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IMPROVED ERDOS-RENYI AND STRONG APPROXIMATION
LAWS FOR INCREMENTS OF RENEWAL PROCESSES

By J. STEINEBACH

University of Marburg

Let X,, X,,... be an i.i.d. sequence with EX;, = p > 0, var(X;) = ¢ > 0,
E exp(sX;) < o, |s| < s;, and partial sums §, =0, S, = X; + --- +X,,. For
t >0, put N(¢) = max{n > 0: S;,..., S, < t},ie, L(t) = N(¢) + 1 denotes
the first-passage time of the random walk {S, }. Starting from some analogous
results for the partial sum sequence, this paper studies the almost sure
limiting behaviour of supy.,.7_ g (N(¢ + K7) — N(¢)) as T — oo, under
various conditions on the real function K. Improvements of the Erdés-Rényi
strong law for renewal processes (resp. first-passage times) are obtained as
well as strong invariance principle type versions. An indefinite range between
strong invariance and strong noninvariance is also treated.

1. Introduction. Consider a sequence X, X,,... of ii.d. random variables
satisfying EX, = 0, EX? = 1, and §(¢) = E exp(tX;) < oo for [¢| < ¢,(> 0). Set
I={@t)/p(t): t€ (0,¢t)} and p(a) = inf §(¢t)exp(—ta). Stimulated by
Révész’s (1980, 1982) improved strong approximations for the increments of a
standard Wiener process {W(¢)},. ,, Csorgd and Steinebach (1981) obtained the
following results for the increments of the partial sums S, =X, + --- +X,,
n=12...,5 =0

THEOREM A. For a € I, let C = C(a) be the solution of exp(—l/é) = p(a).
Then,

Sn C lo - Sn ~
(A)  lim max +..[Clg—N]1/2 ~[ClogN]"?a=0 a.s.
N-ow 0<n<N-[ClogN] [Clog N]

Assertion (A), rewritten in the form

Sn+[()logN] - Sn 1
A —s————a|=0| ——— ] a.s,
(&) 05n51{'n—a[)((§10g1v] [Clog N] [Clog N]?

yields a convergence rate statement in the original Erdés and Rényi (1970) law of
large numbers dealing with maximum increments of the partial sums sequence
over subintervals of size K, = [C log N].

Moreover, for larger K ,, i.e.,, K, /log N - 0, it holds:

_ THEOREM B. Let K, = [K y] denote a nondecréasing integer sequence with
Ky/NNO, Ky/(log N)? - 0 for some p > 2 and Ky/log N # 0. Then, if
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ay > 0 is the unique positive solution of the equation
p“*(ayKy'?) = Ky/N,
N sufficiently large, we have

. Sn+ Ky Sn
(B) lim max

—ay| =0 a.s.
Noo |0<nsN-ky  Kji?

In addition,
ay ~ (2log(N/Ky))"”* ~ (2log N)'”,
and, if Ky/(log N)? - oo,
ay — (2 log(N/KN))l/Z =o(1).

Hence, assertion (B) is equivalent to the convergence rate statement

S, k.~ S, 1
(B) max Mgl —| as.
(log N)"/

0<n<N-Ky ayK?
where the denominator ayK,/? can be replaced by (2K ylog(N/K y))/?, if
K,/(log N)? > .

In a recent paper, Deheuvels, Devroye, and Lynch (1986) were able to show
that a better rate O(K y'log K y), Ky = [C log N1, can be obtained in (A), the
latter being best possible. Their approach has been based on a large deviation
theorem of Petrov (1965) and a more precise estimate of the dependencies
between overlapping subintervals. An improved version of (B’) seems to be

unknown.
In what follows X, X,,... is a sequence of i.i.d. random variables satisfying

(i) EX, =p >0,
(i) 0 < var(X,) = 0% < oo,
(iii) E|X,J* < oo,
(iv) @(s) = Eexp(sX,) < o0, s; <s < 0 (for some — o0 < s, < 0).

