However, for T fixed, differentiation w.r.t. a shows that the function

$$h(a) = K^{1/2}d(a)(-\log \hat{\rho}(b(a))),$$

where $d(a) = (K^{1/2}/\mu) + a$, $b(a) = \mu a/(\sigma d(a))$, is nonnegative and strictly convex. Since $-\log \hat{\rho}(0) = 0$, and $\log(T/K) \le h(a)$ for T sufficiently large, it is obvious that there is a unique positive solution a_T in (viii). Moreover,

$$b_T = b(a_T) \to 0 \qquad (T \to \infty).$$

(c) Using (viii) and Remarks 1(a) and 1(b), we further have

$$a_T \sim (2\sigma^2 \mu^{-3} \log(T/K))^{1/2} \qquad (T \to \infty),$$

and, if $K_T/(\log T)^2 \to \infty$,

$$a_T - (2\sigma^2 \mu^{-3} \log(T/K))^{1/2} = o(1) \qquad (T \to \infty).$$

By conditions (v)–(vii), $K = [K_{T}]$ can even be replaced by K_T . Hence, assertion (D) is equivalent to

$$(\mathbf{D}') \quad \left| \sup_{0 \le t \le T - K_T} \frac{N(t + K_T) - N(t) - K_T/\mu}{a_T K_T^{1/2}} - 1 \right| = o \left(\frac{1}{(\log T)^{1/2}} \right) \quad \text{a.s.,}$$

yielding a convergence rate statement in an "extended version" of the Erdös-Rényi law for the ordinary renewal process [see e.g., Steinebach (1979)]. Unfortunately, the methods could not directly be applied to generalized renewal processes. However, partially following the lines of Deheuvels, Devroye, and Lynch (1986), we are now in a position to

- (a) extend Theorems C and D to generalized renewal processes or first-passage times resp., and, moreover,
- (b) replace the rate $o((\log T)^{-1/2})$ in (C') by the possibly best rate

$$O((\log T)^{-1}\log\log T).$$

2. Results. Consider the processes $\{N(t)\}, \{L(t)\}$ as defined above, based upon an i.i.d. sequence X_1, X_2, \ldots satisfying conditions (i)–(iv). For 0 < K < T, set

$$D(T, K) = \sup_{0 \le t \le T - K} (N(t + K) - N(t)) = \sup_{0 \le t \le T - K} (L(t + K) - L(t)).$$

Then Theorems C and D can be extended as follows:

THEOREM 1. For $0 < 1/a < \mu$, with $1/a \in I$, let C = C(a) be such that $\exp(-1/C) = \rho^a(1/a)$. Then,

$$\left| \frac{D(T, C \log T)}{C \log T} - a \right| = O\left(\frac{\log \log T}{\log T} \right) \quad a.s.$$

Theorem 2. The assertions of Theorem D can be extended to generalized renewal processes, i.e.,

(2)
$$\left| \frac{D(T, K_T) - K_T/\mu}{a_T K_T^{1/2}} - 1 \right| = o \left(\frac{1}{(\log T)^{1/2}} \right),$$

and the denominator $a_T K_T^{1/2}$ can be replaced by $(2\sigma^2 \mu^{-3} K_T \log(T/K_T))^{1/2}$, if $K_T/(\log T)^2 \to \infty$.

The proof of Theorem 1 is based upon

LEMMA 1. Under the assumptions of Theorem 1 let s_a be such that $1/a = \phi'(s_a)/\phi(s_a)$. Then, for any $\varepsilon > 0$, c_0, c_1, c_2, c_3 fixed, there exist constants $A_0, B_0 > 0$ such that, for K sufficiently large,

(3)
$$P(N(K+c_0) \ge Ka + (\frac{1}{2} + \varepsilon)a \log K/s_a + c_1) \le A_0 \rho^{Ka} (1/a) K^{-(1+\varepsilon)},$$

(4)
$$P(N(K+c_2) \ge Ka - (\frac{5}{2} + \varepsilon)a \log K/s_a + c_3) \ge B_0 \rho^{Ka} (1/a) K^{1+\varepsilon}$$
.

