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A FINITE FORM OF DE FINETTI’'S THEOREM FOR
STATIONARY MARKOV EXCHANGEABILITY

BY ARIF ZAMAN
Florida State University

De Finetti’s theorem for stationary Markov exchangeability states that a
sequence having a stationary and Markov exchangeable distribution is a
mixture of Markov chains. A finite version of this theorem is given by
considering a finite sequence X,,..., X, which is stationary and Markov
exchangeable. It is shown that any portion of k& consecutive elements, say
Xi,..., X;, for 'k < n, is nearly a mixture of Markov chains (the distance
measured in the variation norm).

1. Introduction. In de Finetti (1959; 1974, pages 217-220) it was suggested
that all infinite length Markov exchangeable sequences are mixtures of Markov
chains. Even though the assertion turned out to be false, it was nearly correct.
Freedman (1962) showed that under the additional condition of ‘stationarity,
Markov exchangeability is equivalent to being a mixture of Markov chains.
Diaconis and Freedman (1980a) later relaxed the condition of stationarity to
that of recurrence. They showed that recurrence is both a necessary and a
sufficient condition for the equivalence to hold, and categorized all the excep-
tions which can occur when recurrence does not hold. Both of these results are
called de Finetti’s theorems for Markov exchangeability ({AFTME).

The above mentioned results of dFTME have the flavor of the well known
de Finetti theorem (dFT) which states that infinite length exchangeable se-
quences are mixtures of ii.d. sequences. All of these results are false for finite
length exchangeable or Markov exchangeable sequences, but Diaconis and Freed-
man (1980b) were able to extract a finite version for dFT. Their method consisted
of getting a mixture-of-urns representation for finite exchangeability, finding a
bound for the “distance” (variation norm of projections) between an urn measure
and an ii.d. measure, and combining these to show that a finite exchangeable
measure is “close” to a mixture of i.i.d. measures. The constructive nature of the
proof and its simplicity provide insight into the workings of dFT, and yet the
finite version is powerful enough that the most general known forms of dFT are
simple consequences of it.

This same program of obtaining finite versions of asymptotic results is con-
tinued here for dFTME. Section 2 defines Markov exchangeability. Section 3
describes the finite version of dFT and some related results from Diaconis and
Freedman (1980b). Section 4 describes a mixture-of-glued-urn-models representa-
tion from Zaman (1984a). The introduction of new notation allows that model to
be useful in the next section. Section 5 finds an upper bound for the distance
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FINITE MARKOV EXCHANGEABILITY 1419

between a glued-urn model and a Markov chain. Section 6 discusses why the
bound of Section 5 is not enough and the further constraint of stationarity is
needed. In Section 7, a bound for a ratio of stationary events is quoted from
Zaman (1984b) and used to prove the finite form of dFTME under the assump-
tion of stationarity (Theorem 6). This final theroem is strong enough to imply the
infinite form of dFTME under the added constraints of stationarity and a finite
state space.

2. Markov chains and Markov exchangeability. For a set C, the symbol
C" denotes the set of all sequences of length n taking values in C. For X € C”
and k < n, the initial portion (X,,..., X,) is denoted by X® € C*. When
X € C" has distribution P, the distribution of X® is denoted by P,

All Markov chains here are assumed to have a finite state space C and
stationary transition probabilities. Without loss of generality we take C =
{1,2,...,c}. A Markov chain probability P on X € C" is parametrized by its
transition probabilities a;; = P{X, , =j given X, =i} for i, j€ C and k =
1,...,n — 1 and its initial state probabilities a,; = P{X, = i} for i € C. This
¢ + 1 by ¢ matrix of parameters is denoted by G and the Markov measure P is
denoted by R{". It is clear that a valid value for & must lie in the set A = {a:
Yieca;=1lfori=0,1,...,c}.

If {P,}, < » is a parametric family of probability measures and p is a probabil-
ity on A then P, denotes the mixture measure given by B, = [{P\udA. P,
corresponds to the two stage procedure of picking a random A € A according to
1, and then using P,.