Put 1= {¢/(s)/9(s): s, <s <0} and p(1/a) = inf p(s)exp(—s/a). Setting
$ =0, S,=X,+---+X,, and M, =max(S,,S,,...,S,), we consider the
processes { N(t)},., and {L(t)},. o, where

N(t) = max{n > 0: M, < t},

L(t) = min{n > 0: S, > t}.
{N(t)} was introduced by Heyde (1967) as a “generalized renewal process”. For
nonnegative X;’s,

N(t) = max{n >0: S, < ¢},

and hence reduces to the “ordinary” number of renewals up to ¢ under “failure-
times” X, X,,.... Clearly, L(¢) = N(t) + 1, and L(¢) is known as the “first-
passage time” (from [0, ¢]) of the random walk {S,}.
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In a joint work, Retka and Steinebach [see Retka (1982) and Steinebach
(1984)] proved the following analogues of Theorems A and B for the “ordinary
renewal process”. Note that X; > 0 implies (iv), with s, = — o0, and I = (p,, p),
where p, = essinf X, > 0:

THEOREM C. For1/a € Ilet C = C(a) be such that exp(—1/C) = p*(1/a).
Then .

©) lim( sup N(t+ ClogT) - N(t)

(ClogT)?a|=0 a.s.
T>x\0<t<T-ClogT (ClogT)"”?

Thus, (C) yields a convergence rate statement

N(t+ ClogT) — N(¢t) 1 )
sup —a|=0| ———5 S

0<t<T-ClogT ClogT (log T)"?

in the Erdos—Rényi law for the ordinary renewal process [see e.g., Steinebach

(1979) for the latter result].
Moreover, for subintervals of larger size, the following holds:

(c)

THEOREM D. Suppose
(iv’) ¢(s) = Eexp{—s(X, — p)/0} < o0, |s| <50 (> 0),

put p(a) = inf §(s)exp(—sa), and let {K ;}r. o denote a nondecreasing positive
function satisfying

(v) K;/T is nonincreasing,
(Vl) KT/logT /' 0,
(vil) K;/(log T)? - 0 for some p > 2.

Then, if ap > 0 is the unique positive solution of

(viii) p¥*9(par/ody) = K/T,

where dp = (K'?/u) + ar, K = [K 1], T sufficiently large, we have
N(t+ K;) — N(t) - K

(D) lim sup ( ) (2) 7/t _

1/2
T\ 0<t<T-Kyp KT/

ap| =0 a.s.

_ REMARK 1. (a) Similarly to Cs6rg6 and Steinebach (1981), Remark 2, setting
Y(s) = log §(s), |s| < sy, we have

P(s) =s*2+0(s°), ¥(s)=s+0(s?) (50,
and :
—logp(a) = a2/2 +0(a®) (a—0) by(iv).

" (b) The definition of ar differs from its counterpart in the partial sum case.
However, for T fixed, differentiation w.r.t. a shows that the function

h(a) = K'%d(a)(~log p(b(a))),
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where d(a) = (K'%/p) + a, b(a) = pa/(od(a)), is nonnegative and strictly
convex. Since —log 5(0) = 0, and log(T/K ) < h(a) for T sufficiently large, it is
obvious that there is a unique positive solution a; in (viii). Moreover,

br=0b(ay) >0 (T- »).
(c) Using (viii) and Remarks 1(a) and 1(b), we further have
ar~ (202 *log(T/K))""* (T - ),
and, if K;/(logT)? - oo, ‘
ap — (202;L‘3log(T/I('))1/2 =o(1) (T- x).

By conditions (v)—(vii), K = [K(7;] can even be replaced by K r.
Hence, assertion (D) is equivalent to

N(t+ K7) - N(t) - Kp/p 1
(D) sup 7 —1ll=o|l ——=7 s.,
0<t<T-Kyp arKy (logT)

yielding a convergence rate statement in an “extended version” of the
Erdos—Rényi law for the ordinary renewal process [see e.g., Steinebach (1979)].
Unfortunately, the methods could not directly be applied to generalized renewal
processes. However, partially following the lines of Deheuvels, Devroye, and
Lynch (1986), we are now in a position to

(a) extend Theorems C and D to generalized renewal processes or first-passage
times resp., and, moreover,
(b) replace the rate o((log T)~'/2) in (C’) by the possibly best rate

O((log T) 'loglog T).