The proof of Theorem 2 makes use of

LEMMA 2. Under the assumptions of Theorem 2, for any $\varepsilon > 0$, c_0 , c_1 , c_2 , c_3 fixed, there exist constants A_0 , A_1 , B_0 , $B_1 > 0$ such that, for T sufficiently large,

$$(5) P(N(K+c_0) \ge K/\mu + K^{1/2}(a_T+\varepsilon) + c_1) \le A_0 \hat{\rho}^{K^{1/2}d_T}(b_T)e^{-A_1a_T},$$

(6)
$$P(N(K+c_2) \ge K/\mu + K^{1/2}(a_T-\varepsilon) + c_3) \ge B_0 K^{-1} \hat{\rho}^{K^{1/2}d_T}(b_T) e^{B_1 a_T},$$

where $K = [K_{T1}], d_T = (K^{1/2}/\mu) + a_T, b_T = \mu a_T/(\sigma d_T).$

3. Proofs. To prove Lemmas 1 and 2, we further need the following corollaries to results of Petrov (1965) and Pollaczek (1952) [see Deheuvels, Devroye, and Lynch (1986)]:

LEMMA 3. With the notation of Theorem 1, let $\{y_n\}$ be a real sequence satisfying $ny_n^2 \to 0$ as $n \to \infty$. Then, uniformly over all sequences $\{z_n\}$ with $|z_n| \le |y_n|$, we have

(7)
$$P(S_n \le n(1/a + z_n)) \sim C_0 n^{-1/2} \rho^n(1/a) e^{nz_n s_a},$$
 where $C_0 > 0$ depends on the distribution of X_1 .

LEMMA 4. For the partial sums $S_n = X_1 + \cdots + X_n$ of an i.i.d. sequence, we have

(8)
$$\frac{1}{n}P(S_n \le 0) \le P(S_1 \le 0, \dots, S_n \le 0) \le P(S_n \le 0).$$

Let us now turn to the

PROOF OF LEMMA 1. (a) Put $n_K = [Ka + (\frac{1}{2} + \epsilon)a \log K/s_a + c_1]$. Then, using Lemma 3,

$$\begin{split} P\big(N(K+c_0) &\geq Ka + \left(\frac{1}{2} + \varepsilon\right)a\log K/s_a + c_1\big) \\ &\leq P\big(S_{n_K} \leq K + c_0\big) = P\big(S_{n_K} \leq n_K(1/a + z_K)\big) \\ &\sim C_0 n_K^{-1/2} \rho^{n_K} (1/a) e^{n_K z_K s_a}, \end{split}$$

where $z_K = (K + c_0)/n_K - 1/a \sim -(\frac{1}{2} + \varepsilon)\log K/(Kas_a)$. Hence $n_K z_K^2 = O(K^{-1}(\log K)^2) \to 0$, and $n_K z_K \sim -(\frac{1}{2} + \varepsilon)\log K/s_a$, which implies (3).

(b) Put $m_K = [Ka - (\frac{5}{2} + \varepsilon)a \log K/s_a + c_3 + 1]$. Then, by Lemmas 3 and 4, for $m_K \ge 1$,

$$\begin{split} &P\big(N(K+c_2)\geq Ka-\big(\tfrac{5}{2}+\varepsilon\big)a\log K/s_a+c_3\big)\\ &\geq P\big(S_1\leq K+c_3,\ldots,S_{m_K}\leq K+c_3\big)\\ &\geq P\bigg(S_1\leq \frac{K+c_3}{m_K},\ldots,S_{m_K}\leq m_K\frac{K+c_3}{m_K}\bigg)\\ &\geq \frac{1}{m_K}P\big(S_{m_K}\leq K+c_3\big)\sim C_0m_K^{-3/2}\rho^{m_K}(1/a)e^{m_K\tilde{z}_Ks_a}, \end{split}$$

where $\tilde{z}_K \sim (\frac{5}{2} + \varepsilon) \log K / (Kas_a)$. This implies (4). \square

