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ON A LOWER BOUND FOR THE MULTIVARIATE NORMAL
MILLS’ RATIO!

BY SATISH IYENGAR
University of Pittsburgh

Steck provides several approximations for the multivariate Mills’ ratio.
We first prove a new result for the univariate Mills’ ratio and use it to give
simple sufficient conditions for Steck’s best approximation to be a lower
bound.

1. Introduction. Let X = (X|,..., X,,) be a standardized multivariate nor-
mal random vector with EX,X; = p,;, and I = (p;;). The multivariate Mills’
ratio is

(1) R(a;3)=P(X 2 a)/¢(a; ¥),

where X > a means X; > a; for all i, and ¢ is the density of X. Several
approximations for R(a; ¥) have been proposed: see Steck (1979) for a review.
Steck proposed three more approximations, each derived from a likelihood ratio
argument. He showed that two of them were lower bounds to R(a; ¥). In his
numerical examples, however, his other approximation (called R,) also appeared
to be a lower bound, and was in fact the best of the three.

In this paper, we study Rz in detail. In Section 2, we first prove that a certain
class of densities have a positive skewness parameter; we use this lemma to prove
a new result for the univariate Mills’ ratio. We then use this result in Section 3 to
give simple sufficient conditions on ¥ for Rz to be a lower bound for R(a; ¥). In
Section 4, we comment on the main result and describe its use.

2. The univariate Mills’ ratio. We start with a result that is of some
independent interest.

LEMMA. Suppose that Z has a continuous density g that is symmetric about
zero, unimodal, and is decreasing away from the mode. Also, suppose E|Z|? <
0o. If P(Z > ¢) > 0, let

fx) = (EEV/EZ ), x2e
‘ 0, else.
If Y has density f,, then E(Y — EY)2 > 0, and Y is positively skewed.

Proor. Let EY = p > 0. Since ¢ < p, wemay define T = (Y — p)/(p — ¢) =
—1; now it suffices to show that ET3 > 0. Let the density of T be A(t); it has
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the same shape as f.. When ¢ > 0, the mode of 4 is at —1; else, it is at
p/(c — p). Now

ET*=E(T*-T) = f:(ﬁ — t)h(t) dt

- j:(t3 — t)(h(t) - h(—t)) dt + jl (% - t)h(¢) dt.

The second term is obviously positive. The first term is also positive, since for
t[0,1], t* — ¢ <0 and A(t) — h(—t) < 0 by the assumptions. Thus ET'3 > 0.
O

Now the univariate Mills’ ratio is

) R(x) = ®(~x)/9(x) = e~/ dt = [“e o at),

where ¢ and ® are the st%nda.rd normal density and distribution functions,
respectively, and »(dt) = e~* /% dt is a measure on [0, c0). Let S(x) = logR(x) to
get

(3) 1= jo Pemxt-S®y(dt) = fo “P.(d¢).

Thus, we have an exponential family of probability distributions {P,: x € R} on
[0, c0).

Now let W, have distribution P,, so that W, =, [Z — x|Z > x], where Z is
standard normal. Let p(x) = EW,. By differentiating under the integral (3)
several times, we get

(a) 0 < EW, = p(x) = —S’(x); so R(x) is decreasing.
4) ()0 <varW, = —p'(x) = S”(x); so S(x) and R(x) are strictly convex.
(© E(W, — p(x))* = p(x) = =S " (x).

Our new result for the univariate Mills’ ratio, then, is
COROLLARY. p is a strictly convex function.
PrROOF. By the lemma, p(x) = E(W, — u(x))® > 0.0

3. The multivariate Mills’ ratio. By and large, we follow the notation of
Steck (1979). Let M = 37", Then

) R(a; 3) =%=Lwexp(—a’Mt—%m) dt.

Let D be the diagonal matrix with d;; = m;, and let @ = D~2MD~'/2, Chang-
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ing variables: z = D~?Ma and v = D'/%¢, we get

R(a;3) = |D|‘1/2f0°°exp(—z’o - O;QD) dv

n D?
(6) - |D|—1/zf0°° l—[lexp(—o,. z;+ ) qijVj] - _) do
1=

jzi 2

=101 ETTR(z.+ L aYy),

1 J>i
where the variables V,...,V, have joint density f(v,|vy,...,v,) X
f(02|03, ooy on) e f(vn) and
exp(—oi(zi +X,5:9:9) — 03/2)
(7) f(o)visr,-..,0,) = R(z +ZJ: — ) .
i j>idijY;
Thus, we say that [V||V,,,,...,V,] has a “Mills’ ratio density” with mean
p(z; + X, ;q,;0;). Steck’s approximation is now obtained by replacing V; in (6)
by E(Vzlv:,+ 12 Vn) = p‘(zi + z:j> iqijv;')r i= 2: ceey . (FirSt replace V2’ then V3’
etc.) Thus we get

(8) R(a;3) = D[] R(w) = R,,

where w, = z, and w; = z; + L. ;q;;M(w;).
Steck showed that for n = 2, R(a; ¥) > R,. We now have our main result:

THEOREM. If q;;< 0 fori <j < n — 1, then R(a; 3) > R,. In particular, if
q;; <0 for alli + j, that is, if ¢(x; I) is MTP,, then R(a; 3) 2 R,.