2. Results. Consider the processes {N(t)},{L(¢)} as defined above, based
upon an i.i.d. sequence X,, X,,... satisfying conditions (i)—(iv). For 0 < K < T,
set

D(T,K)= sup (N(t+K)-N(t))= sup (L(t+K)—L(t)).

0<t<T-K 0<t<T-K
Then Theorems C and D can be extended as follows:

THEOREM 1. For 0 <1l/a <, with 1/a € 1, let C = C(a) be such that
exp(—1/C) = p*1/a). Then,
. D(T,ClogT) loglog T
(1) ClogT B log T

THEOREM 2. The assertions of Theorem D can be extended to generalized
renewal processes, i.e., ’

'D(TaKT)_KT/M_1'=O( 1 )

* Ky (log )
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and the denominator apK¥? can be replaced by (20°n~°K ;log(T/K))'/?, if
K;/(logT)? > 0.

The proof of Theorem 1 is based upon

LEMMA 1. Under the assumptions of Theorem 1 let s, be such that 1/a =
©(s,)/9(s,).- Then, for any € >0, cg,c,, ¢y, C3 fixed, there exist constants
A,, B, > 0 such that, for K sufficiently large,

(8) P(N(K + ¢y) = Ka+ (1 +¢€)alogK/s, + ¢;) < Agp**(1/a) K~ "9,
(4) P(N(K + ¢,) > Ka— (2+ ¢)alog K/s, + c3) > Byp*“(1/a)K'**.

The proof of Theorem 2 makes use of

LEMMA 2. Under the assumptions of Theorem 2, for any ¢ > 0, ¢y, ¢}, €y, C3
fixed, there exist constants A,, A,, By, B, > 0 such that, for T sufficiently large,

(8) P(N(K + co) > K/u+ K'*(ap+ ) + ¢,) < Agp""4r(by)eer,

(6) P(N(K + ¢,) > K/p+ K'*(ag— €) + c5) = B,K K" *4r(bp)eber,
where K = [K 1], dp = (K'?/p) + ar, by = pag/(odr).
3. Proofs. To prove Lemmas 1 and 2, we further need the following corollaries

to results of Petrov (1965) and Pollaczek (1952) [see Deheuvels, Devroye, and
Lynch (1986)]:

LEMMA 3. With the notation of Theorem 1, let {y,} be a real sequence
satisfying ny? — 0 as n — oo. Then, uniformly over all sequences {z,} with
|2,| < |¥,l, we have

(7) P(S,<n(1/a + z,)) ~ Con™?p"(1/a)e"n",
where C, > 0 depends on the distribution of X,.

LEMMA 4. For the partial sums S, = X, + - -+ + X, of ani.i.d. sequence, we
have

1
(8) ;P(Snso) < P(S,<0,...,8,<0) < P(S,<0).

Let us now turn to the

ProoF oF LEMMA 1. (a) Put ny=[Ka + (5 +-¢)alog K/s, + ¢,]. Then,
using Lemma 3,

P(N(K + ¢;) = Ka+ (1 + ¢)alog K/s, + ¢;)
<P(S, <K+¢) = P(S,,K <ng(l/a+ zg))

~ Conl‘(l/2pnk(1/a)enkzksa’
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where 2z, = (K + ¢y)/ng — 1/a ~ — (% + e)log K/(Kas,). Hence nyzy =
O(K '(log K)?) = 0, and ngzx ~ —(4 + ¢)log K/s,, which implies (3).

(b) Put my = [Ka — (§ + ¢)alog K/s, + c; + 1]. Then, by Lemmas 3 and 4,
for my > 1,

P(N(K + ¢,) > Ka— (2+ ¢)alog K/s, + c;)
>P(S,<K+ec,..., S, <K+c)

K + ¢4 K+ c;
> P|S, < yeees Sy, S Mg
mg

mg
1 -~

= "m_P(SmK < K + ¢5) ~ Comg®%p™«(1/a)e™x*s,
K

where 2, ~ (3 + ¢)log K/(Kas,). This implies (4). O

ProoF oF THEOREM 1. Setting K, = C log T, we prove

(9) 1 KT D(T’ KT) a
1m sup —a| < — a.s.,
T-o 108 Kr Ky a
K, (D(T,K,) 5a
1 lim inf — > — S.
(10) ps logKT( K, Y= T2, *°