Proof of Theorem 1. Setting $K_T = C \log T$, we prove

(9)
$$\limsup_{T \to \infty} \frac{K_T}{\log K_T} \left(\frac{D(T, K_T)}{K_T} - a \right) \le \frac{a}{2s_a} \quad \text{a.s.,}$$

$$\liminf_{T \to \infty} \frac{K_T}{\log K_T} \left(\frac{D(T, K_T)}{K_T} - a \right) \ge -\frac{5a}{2s_a} \quad \text{a.s.}$$

(a) Set $T_j = \sup\{T: K_T \le j\}$. Then, for $T_{j-1} < T \le T_j$, we have $j-1 < K_T \le j$ and $\exp(j-1)/C < T \le \exp(j/C)$. Following the lines in Steinebach (1981), we further estimate

$$\begin{split} \frac{D(T, K_T)}{\log K_T} &= \sup_{0 \le t \le T - K_T} \left(\frac{N(t + K_T) - N(t)}{\log K_T} \right) \\ &\le \sup_{0 \le t \le T_j - 1} \left(\frac{N([t] + j + 1) - N([t])}{\log K_{T_{j-1}}} \right) = \frac{D_1(T_j, j)}{\log K_{T_{j+1}}}, \end{split}$$

and, by Lemma 1 and our choice of $C = C(\alpha)$, for $\epsilon > 0$,

$$\begin{split} P\Big(D_1(T_j, j) &\geq K_{T_{j-1}}a + \left(\frac{1}{2} + \varepsilon\right)a\log K_{T_{j-1}}/s_a\Big) \\ &\leq T_j P\Big(N(j+1) \geq (j-2)a + \left(\frac{1}{2} + \varepsilon\right)a\log(j-2)/s_a\Big) \\ &\leq A_0 T_j \rho^{ja} (1/a) j^{-(1+\varepsilon)} \leq A_0 j^{-(1+\varepsilon)}. \end{split}$$

Hence, the Borel-Cantelli lemma yields

$$\limsup_{j\to\infty} \frac{K_{T_{j-1}}}{\log K_{T_{j-1}}} \left(\frac{D_1(T_j, j)}{K_{T_{j-1}}} - a \right) \leq \left(\frac{1}{2} + \varepsilon \right) a/s_a \quad \text{a.s.}$$

Since, for $T_{j-1} < T \le T_j$ and j sufficiently large

$$\frac{D(T, K_T)}{\log K_T} - \frac{K_T a}{\log K_T} \le \frac{D_1(T_j, j)}{\log K_{T_{i-1}}} - \frac{K_{T_{j-1}} a}{\log K_{T_{i-1}}},$$

assertion (9) is proved.

(b) To prove (10), we first estimate, for T sufficiently large and with $K = [K_{\lceil T \rceil}]$,

$$D(T, K_T) \ge \sup_{0 \le t \le \lceil T \rceil - (K+2)} (N(t+K) - N(t)) = D_0([T], K)$$

and

$$\frac{D(T,\,K_T)}{\log K_T} - \frac{K_T a}{\log K_T} \geq \left(\frac{\log K}{\log K_T}\right) \left(\frac{D_0([T\,],\,K\,)}{\log K} - \frac{Ka}{\log K}\right) + a\frac{K - K_T}{\log K_T}.$$

Since $K/K_T \to 1$, $(K - K_T)/\log K_T \to 0$ $(T \to \infty)$, it suffices to prove

$$\liminf_{n\to\infty} \left(\frac{D_0(n,K)}{\log K} - \frac{Ka}{\log K} \right) \ge -\frac{5a}{2s_a} \quad \text{a.s.}$$

for integer n. By the method of random renewal epochs, as used in Steinebach (1981), Section 4, it is then enough to show

$$(11) P\Big(\max_{i=0,\ldots,M(n)} \left(N(t_i+K)-N(t_i)\right) \leq Ka - \left(\frac{5}{2}+\varepsilon\right)a\log K/s_a \text{ i.o.}\Big) = 0,$$