The set of all mixtures of Markov chains of length n with state space C is
denoted by #¢ = {R{™: p is a probability measure on A}. The set of mixtures of
infinite length Markov chains, denoted by .#, can be defined by P € .# iff
P = R(™ for all n with the same mixing measure p.

For X € C", let ¢,,(X) be the number of i to j transitions in X, i.e.,

n—1

(1) t(X)= Y (X, X,.0) = (i, D}

k=1
Using this equation, the measure R{™ can be written out explicitly as
(2) R{(X) = [ aox, T1 aly*uda.

This shows that if P € # then P{X} depends upon X only through its initial
state X, and the transition count matrix #(X) = [, (X)], jcc-

Let &% denote all measures on C™ with the above mentioned property, i.e.,
Pe &g iffforall X, Ye C"

(3) P{X}=P(Y} ifX,=Y and &(X) = t(Y).
The set &% is the set of all Markov exchangeable probabilities on C™®, or as
de Finetti calls them, partially exchangeable probabilities of the Markov type.

The set of infinite length Markov exchangeable sequences, denoted by &, can be
defined by P € &, iff (3) holds for all P with n < co.
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3. Urns and the finite de Finetti theorem. The symbol U = (uy,...,u,)
will be used to denote an urn containing a total of u. = ¥¢_,u, (the convention of
using a dot subscript to indicate summation is used throughout) balls, with u, of
them labelled with a 1,..., and u, of them labelled with a ¢. H;, denotes the
measure on sequences in CU- obtained by sampling without replacement from U.
My, is the measure when sampling with replacement (H stands for hypergeomet-
ric and M for multinomial). The same symbol v, is also used as a function which

counts the occurrences of i in a finite sequence X € C", defined by
n

(4) u(X)= Y I{X,=i}.
j=1

Thus if X € C™ has distribution Hy, then u,(X) = u; and n = u.
The following facts are borrowed from Diaconis and Freedman (1980b): Their
equation (12) implies that for any sequence X € C* and any urn U with & < u,

) [ M{f)(X)]* c u(X)

’

1 _—
HP(X)

where [x]* denotes max(0, x).
Given two probability measures P and @ on the same probability space
(2, #), define the variation distance

IP - Q| = sup |P(B) — Q(B)]|.
BeZ#

i=1 U

If Q is finite and all subsets of Q measurable, then an equivalent form is

(6) IP-Ql=2 Y [P(w)-Q(w)]".

wel

With this norm, the finite form of dFT can be stated as:

THEOREM 1 (dFT). For every exchangeable measure P on C" there exists a
mixture of i.i.d. measures, Q, such that

|P® — @) < 2¢k/n.

4. Urn models for Markov exchangeability. Combining (1) and (4) for
X € C" gives

(7) t;(X) = u(X*D)
so that
(8) LX)+ KX, =i} =u(X) =¢t.(X)+ X, =i).

Equation (8) is actually a necessary and sufficient condition for ¢ to be a valid
transition matrix, i.e., for x, y € C the set of all transition matrices of sequences
starting at x and ending at y is

T, = {H(X): X € C" X, = x; X, = )
©) “(Etr Iy =i) =t Iz =1)).
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The notation developed above will be used to describe the urn model for
Markov exchangeability developed in Zaman (1984a). Let x, y € C and 7 € T
be fixed (thought of as parameters for the distribution about to be described). Let
C, denote the set C — {y}. Let f € CS be another fixed parameter, i.e., f,€ C
forall i € C,.

Let U,,..., U, be c separate urns with U, = (7,3, ..., 7;,) for i € C. From each
urn U; when i € C,, take a ball labeled f; from U; and “glue” to the bottom of U,
so that it can only be drawn after all other balls have been drawn. Let X, = x.
Fori=1,...,n—1let X, ; be the label of a ball drawn without replacement
from Uy . This sequence X € C" is random and its distribution will be denoted
by G, , . ; to indicate its parameters (G stands for glue).