Proor.
R(a;3) =|D"V’E]] R(zi + X qiij)
i=1 i<j
= |D|"*?’E exp h{'(V,, ..., V,),
where (V],..., V,) have density given by

n

f(vg,...,0,) = .I—[lf(oi'”j; j>i)

i=

and (7). Let

0 _ _ 0

@ =z;+ Y ;0= al(vi115-.-, 0,),
J>i
a’l = a{(oi"'f"'l”"’ On) = atl—l(l"‘(a?+j(vi+j+1’-“r vn)), Oitjr1recs vn):
and
aka{ = 3a{/30i+j+k.



1402 S.IYENGAR

Also, let
J n
B = h(v;49,...,0,) = L S(al"7) + ¥ S(af)

i=1 i=j+1

for j<n-2.

It is clear that A{™ is convex in v,. Application of Jensen’s inequality to
R(a; 3) yields h{™. The problem now is to find conditions under which A{™ is
convex in v;,, for j<n—2 so that Jensen’s inequality can be repeatedly
applied. Now

82h(") J

J
ZS(a’ ;+1)(aza, z+1) + ZS"(a{—iH)(ala{—iﬂ)Z
(@) 9% o i—1

+87(aly)(9%al,) + S 1+1)(‘91“})+1)2~
200 = 0,

The last three terms in (9) are obviously nonnegative, since S”” > 0 and dia; =
Since 8’ < 0, we must now find conditions for 92/~ **! < Ofor1l < i <] <n-2.
(The case j = 0 is trivial.)

It is easy to verify that for p = 0 and 1,

p
(10) 0,0? = q; jspip T > @i, i mt (P50 ) (9,0P50).
m=1
We now show by induction that (10) holds for all p =0,1,...,n—i— 1. If
a/tt = a{(ﬂ(a?+j+1(°i+j+2’-~, 0p))s Ogijsgs+» Uy), then

dpadtt = ‘910‘{("‘(“?«7‘«»1)’ cees Un)l‘/(a?ﬂ‘ﬂ)( aka?+j+1)

opln(a ).

By the induction hypothesis,

(11)

J
Ji 0 = j-—m+1
‘9k+1ai(l‘(ai+j+1)’---’ On) =q;i+jrr+1 T 2 9, i+mh (at+m )
m=1

*{[0srfim] ((0fsar)s e 0)}

and there is a similar expansion for 3,a/(p(a, ;4,), ..., 0,). Combining like terms
in the expansions, we get

aka{+ = Qi i+j+r+1 T Q;, z+1+1l1( z+1+1)(aka?+j+1)
(12) + Z qi,i+mp‘ (a{+r'nn+1){[ak+1a{;r’nn](”(a?+j+1),'": Un)
m=1

+ql+j+1 t+]+k+1”( z+1+1)[alaz+m (I"‘(a?+j+1)’”°’on)}°

By (11), the expressmn in{ }in (12) is simply d,a/; ™", Thus (10) is proved for
al p=0,1,...,n—i+ 1.
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Finally, from (10), we conclude that

p
afa{’ = Z q;, i+m""(aip+_n'zn (afa&—”rln)
m=1
(13) » ;
+ Z qi, it (@P5T) (9,025
m=1

By the lemma, p”’ > 0, so the second term in (13) is negative only if g, ;,,, <0,
m=1,..., p. Also, & < 0, so by doing an induction on p, we can easily conclude
from (13) that ¢; ;,,, <0, m=1,..., p, implies 3ja’ < Ofor p < n — i — 1. The
proof is now complete. O

4. Comments. Much of the earlier work on Mills’ ratio concentrated on
obtaining bounds or approximations for R(x). In the multivariate case, we
regard the univariate function R(x) as given (since it is easily computed) and
approximate R(a; I) by expressions that involve R(x).

This investigation was motivated by a problem in geostatistics: see Switzer
(1966) and Solow (1985). In particular, the problem of computing error probabili-
ties for indicator kriging (when the underlying Gaussian process is dichotomized
at high values) reduces to the evaluation of P(X > a), which in turn leads to (1).
Typical correlation matrices which arise there can often be approximated by
p;;=p =0o0rp;=a", with0 < a <1 Itis easy to see that both these cases
are MTP,, so that the theorem above applies. For further discussion, see
Bolviken (1982) and Karlin and Rinott (1980).

Finally, after examining the proof of the theorem, it is clear that there are
correlation matrices 3 which do not satisfy the hypotheses but for which R, is
still a lower bound. However, we have no proof for an interesting more general
class of ¥.
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