where $M(n) = \max\{i \geq 0: \ t_i + K + 2 \leq n\}$, $t_i = t_{i,\,n}$ as defined in Steinebach (1981), Lemma 5. Let n_j denote the smallest integer n with $K = [K_n] = j$. Then, for $n_j \leq n < n_{j+1}$, $[K_n] = j$ and $M(n) \geq M(n_j)$. Hence it is enough to prove (11) for the subsequence $\{n_j\}$. In the vein of Steinebach (1981), Section 4, we estimate, setting $i_n = [\delta n/K]$, $0 < \delta < 1$,

$$\begin{split} P\Big(\max_{i=0,...,M(n)} \left(N(t_i+K)-N(t_i)\right) &\leq K\alpha - \left(\frac{5}{2}+\varepsilon\right)\alpha\log K/s_a\Big) \\ &\leq P\Big(\max_{i=0,...,i_n} \left(N(t_i+K)-N(t_i)\right) \leq K\alpha - \left(\frac{5}{2}+\varepsilon\right)\alpha\log K/s_a\Big) \\ &+ P\big(M(n) < i_n\big). \end{split}$$

Using Lemma 1, the first probability in the last line can be bounded by

$$\exp\{-\tilde{B}_0\rho^{Ka}(1/a)K^{1+\epsilon}n/K\} \leq \exp\{-\tilde{B}_0K^{\epsilon}\},\,$$

for some $\tilde{B}_0 > 0$, remembering $\rho^{Ka}(1/a) \ge 1/n$, $K = [K_n]$. For $n = n_j$, this is summable in j, since K = j. By Lemma 5 in Steinebach (1981), we have $\sum P(M(n) < i_n) < \infty$, thus also for the subseries $n = n_j$. Now use of the Borel–Cantelli lemma completes the proof. \square

The proofs of Lemma 2 and Theorem 2 are slightly different.

PROOF OF LEMMA 2. (a) Let s_T be such that $b_T = \hat{\varphi}'(s_T)$, hence $\hat{\rho}(b_T) = \hat{\varphi}(s_T) \exp(-s_T b_T)$. Put $n_T = [K/\mu + K^{1/2}(a_T + \epsilon) + c_1]$. Then,

$$\begin{split} P\big(\,N(\,K\,+\,c_0^{})\, \geq \,K/\mu + \,K^{\,1/2}\big(\,a_T^{} + \,\varepsilon\,\big) \,+\,c_1^{}\big) \, \leq \,P\big(\,S_{n_T}^{} \leq K\,+\,c_0^{}\big) \\ & \leq \,P\bigg(-\,\frac{S_{n_T}^{} - \,n_T^{}\mu}{\sigma} \geq \,K^{\,1/2}\frac{\mu(\,a_T^{} + \,\varepsilon\,)}{\sigma} \,+\,c_0^{}\bigg) \\ & \leq \,\hat{\varphi}^{n_T}(\,s_T^{}) \exp\!\left(\,-\,s_T^{}\big(\,K^{\,1/2}d_T^{}b_T^{} + \,K^{\,1/2}\tilde{\varepsilon}\,+\,\tilde{c}_0^{}\big)\right) \\ & \leq \,\hat{\varphi}^{K^{\,1/2}d_T^{}}(\,b_T^{}) \exp\!\left(\,s_T^{}b_T^{}\big(\,n_T^{} - \,K^{\,1/2}d_T^{}\big) \,-\,K^{\,1/2}s_T^{}\tilde{\varepsilon}\,-\,\tilde{c}_0^{}s_T^{}\big). \end{split}$$

Since $s_T \sim b_T \rightarrow 0$, $n_T - K^{1/2} d_T \sim K^{1/2} \epsilon$, $K^{1/2} s_T \sim K^{1/2} b_T \sim \mu^2 a_T / \sigma = o(K^{1/2})$, this proves (5).