(a) Set T; = sup(T: Kr <j}. Then,forT;,_, < T < Tj,wehave j — 1 < Ky <j
and exp(j — 1)/C < T < exp(j/C). Following the lines in Steinebach (1981), we
further estimate

D(T, KT) (N(t+KT)_N(t))
———— = §
log K 7 0<t<T-Krp log K7
< [N+ =MD D))
T ost=T-1 log K7, | log Ky’

and, by Lemma 1 and our choice of C = C(a), for ¢ > 0,
P(D(T}, j) = Ky a+ (i +e)alogK, /s,)
<TP(N(j+1) 2 (J-2a+ (3 +¢)alog(y - 2)/s,)
< AOijf“(l/a)j“”" <A e,
Hence, the Borel-Cantelli lemma yields

KT —DI(T}" J) _ a)

lim sup <({+e)ass, as.

J— oo

Ky,

J-1

logKT/_‘
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Since, for 7;_, < T < T; and ; sufficiently large
D(T,K;) Kpa D(T,j) Kr a

J

pa— < p—
log K log K;~ logK log K, ’
T T T, 1 T/ 1

assertion (9) is proved.
(b) To prove (10), we first estimate, for T sufficiently large and with K =

(K1)

D(T,K,) > sup (N(t+ K)— N(t)) =Dy([T],K)
0<t<[T]-(K+2)

and
D(T,K;) K a ( log K )(DO([T],K) ~ Ka ) K-K,

log K 1 " log K, = log K log K ta logK,
Since K/K; - 1,(K — K;)/log K — 0 (T — o0), it suffices to prove
Dy(n,K) Ka 5a
( log K B logK) =

log K

lim inf

n— o
for integer n. By the method of random renewal epochs, as used in Steinebach
(1981), Section 4, it is then enough to show

(11) P(i

where M(n) = max{i > 0: ¢, + K+ 2 <n}, t,=t;, as defined in Steinebach
(1981), Lemma 5. Let n; denote the smallest integer n with K = [K, ] = j. Then,
forn;<n<n; ,,[K,]=jand M(n) > M(n,). Hence it is enough to prove (11)
for the subsequence {n;}. In the vein of Steinebach (1981), Section 4, we estimate,
setting i, = [6n/K],0<d <1,

P(‘_Omax (N(¢t;+ K) — N(¢t;)) < Ka — (§+e)alogK/sa)

..... M(n)

< P( max (N(t;+ K)— N(¢;)) < Ka— (5 + s)alogK/sa)

i=0,..., iy
+P(M(n) <i,).
Using Lemma 1, the first probability in the last line can be bounded by
exp{ — Byo¥*(1/a)K'*n/K} < exp{-ByK*},

for some B, > 0, remembering pX%(1/a) > 1/n, K = [K,]. For n = n;, this is
summable in j, since K =j. By Lemma 5 in Steinebach (1981), we have
YP(M(n) <i,) < o, thus also for the subseries n=n; Now use of the
Borel-Cantelli lemma completes the proof. O

The proofs of Lemma 2 and Theorem 2 are slightly different.
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ProoOF oF LEMMA 2. (a) Let s; be such that b; = ¢'(sy), hence p(br) =
&(sy)exp(—spbr). Put np = [K/p + K'*(ar + ¢) + ¢,]. Then,

P(N(K + ¢;) = K/p+ K'*(ap+¢) +¢,) < P(S,, <K +¢,)

S, —n arp+ ¢
cpSmmrrt | ptlarte
o o

< ¢"(sp)exp(—sp( K ?dpby + K% + &)

< pK"4(by)exp(spbp(ny — KV%dp) — K'/?sp& — &oS7)-

Sil’lce ST -~ bT d O, nT - K1/2dT -~ K1/28, K1/2ST -~ K1/2bT -~ ”2aT/0 =
o( K '/?), this proves (5).

