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Stochastik and University of Illinois

Let {X;, j = 1} be a strictly stationary sequence of random variables with
mean zero, finite variance, and satisfying a strong mixing condition. Denote
by S, the nth partial sum and suppose that VarS, is regularly varying of
order 1. We prove that if S,(VarS,) /2 does not converge to zero in L!, then
{X;, J = 1} is in the domain of partial attraction of a Gaussian law. If,
however, no subsequence of {S,(VarS,)~!/2, n > 1} converges to zero in L!
and if E|S,|is regularly varying of order }, then {X;, j > 1} is in the domain
of attraction to a Gaussian law. In each case the norming constant can be
chosen as E|S,|.

1. Introduction. Throughout this paper we assume that {X,, j > 1} is a
strictly stationary sequence of random variables with nth partial sum S, and
satisfying

(1.1) EX, =0, EX2=1,
(1.2) o(n)? = o2 = ES? = nL(n),

where L is a slowly varying function in the sense of Karamata. Let {2 be the
o-field generated by X, X, ,,..., X;. The sequence { X, j > 1} is said to satisfy
a strong mixing condition if

(1.3) a(n) = sup{|P(A N B) — P(A)P(B)]:

Aegt,BeFy k>1} 0.
It is called uniformly (or ¢-)mixing if
(1.4) @(n)=sup{|P(B|A) - P(B)|: BE §%,,, A€, k=1} - 0.

In 1962 Ibragimov [4] proved that if {X;, j > 1} satisfies (1.1), (1.4), and
02 — oo, then (1.2) holds. Moreover, if

(1.5) E|X,|?*®* < o for some § > 0,
then
(1.6) lim 2(0,7'S,) = 2(0,1).

Later, without assuming (1.5), Ibragimov [5] proved that (1.1), 0,2 > o0 and (1.4)
with @ satisfying L¢'/%(2") < oo together imply (1.6). (See also Bradley [2, pages
586 and 587].) But the conjecture whether (1.1), (1.4), and 02 — oo together
imply (1.6) is still an unsolved problem. (See [6, page 393].)
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For strongly mixing stationary sequences it can be shown that the weak
convergence in (1.6) is equivalent to the uniform integrability of the sequence
{0, 2S%, n > 1}. Indeed from [6, Theorem 18.4.2 with a correction] and some
routine calculations this equivalence follows easily.

But even in the uniformly mixing case (1.4) the uniform integrability of
{0,282, n > 1} has not yet been established. (See, e.g., [4, Lemma 1.9] in case
(1.5) holds.) Recently, Peligrad [7] showed that the uniform integrability of
{0, %S2, n > 1} is equivalent to the Lindeberg condition

lim no, 2EX1{|X,| > e0,} =0 forall e > 0,

n—oo

where 1{-} denotes the indicator of the set {-}. On the other hand, by a remark
of Bradley [1, page 101] one might be able to construct a counterexample to
Ibragimov’s conjecture if one could construct a uniformly mixing sequence
with n7%62 >0 and ¢(1) <e (¢ > 0). Since the uniform integrability of
{0,282, n > 1} appears to be intractable and since asymptotic normality still
might hold if this integrability condition is not satisfied, we propose the use of
different normalizing constants

(1.7) p. = (7/2)"E|S,|

instead of o,.
Our first result gives a condition which implies that a strongly stationary
sequence { X, j > 1} belongs to the domain of partial attraction of 2(0, 1).

THEOREM 1. Suppose that {X;, j > 1} satisfies (1.1), (1.2), and (1.3). Then
unless

(1.8) lim o, 'E|S,|=0

n—oo
there exists an infinite sequence @ C N of integers such that
(1.9) 2(p;’S,) » R(0,1) asn—> o, n€ Q.

The property (1.8) really can occur: Herrndorff [3] constructed a sequence
{X;,J = 1} satisfying (1.1), (1.2), and (1.3) such that b, 'S, — 0 in probability as
n — oo for any sequence b, = oo. On the other hand, there are also examples
satisfying condition (1.9) such that 2(p,'S,) does not converge to 9(0,1) along
n € N. Theorem 1 of Bradley [1] shows that there exists a sequence {X i J =1}
satisfying (1.1), (1.2), and (1.3) such that for some subsequence {n(l),! > 1} one
has 8(0,)S,) — F, where F is neither normal nor degenerate. In particular
liminf,o, \E|S, ;| > 0 and hence (by Theorem 1), p,S, converges weakly to
9t(0,1) along some subsequence, different from {n(l),! > 1}. Hence, such a
sequence {X;, j > 1} does not belong to the domain of attraction of a normal
law.

In view of Theorem 1 it seems desirable to look for additional conditions on
{X;, j > 1} which together with
(1.10) liminf 6, 'E|S,| > 0

n— oo

are sufficient for (1.9) to hold with @ = N.
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In the following results we give additional conditions on {X;, j > 1} guaran-
teeing that it belongs to the domain of attraction of a normal law.

THEOREM 2. Suppose {X;, j > 1} satisfies (1.1), (1.2), (1.3), and (1.10). If
there exists a sequence {a(n), n > 1} with a(n) — o or a(n) = o such that

(1.11) limsup p; 2 S*dP <1,
n—oo {IS.l=a(n)a(n)}

then

(1.12) lim 2(p,S,) = %(0,1).

THEOREM 3. Suppose that {X, j > 1} satisfies (1.1), (1.2), (1.3), and (1.10).
Moreover, assume that

(1.13) E|S,| = n'%L,(n),
where L, is slowly varying on the integers. Then (1.12) holds.