(b) Put $m_T = [K/\mu + K^{1/2}(a_T - \epsilon) + c_3 + 1]$. Then, taking s_T as defined in (a),

$$\begin{split} &P\big(N(K+c_2) \geq K/\mu + K^{1/2}(a_T-\varepsilon) + c_3\big) \\ &\geq \frac{1}{m_T} P\big(S_{m_T} \leq K + c_3\big) \\ &\geq \frac{1}{m_T} P\Big(-\frac{S_{m_T} - m_T \mu}{\sigma} \geq K^{1/2} \frac{\mu(a_T-\varepsilon)}{\sigma} + \tilde{c}_2\Big). \end{split}$$

Using associated probability measures $\hat{P}_{s,T}$, defined by

$$\hat{P}_{s,T}(A) = \int_A \exp(s\hat{S}_{m_T})/\hat{\varphi}^{m_T}(s) dP,$$

where $\hat{S}_{m_T} = -(S_{m_T} - m_T \mu)/\sigma$, we have

$$\begin{split} P \bigg(\hat{S}_{m_T} - m_T b_T &\geq K^{1/2} \frac{\mu(a_T - \varepsilon)}{\sigma} - m_T b_T + \tilde{c}_2 \bigg) \\ &= P \Big(\hat{S}_{m_T} - m_T b_T &\geq \left(K^{1/2} d_T - m_T \right) b_T - K^{1/2} \tilde{\epsilon} + \tilde{c}_2 \Big) \\ &\geq \hat{\rho}^{m_T} (b_T) \mathrm{exp} \Big(K^{1/2} s_T \tilde{\epsilon} / 2 \Big) \hat{P}_{s_T, T} \bigg(-\frac{3\tilde{\epsilon}}{4} &\leq \frac{\hat{S}_{m_T} - m_T b_T}{K^{1/2}} \leq -\frac{\tilde{\epsilon}}{2} \bigg). \end{split}$$

For the last inequality, note $K^{1/2}d_T-m_T\sim K^{1/2}\varepsilon$ and $b_T\to 0$. Taylor series expansion of the cumulant generating function shows that $(\hat{S}_{m_T}-m_Tb_T)/K^{1/2}$ is asymptotically normal under $\hat{P}_{s_T,T},\ T\to \infty$. Since, for large $T,\ m_T\leq d_T,\ m_T\sim K/\mu$, and $K^{1/2}s_T\sim \mu^2a_T/\sigma$, this completes the proof of (6). \square

PROOF OF THEOREM 2. (a) Set $T_j = \sup\{T: K = [K_{[T]}] = j\}$. Using the same notations as in the proof of Theorem 1, for $T_{j-1} < T \le T_j$, we have $[K_{[T]}] = j$ and

$$\frac{D(T,K_T)-K_T/\mu}{K_T^{1/2}}-a_T \leq \frac{D_1(T_j,j)-j/\mu}{j^{1/2}}-a_{T_j}+(a_{T_j}-a_T).$$

Hence, for the lim sup-part, we prove, for $\varepsilon > 0$,

(12)
$$\limsup_{j \to \infty} \left(\frac{D_1(T_j, j) - j/\mu}{j^{1/2}} - \alpha_{T_j} \right) \le \varepsilon \quad \text{a.s.},$$

(13)
$$\lim_{j \to \infty} \sup \{ a_{T_j} - a_T \colon T_{j-1} < T \le T_j \} = 0.$$

Assertion (12) is a consequence of Lemma 2 and the choice of a_T , since

$$P\!\!\left(D_1\!\!\left(T_j,\,j\right) \geq j/\mu + j^{1/2}\!\!\left(a_{T_j} + \varepsilon\right)\right) \leq A_0 T_j\!\!\left(j/T_j\right) \! \exp\!\left(-A_1 a_{T_j}\right).$$

Similar to Csörgő and Steinebach (1981), we estimate by (vi) and (vii),

$$A_1 a_{T_i} \ge \log(K_{T_i}^3) = \log(j^3).$$

Hence, assertion (11) follows by using the Borel-Cantelli lemma. Moreover, similar to the partial sum case, for $T_{i-1} < T \le T_i$, we have

$$0 \leq a_{T_j} - a_T = O\left(\frac{\log T_j}{j}\right),\,$$

the latter expression tending to zero by assumption (vi). Assertions (12) and (13) yield

$$\limsup_{T \to \infty} \left(\frac{D(T, K_T) - K_T/\mu}{K_T^{1/2}} - \alpha_T \right) \le 0 \quad \text{a.s.}$$