(b) Put m,=[K/u+ K'*(ap — €) + c5 + 1]. Then, taking s; as defined
in (a),

P(N(K +¢,) > K/p+ K'*(ap —€) + c3)

1
>—P(S,, <K+ c)

my

1 S, —m ar —
Z_P(__mT—TﬁzKl/z_”l(—T_fil_i_ 52)

mT [y [

Using associated probability measures IA’S‘T, defined by

P .(4) = /A exp(sS,,,)/6"(s) dP,

where S'n»r = —(8S,, — mpp)/o, we have
N ar— ¢
P8, — mpby > K‘/QK—T—) — mpby+ &
o

= P(8,, — mpby > (K'2dy — mp )by — K'/% + &)

R . 3 S, —mpby §
> me(bT)eXp(K1/2sTs/2)PsT‘T(— Vi _W_— <3
For the last inequality, note K '/%d, — ~ K'%¢ and by — 0. Taylor series
expansion of the cumulant generating functlon shows that (S — mgpbp)/K'?

is asymptotlcally normal under P 1, T — 0. Since, for large T, my < dgp,
~ K/u, and K'?s; ~ p*ar/o, this completes the proof of (6). O

PROOF OF THEOREM 2. (a) Set T, =sup{T: K =[Kz;] =/}. Using the
same notations as in the proof of Theorem 1, for T, , < T < T;, we have
[K [T]] =Jj and

D(T,K;) — Ky/n 3 DT, j) —j/w N
K’Il/z - aT = j1/2 aT/ (aTI - aT).
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Hence, for the lim sup-part, we prove, for ¢ > 0,
DI(T/’.]) —]/‘U. _

(12) lim sup 17 ar| <e as,
J— o0 J
(13) }ET;SUP{“T, —ap T, <T<T)=

Assertion (12) is a consequence of Lemma 2 and the choice of a;, since
P(D\(T;, j) 2j/u+j"*(ar, + ¢)) < AJT(J/T))exp(~A,az).
Similar to Csérgd and Steinebach (1981), we estimate by (vi) and (vii),
Aar > log(K%) = log(j?).

Hence, assertion (11) follows by using the Borel-Cantelli lemma. Moreover,
similar to the partial sum case, for T;_, < T' < T}, we have
log T':
OSaT—aT=O( - j),
! J
the latter expression tending to zero by assumption (vi). Assertions (12) and (13)
yield

lim sup
T—-

(b) The proof of

(D(T» KT) - Kr/p _

K2 aT) <0 as.

lim inf
T— o

D(T, K7) — Kq/p
Ky

follows in a similar vein as part (b) of Theorem 1. We estimate, for large T,

— aT) >0 as.

D(T, Ky) — K/ K\ D([T], K) - K/u
K)? —ar= K_T K12 ~arr)
+ K - KT K1/2a[T] - K%/'an
Tk

K = [K;]. Assumption (v) yields K — K; - 0 (T — ), and hence also
(K/K;)'/? > 1. Moreover, similar to part (a)

K'?app — Ki%arp = O((logT)/K}/z).
Hence it suffices to prove, for integer n,

(Dégfnl,/f) B an)

K = [K,]. Again using random renewal epochs ¢; as in part (b) of Theorem 1, we

(14) lim inf

n— oo

> —¢ as.,
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obtain by Lemma 2 and our choice of a,

~ 1
< exp(—B,K " %Bi) = 0(;—2),

B,>0, i,=[8n/K], since a,~ (20%u *log(n/K))/?, and K2/a’’ = o(1).
Thus, the Borel-Cantelli lemma yields (14), which completes the proof. O

4. Strong invariance principles. Theorems A, C, and 1 give strong nonin-
variance principles, since the functional dependence C = C(a), given there,
uniquely determines the underlying distribution via its moment-generating func-
tion [see Erdos and Rényi (1970) and Steinebach (1981)]. On the other hand,
Theorems B, D, and 2 give strong invariance principles, if K (K7 ) is such that
K ,/(log N)? resp. K1/(log T')* tends to infinity. For smaller K (K ), the latter
theorems treat an indefinite range between strong invariance and noninvariance,
since (via p) ay(a;) may depend upon a number of cumulants of the distribu-
tion.