A point which has been glossed over is that the above prescription may be
impossible. It will suffice for our purposes here to know that there is a set
F c C© depending upon x, y, and 7, such that if the parameter f € F then all
of the instructions of the urn model can always be followed. The precise
definition of F can be found in the original paper.

The importance of this urn measure derives from the following theorem.

THEOREM 2. Foreveryx,y € Cand v € T, there is a unique probability p

on F such that G, , , , is an extreme point of the set of measures 4. Moreover

any measure in 6% is a mixture of such extreme points.

The measure G, , ., ; is simply a combination of draws without replacement

from urns, and so can be expressed in terms of the Hy; notation with some work.
For X € C" define s;(X) as the subsequence of X containing the values im-
mediately after the occurrences of the i’s in X. For example:

X=232312113
5(X) = 2 13
s(X)= 3 8 1
ss(X)= 2 1
(s; stands for successors of i).
The following is a list of definitions (denoted by £) and properties that can

easily be verified for X € C" drawn by the urn model G, , , ; (these subscripts
will not be repeated):

"'(i, J) 2 Tijs
(i, J; k) £ Tij(X(k)) = uj(si(X(k))),
(10) (i, j; n) = 7(i, J),
t(i; k) £ ¢, ,(X®) = y,(X*D) = length of 5,( X®),
(i) £ 7(i; n).
The key point in checking these is that s;(X) is exactly the order in which the

balls are drawn from U, in the urn model. It should be noted that while (i, j)
and 7(i) are parameters, 7(i, j; k) and 7(i; k) are random variables.
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If i € C, and 7(i) > 1 let U, \ f; represent the urn U; with one ball labeled f;
removed. If i = y or 7(i) = 1, then U, \ {; is taken to be the same as U (to avoid
dealing with empty urns). Then for ¢ € C™®

Hy . ; {} ifi=yorr(i) =1,

11) G{s;(X) =4} = .
(1) G{si(X) =) {Hui\ GO (0, = £} if i€ C,and 7(i) > 1.
For any X,Y € C” it can be shown that X = Y iff X, = Y, and s;(X) = S(Y)
forall i € C, so

(12) G(X) = I{X, = x} iI;[CG{Si(X)}-

5. Approximating extreme points. For every point in §; we want to find
a close point in # 2. A first step is to find nearby points in # ¢ for every extreme
point of &%. We will do even more by finding a point in /7 near any measure
G, ,.. ;- Equations (11) and (12) show that G is nearly a product of urn measures
Hy\ ;.- Define the Markov chain R; by

a0i=I{i =x}’
"'(i(’i-)j) ifi=yor7(i) =1,
(13) a;= T(Ti 7 -Ij=Ff}
"r(i)—l l if i € C,and 7(i) > 1.

This is exactly the Markov chain one would get by using the urn model with the
glued balls removed (i.e., using the urns U, \ f;) and sampling with replacement.
One could alternately write

(14) RP{X} = [{X, = u} I—IIJ”U.»\A {si(X)}.
THEOREM 3. For G and R defined as above and k < n

1 (i, J; k)
—|IG® — RP|| < Egw{ Y, min|1, — ; ’
27 ¢ ieC jec (i, j) - I{j = f}

7(, j)>0

where Egw refers to the expectation under G™®.

Proor. Let x, y, 7, f, d, and G be as before. Let R = R ;. For the duration
of the proof, let the symbol G, represent the distribution of s,(X) € C™® when
X has distribution G given in (11), and let R; = My, ;, so that (12) and (14)
become

G(X) = I(X, = =) T] &(s.(X)),

(15) R(X} =I{X, = x} il;%Ri{si(X)}-
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The marginal distributions are given by
GP(XWY = (X, = x} [ GIr&M{s,( X))},
ieC
(16) .
RO(X®) = I(X, = ) [T REEP{5,(XD)).
ieC

Note that even for a fixed k, the value 7(i; k) depends upon the random outcome
of X.