(b) The proof of

$$\liminf_{T \to \infty} \left(\frac{D(T, K_T) - K_T/\mu}{K_T^{1/2}} - \alpha_T \right) \ge 0 \quad \text{a.s.}$$

follows in a similar vein as part (b) of Theorem 1. We estimate, for large T,

$$\begin{split} \frac{D(T,K_T)-K_{T}/\mu}{K_T^{1/2}}-a_T &\geq \left(\frac{K}{K_T}\right)^{1/2} \left(\frac{D_0([T],K)-K/\mu}{K^{1/2}}-a_{[T]}\right) \\ &+ \frac{K-K_T}{\mu K_T^{1/2}} + \frac{K^{1/2}a_{[T]}-K_T^{1/2}a_T}{K_T^{1/2}}, \end{split}$$

 $K=[K_{[T]}].$ Assumption (v) yields $K-K_T\to 0$ $(T\to \infty)$, and hence also $(K/K_T)^{1/2}\to 1$. Moreover, similar to part (a)

$$K^{1/2}a_{\lceil T \rceil} - K_T^{1/2}a_T = O((\log T)/K_T^{1/2}).$$

Hence it suffices to prove, for integer n,

(14)
$$\liminf_{n\to\infty} \left(\frac{D_0(n,K)}{K^{1/2}} - a_n \right) \ge -\varepsilon \quad \text{a.s.},$$

 $K = [K_n]$. Again using random renewal epochs t_i as in part (b) of Theorem 1, we

obtain by Lemma 2 and our choice of a_n

$$\begin{split} P\Big(\max_{i=0,\ldots,\,i_n} \left(N(t_i+K)-N(t_i)\right) &\leq K/\mu + K^{1/2}(a_n-\varepsilon)\Big) \\ &\leq \exp\Big(-\tilde{B}_0K^{-2}e^{B_1a_n}\Big) = O\bigg(\frac{1}{n^2}\bigg), \end{split}$$

 $\tilde{B}_0 > 0$, $i_n = [\delta_1 n/K]$, since $a_n \sim (2\sigma^2 \mu^{-3} \log(n/K))^{1/2}$, and $K_n^2/\alpha_n^{4p} = o(1)$. Thus, the Borel-Cantelli lemma yields (14), which completes the proof. \Box

4. Strong invariance principles. Theorems A, C, and 1 give strong noninvariance principles, since the functional dependence C=C(a), given there, uniquely determines the underlying distribution via its moment-generating function [see Erdös and Rényi (1970) and Steinebach (1981)]. On the other hand, Theorems B, D, and 2 give strong invariance principles, if $K_N(K_T)$ is such that $K_N/(\log N)^2$ resp. $K_T/(\log T)^2$ tends to infinity. For smaller $K_N(K_T)$, the latter theorems treat an indefinite range between strong invariance and noninvariance, since (via ρ) $a_N(a_T)$ may depend upon a number of cumulants of the distribution.

Now, suppose the underlying probability space (Ω, \mathcal{A}, P) to be rich enough that the Kómlos-Major-Tusnády (1976) strong approximation holds, i.e., one can define a standard Wiener process $\{W(t)\}_{t>0}$ on it such that

(15)
$$\sup_{0 < t < T} \left| \frac{S_{[t]} - [t]\mu}{\sigma} - W(t) \right| = O(\log T) \quad \text{a.s.,}$$

where again $S_{[t]}$ denotes the [t]th partial sum of an i.i.d. sequence X_1, X_2, \ldots satisfying conditions (i), (ii), and (iv'). Assertion (15) is a slightly extended version [see Csörgő and Révész (1981)] of the following original form:

(16)
$$\max_{1 \le k \le n} |S_k - T_k| = O(\log n) \quad \text{a.s.},$$

where T_k denotes the kth partial sum of an i.i.d. sequence Y_1, Y_2, \ldots of normal rv's with same mean μ and variance σ^2 .