Now, suppose the underlying probability space ({2, &7, P) to be rich enough
that the Komlos—Major-Tusnady (1976) strong approximation holds, i.e., one
can define a standard Wiener process {W(¢)},. , on it such that

(15) sup Sta— Ltln W(t)|= 0(logT) as.,

0<t<T o

where again S;,; denotes the [¢]th partial sum of an i.i.d. sequence X, X,,...
satisfying conditions (i), (ii), and (iv’). Assertion (15) is a slightly extended
version [see Csorg6 and Révész (1981)] of the following original form:

(16) max IS, — T,|= O(logn) as.,
<RkR<n
where T, denotes the kth partial sum of an i.i.d. sequence Y}, Y;,... of normal

rv’s with same mean p. and variance o>

For K,/(log N)> > oo, an extension of Theorem B has been derived by
Csorg6 and Steinebach (1981), using (15) and corresponding results for the Wiener
process. In a similar vein, an extension of Theorems D and 2 would be desirable
for K/(log T)? - 0. But, using (15), one only gets the following approximation:

THEOREM 3. Under the aforementioned assumptions,

(17) sup M

— W(¢t)|=0((T loglog T)"*(log T 2y o
0<t<T 0/,11-3/2 () (( g log ) ( ) )
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OUTLINE OF PROOF. Assertion (17) can easily be derived by decomposing as
follows:

N(t) - t/p _ (N(t) ~ Sna/b

LA HWIN(D)

SN(t) - 1/2 |
_(W) T+ AWIN(E)) — W(E/w)).

Using (15) and the strong law of large numbers for { N(¢)},. o, the first summand
can be shown to be of order O(log T') a.s. uniformly in 0 < ¢ < T. Since @(s) =
E exp(sX,) < oo, |s| < s;, by direct estimates

max( X,,..., X,) =O(log N) as.,
which further implies
SN(:) -t XN(:)+1

o/p? o/l

again using the SLLN for {N(t)},.,. However, in view of the law of iterated
logarithm for { N(%)},. , and the results of Csorgo and Révész (1979),

< =0(logT) as.,

0<t<T

sup
0<t<T

sup #1/2
0<t<T

W(N(¢)) - W(%)‘= O((T loglog T)*(log T)"*) as.,

which cannot be improved.

In view of Theorem 3 and the final remark in the proof, an extension of
Theorems D and 2 via strong approximations can only be stated for “very large
increments”, i.e., K,/(T loglog T')/*log T — . Such an approach has recently
been given by Horvath (1984).

It is clear, however, that a strong invariance principle must hold for all K
with K /(log T)?> - oo. For further considerations, the following lemma should
be helpful:

LEMMA 5. Suppose the underlying probability space to be rich enough that
(16) holds. Fort > 0 set

M(t) = max{n>0:T,,...,T, < ¢t}.
Then, we have

O<t<

(18) supT|N(t) - M(t)|=0(ogT) a.s.

v

Proor. To prove (18) we combine the K-M-T strong approximation (16),
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the SLLN for {N(¢)} and {M(t)} and a version of the Erdos—Rényi strong law
for {M(¢)}, i.e., for each C > 0,

M(t+ ClogT) — M(¢)

i =a(C) as,
(19) Th—r’I:O ozltlspT ClogT ©)
[see e.g., Theorem 1, for ¢(s) = exp(su + s202/2)]. Suppose
(20) mkaxN|Sk — Ty <CllogN V N> Ny(w), C,>0,
1<k<
1
(21) BT <N(T) 8T VT2T0), &< <d.

Let N(t) =k < N(T),ie, S,,...,S, <t S,.,>t.If §,;T, = N,, in view of (20)
and (21),
Ty,...,T, < t+ Cylog N(T) < t + Cylog(8,T),
and
Ty, >t — Clog(N(T) + 1) > t — C,log(8,T + 1).

Moreover, if T, is such that Cylog(8,T + 1) < 2Cylog T, for all T > T, we obtain

M(t+ 2C)logT) > k = N(t),

M(t - 2CylogT) < k = N(t).
Hence, setting C = 2C,, for T > T,

IN(8) - M()]

0<t<T log T

[N(t) — M(¢)] M(t+ ClogT) — M(t)
< ————— + sup .
0<t<ClogT log T 0<t<T log T

By (19) and the SLLN for { N(¢)} and {M(t)}, this completes the proof.
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