Using the property given in (6) about the variation distance between two
measures,

—WW—RWP'Z[@WX%RWMH+

XeCk
RM(X} ]*
ool -]
RM(X) ]
(17) B EG(“{ TPy }
R(Gs k)){si(X)} *
= EG(k){ 1- ile_[C G!("(i; k)){Si(X)} ] }

RGP (X)) ]}

< E 1- —~
¢ { Z )
The term [ - - - ]* in the final expression can be bounded by

REG M5, (X)) ]* (i, ji b
G k)){ (X)) < min (1, Y — ( ) ;
G M) s,(X)) | jec”'(l’./)_l{]:fi}
To verify this, first note that the L.h.s. cannot exceed 1, so the min[1,...] on the
r.h.s. can be ignored.
We now consider three cases.

(18) 1-

CASE 1. i =y so that U, has no glued ball.
Then G,=Hy and R;= MU so by (5), the Lh.s. can be bounded by
C_u(s; (X(k)))/q-(z - Since f; 1s not defined for i = y, the term I{j = f,} in
(18) should be treated as equal to 0 for all j.

CasE2. i€ C,and 7(i; k) < 7(i) so that the glued ball in U; is not drawn by
X®,

By (11), G5 = HGR) as long as 7(i; k) < 7(i) s (5) can be used once
agaln with the fact that U, \f contains 7(i, j) — I(j = f;} balls with label j for
jeC.
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Case 3. i€ C, and 7(i; k) = 7(i) so that U; is completely empty including
the glued ball by the time X® has been drawn.

Since U, is empty, s(X®) = s(X™) and 7(i, j; k) = 7(i, j) and
Yiec™(is J; R)/(7(i, j) — I{j = [;}) is bigger than 1, and hence is not a con-
straint.

These three cases are exhaustive, and (18) holds in each case, which when
substituted in (17) provides the conclusion of the theorem. O

6. The stationarity constraint. The bound given in Theorem 3 is not
enough to prove dFTME. We need a uniform bound which decreases to zero as n
approaches infinity. On the other hand the bound in Theorem 3 can be very bad
regardless of how large n is, as long as one urn U, is small, i.e., 7(i) is small.
There is no constraint to ensure that each urn gets larger as n increases, so that
one urn may have just two balls regardless of n, and an urn with two balls is
very different from i.i.d. sampling.

The problem is not because the inequality in Theorem 3 is crude, but instead is
a fundamental problem related to the exceptions to dFTME found by Diaconis
and Freedman (1980a). There are measures in &, for which 7(i; n), the size of U,
remains bounded even in the limit as n approaches infinity, and these measures
are simply not in .# . Thus we cannot hope to get a uniform bound decreasing to
zero in n.

To obtain their version of dFTME, Diaconis 2nd Freedman (1980a) had to add
the condition of recurrence. There is no finite dimensional analogue of recurrence,
so instead we will impose the stricter condition of stationarity (which implies
recurrence for infinite sequences), as was done for the original proof of dAFTME
by Freedman (1962). Stationarity is also defined in terms of measures on infinite
sequences, but has a straightforward generalization for finite sequences described
in Zaman (1983). A finite random sequence X € C" is called stationary if the
distribution of (X, X,,..., X,,_,) is the same as the distribution of (X,,..., X,,).
Among other things this is equivalent to the existence of an infinite stationary
extension of X, i.e., a stationary sequence Y}, Y,, ..., such that Y(™ has the same
distribution as X.

The addition of the stationarity assumption gives a kind of “homogeneity”
to the sequence X, so that the chance of observing an i to j transition is the
same at any place along the sequence. This allows the conclusion that
7(i, j; k)/7(i, j; n) is somewhat like k/n using a property of stationarity given
in Zaman (1984b), which in turn gets a uniform bound for Theorem 3.