For $K_N/(\log N)^2 \to \infty$, an extension of Theorem B has been derived by Csörgő and Steinebach (1981), using (15) and corresponding results for the Wiener process. In a similar vein, an extension of Theorems D and 2 would be desirable for $K_T/(\log T)^2 \to \infty$. But, using (15), one only gets the following approximation:

THEOREM 3. Under the aforementioned assumptions,

(17)
$$\sup_{0 \le t \le T} \left| \frac{N(t) - t/\mu}{\sigma/\mu^{3/2}} - W(t) \right| = O((T \log \log T)^{1/4} (\log T)^{1/2}) \quad a.s.$$

OUTLINE OF PROOF. Assertion (17) can easily be derived by decomposing as follows:

$$egin{split} rac{N(t)-t/\mu}{\sigma/\mu^{3/2}}-W(t) &= \left(rac{N(t)-S_{N(t)}/\mu}{\sigma/\mu^{3/2}}-\mu^{1/2}W(N(t))
ight) \ &-\left(rac{S_{N(t)}-t}{\sigma/\mu^{1/2}}
ight)+\mu^{1/2}(W(N(t))-W(t/\mu)). \end{split}$$

Using (15) and the strong law of large numbers for $\{N(t)\}_{t\geq 0}$, the first summand can be shown to be of order $O(\log T)$ a.s. uniformly in $0 \leq t \leq T$. Since $\varphi(s) = E \exp(sX_1) < \infty$, $|s| < s_1$, by direct estimates

$$\max(X_1, \dots, X_n) = O(\log N) \quad \text{a.s.,}$$

which further implies

$$\sup_{0 \le t \le T} \left| \frac{S_{N(t)} - t}{\sigma/\mu^{1/2}} \right| \le \sup_{0 \le t \le T} \left| \frac{X_{N(t)+1}}{\sigma/\mu^{1/2}} \right| = O(\log T) \quad \text{a.s.,}$$

again using the SLLN for $\{N(t)\}_{t\geq 0}$. However, in view of the law of iterated logarithm for $\{N(t)\}_{t\geq 0}$ and the results of Csörgö and Révész (1979),

$$\sup_{0 \le t \le T} \mu^{1/2} \left| W(N(t)) - W\left(\frac{t}{\mu}\right) \right| = O\left(\left(T \log \log T\right)^{1/4} (\log T)^{1/2}\right) \quad \text{a.s.,}$$

which cannot be improved.

In view of Theorem 3 and the final remark in the proof, an extension of Theorems D and 2 via strong approximations can only be stated for "very large increments", i.e., $K_T/(T\log\log T)^{1/2}\log T\to\infty$. Such an approach has recently been given by Horváth (1984).

It is clear, however, that a strong invariance principle must hold for all K_T with $K_T/(\log T)^2 \to \infty$. For further considerations, the following lemma should be helpful:

Lemma 5. Suppose the underlying probability space to be rich enough that (16) holds. For $t \ge 0$ set

$$M(t) := \max\{n \geq 0: T_1, \ldots, T_n \leq t\}.$$

Then, we have

(18)
$$\sup_{0 \le t \le T} |N(t) - M(t)| = O(\log T) \quad a.s.$$

PROOF. To prove (18) we combine the K-M-T strong approximation (16),

the SLLN for $\{N(t)\}$ and $\{M(t)\}$ and a version of the Erdös–Rényi strong law for $\{M(t)\}$, i.e., for each C > 0,

(19)
$$\lim_{T \to \infty} \sup_{0 \le t \le T} \frac{M(t + C \log T) - M(t)}{C \log T} = a(C) \quad \text{a.s.,}$$

[see e.g., Theorem 1, for $\varphi(s) = \exp(s\mu + s^2\sigma^2/2)$]. Suppose

(20)
$$\max_{1 \le k \le N} |S_k - T_k| \le C_0 \log N \quad \forall \ N \ge N_0(\omega), \qquad C_0 > 0,$$

(21)
$$\delta_0 T \leq N(T) \leq \delta_1 T \quad \forall \ T \geq T_0(\omega), \qquad \delta_0 < \frac{1}{\mu} < \delta_1.$$