7. dFTME (finite form under stationarity).

THEOREM 4. For G and R defined as in Theorem 3 and k < n, if G is
stationary

k-1
IG® — RP| < 2[c?+c+ 1]n—_—1[1 + log(n — 2)].
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The main tool for the proof is Theorem 7 in Zaman (1984b) which can be
written as

THEOREM 5. If P is a stationary measure on {0,1}* and k < n,
Xl + cee +Xk
A X+ X

n

} s%[l + log(n — 1)].

PrROOF OF THEOREM 4. From Theorem 3, we can write

1 7(i, J; k)
SIGP-RPI< X X EG{ }

ieC jeC (i, J)
(19) J#f;
T(i’ fi; k)
* iEZCyEG{ max(1, 7(i, f;) — 1) }

For any i, j € C construct a sequence Y € {0,1}*! by defining Y,, =
I{(X,,, X,,+1) = (i, J)}. If the measure on the X’s is stationary, then so are the
y’s and so Theorem 5 applies:

(i, ji k Y+ Y, ) k-1
(20) EG{-—-————S_Z(Z,’jj))}= G{Yli---iYn_l}Sn-—l[1+10g(n_2)]'

To deal with the 7(i, f;) — 1 in the denominator in (19), simply note that

(i fgh) _ wlif) g k)
(21) max(l’ T(Z, fz) - 1) max(l’ T(Z’ f;) - 1) T(l, fl)
(i, f;s k)
Ry

because x/max(1, x — 1) has a maximum value of 2 when x = 2.
Of the c¢? terms i, j € C in (19), the first ¢ — (¢ — 1) are bounded by (20),
and the last ¢ — 1 by (21), giving the bound

1 k-1
E”G(k) - R(&k)” < (02 +c-— l)m [1 + log(n — 2)] . (]
The statement of Theorem 4 gives a uniform bound for all extreme points of
M . Extending this to all of #7 is a simple matter, and proves the finite form of
dFTME for stationary sequences:
THEOREM 6. For every P € £} there is a Q € MY such that if k < n then

k-1
|1P® — @®) < 2(c®+ ¢~ l)m[l + log(n — 2)].

ProoF. Let A = {(x, 5t f): x,y€C, t€T,, € F} be the parameter
space of the urn model. P € 67 implies that P = G, for some probability u on
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A. For any A € A, let a(A) be the @ defined in (13), and let the measure
Q = Ry,. Then

| P® — Q¥ = sup

Bec(C*

[P(B) - RE (BYwar]

< [ sup |P{"(B) - RY3(B)|udA
Bec*

= [IP( — R lln dX

k-1
<2(c®+c- 1)71—_—1[1 + log(n - 2)]. m]

CoRroOLLARY 7. When C is finite and P € &, if P is stationary then P € M ..

Since this is a very weak form of dFTME, it is given only to illustrate that an
infinite result is possible from the finite form. The proof relies on the compact-
ness of the parameter space A of finite state Markov chains. It follows along the
same lines as the extension of the finite dFT to its infinite version in Diaconis and
Freedman (1980b) and so is omitted.

In analogy with the finite version of de Finetti’s theorem, a c?k/n type of
bound could have been expected under the best of conditions. The log n term is
somewhat surprising even though it causes no harm in the asymptotics. It is not
clear whether that is simply an artifact of the method of proof, instead of a real
feature of the rate.

An interesting way to avoid this log n term is to consider sequences in both
directions. Let P be a measure on X_,,..., X,. Denote the middle portion
X _4...s X by X5 and so on. Then

COROLLARY 8. If P€ &6;™™ then thereis a @ € M;™" such that for k < n,
|PCRB — QURB) < 4(c? + c— 1)k/(n+ 1 - k).

Proor. Theorem 5 (which is Theorem 7 in Zaman (1984b)) has another
version for middle portions of stationary sequences. Using that, the proof follows
exactly like the proof of Theorem 6. O
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