Let $N(t) = k \le N(T)$, i.e., $S_1, \ldots, S_k \le t$, $S_{k+1} > t$. If $\delta_0 T_0 \ge N_0$, in view of (20) and (21),

$$T_1, \ldots, T_k \leq t + C_0 \log N(T) \leq t + C_0 \log(\delta_1 T),$$

and

$$T_{k+1} > t - C_0 \log(N(T) + 1) \ge t - C_0 \log(\delta_1 T + 1).$$

Moreover, if T_0 is such that $C_0\log(\delta_1T+1)\leq 2C_0\log T$, for all $T\geq T_0$ we obtain

$$M(t+2C_0\log T)\geq k=N(t),$$

$$M(t-2C_0\log T)\leq k=N(t).$$

Hence, setting $C = 2C_0$, for $T \ge T_0$,

$$\sup_{0 \le t \le T} \frac{|N(t) - M(t)|}{\log T}$$

$$\leq \sup_{0 \leq t \leq C \log T} \frac{\left| N(t) - M(t) \right|}{\log T} + \sup_{0 \leq t \leq T} \frac{M(t + C \log T) - M(t)}{\log T}.$$

By (19) and the SLLN for $\{N(t)\}\$ and $\{M(t)\}\$, this completes the proof.

REFERENCES

Csörgő, M. and Révész, P. (1979). How big are the increments of a Wiener process? *Ann. Probab.* 7 731–737.

Csörgő, M. and Révész, P. (1981). Strong Approximations in Probability and Statistics. Academic, New York.

Csörgő, M. and Steinebach, J. (1981). Improved Erdös-Rényi and strong approximation laws for increments of partial sums. *Ann. Probab.* **9** 988-996.

Deheuvels, P., Devroye, L. and Lynch, J. (1986). Exact convergence rate in the limit theorems of Erdös-Rényi and Shepp. *Ann. Probab.* 14 209–223.

ERDÖS, P. and RÉNYI (1970). On a new law of large numbers. J. Analyse Math. 23 103-111.

HEYDE, C. C. (1967). Asymptotic renewal results for a natural generalization of classical renewal theory. J. Roy. Statist. Soc. Ser. B 29 141-150.

Horváth, L. (1984). Strong approximation of renewal processes. Stochastic Process. Appl. 18 127-138.

Kómlos, J., Major, P. and Tusnády, G. (1976). An approximation of partial sums of independent r.v.'s, and the sample d.f. II. Z. Wahrsch. verw. Gebiete 34 33-58.

Petrov, V. V. (1965). On the probabilities of large deviations of sums of independent random variables. *Theory Probab. Appl.* **10** 287–298.

- POLLACZEK, K. (1952). Fonctions caractéristiques de certaines répartitions définies au moyen de la notion d'ordre. C. R. Acad. Sci. Paris Ser. A-B 234 2334-2336.
- Retka, M. (1982). Gesetze vom Erdös-Rényi-Typ bei Erneuerungsprozessen. Diplomarbeit, University of Marburg.
- RÉVÉSZ, P. (1980). How to characterize the asymptotic properties of a stochastic process by four classes of deterministic curves? *Carleton Math. Ser.* **164** 34 pages.
- RÉVÉSZ. P. (1982). On the increments of Wiener and related processes. Ann. Probab. 10 613-622.
- STEINEBACH, J. (1978). A strong law of Erdös-Rényi type for cumulative processes in renewal theory. J. Appl. Probab. 15 96-111.
- Steinebach, J. (1979). Erdös-Rényi-Zuwächse bei Erneuerungsprozessen und Partialsummen auf Gittern. Habilitationsschrift, University of Düsseldorf.
- STEINEBACH, J. (1981). The stochastic geyser problem for first-passage times. J. Appl. Probab. 18 91-103.
- STEINEBACH, J. (1984). Between invariance principles and Erdös-Rényi laws. Colloq. Math. Soc. János Bolyai 36. Limit Theorems in Probability and Statistics, Veszprém, Hungary.

FACHBEREICH MATHEMATIK
PHILIPPS-UNIVERSITÄT
LAHNBERGE
D-3550 MARBURG / LAHN
FEDERAL REPUBLIC OF GERMANY