THEOREM 4. Suppose that {X;, j > 1} satisfies (1.1), (1.2), and (1.3). Then
the following two conditions are equivalent:

(1.14) lim 2(o,'S,) = %(0,1)
and
(1.15) limsup o,p, ' < 1.

Note that condition (1.10) follows from (1.15) or from (1.11) if a(n) = co. Also we
would like to point out that (1.15) might have applications to statistical mecha-
nics: If mixing rates are not computable, ¢,p, * still could be estimated.

In Section 2 we prove an approximation lemma. Its proof is of rather routine
nature. Theorem 1 is proven in Section 3, the other theorems in Section 4.

2. An approximation lemma. Throughout this section we assume that
(1.1) and (1.3) hold. We introduce some more notation. Let p € N and let g > 2
satisfy

(2.1) g=< min(a_l/“(o;/“),o;/“),
where we set a(x) = a([x]), x € R. Put
(2.2) vi=0,2 S2dP,
? f{g‘/2<lsp|/o,,sg} °
(2.3) u?:= S? dP,
{1S,1<&0,}
and

(24) r=[g%],
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where c satisfies

(2.5) max(2g "2, v?) <c< 1.
Finally, we set

(2.6) n:= r(p + [o;/“])
and

(2.7) 2= ru®.

With this notation we have the following lemma.

LEMMA 1. We have
|E exp(itr~1S,) — exp(—t%/2)|
< 2¢ + |tlu"lo,c* + |tPu " lo,g TV

+|t|3u'3o§v + 4a1/2( 1/4) + tig 1t + t2u 2 2g

Proor. Note that u < o,. Hence if |¢| > r'/?, then the term
_ _ _ 1 /a\3/2
ltlau 1apg 1/4 > r3/2g 1/4 > ((g2c _ l)g 1/6) > g2

by (2.4) and (2.5). Hence we can assume from now on that |¢| < r'/2.
We use the standard blocking argument. We decompose S, into r blocks of
length p each, separated by blocks of length q = [o;/ 4] each, i.e.,

r r
(2.8) S,=Y Y+ YZ=U-+V,
Jj=1 j=1
where
Jjp+(Jj-1g J(p+aq)
Y} = Z X", Zj = Z X".
i=(j-(p+g)+1 i=jp+(j—1g+1

Since V,, is a sum of at most ro,/* terms we have by Minkowski’s inequality, by
(2.1), (2.4), and (2.5)

(2.9) EV? <ri)/? < g'/? < o2,
Hence by (2.4), (2.5), and (2.7)
v |E exp(itr ~1S,) — E exp(itt ~'U,)|
(2.10) < |E(expitr~V,) — 1| < t?r ~2EV;?
<t} *u"?r' < t’u%olg
The blocks Y; of U, are separated by the blocks Z; of V,,, having length [ol/ 4]

each. Thus by a well-known lemma (see, e.g., [6, Lemma 17.2.1)), statlonanty,
(2.1), (2.4), and (2.5)

(2.11) |E exp(itr ~'U,) — (Eexp(zt'r )) | < 4m( 1/4)

< 4a/2(g1/4).
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Next, we estimate |E exp(itr ~'S,) — (1 — t2/(2r))|. By Chebyshev’s inequality
and (2.4)

-1

(2.12) exp(itr S,) dP

(IS,1> &3, )

<g’<ecr

For the next estimate we use Taylor’s theorem. We obtain

‘f exp it ='S,) dP — (1 - £2/(2r))
(IS,1<g9,}

<|P(|S,| < go,) + itr —lj{ls - }sp dP

(2.13)

e | s2 dP — (1 - t2/(2r))
{I1S,1<&09,}

S kad | 1S, I* dP.
(1Sp1<9,}

As in (2.12) we have
(2.14) - P(S,|<go,)|<g 2<er .
Since ES, = 0 we have, by (2.7),

! S, dP}='r'1 S, dP’
(2.15) ’ /{IS,, <go,} | /;Ispl>go,,} ?

Sg—10p7—1 < u—lopr—lcl/2.

The cubic term is estimated as follows. By (2.7), (2.4), (2.2), and (2.5)

1"3/ IS,|2 dP < 7 ~3ga 020?
(8%, <IS,I<g0,) i
p <15p|=87p

(2.16) < U ¥2lorl /e 1/2
<2u %
and
= S,3dP < %", u?
'/{ls |<g% }l 7 £
(2.17) < ulgr Y212
<ulo,r gV
By (2.3),

| S2dP = t%/(2r)
{I1S,1<809,}
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and hence substituting (2.14)-(2.17) into (2.13) we obtain, by (2.12),
|E exp(itr='S,) — (1 - £2/(2r))| < r'u,
where
1= 2c + |tlulo,c"? + §t1’u"lo,g T/t + L|t°u %0 2.
Hence, and since |a” — b"| < r|a — b| for |a| < 1, |b| < 1, we have for |¢| < r'/2
(2.18) |E exp(itr ~'U,) — (1 - £2/(2r))"] < n + 4a/*(o}/*)

by (2.11). Since |e* — (1 + x)| < x? for |x| < 1 we obtain by the above remark
lexp(— 3£%) — (1 — t2/(2r))"| < 1¢*r ~1. The result follows now from (2.18),
(2.10), (2.4), and (2.5). O

3. Proof of Theorem 1. If (1.8) does not hold then there exists an infinite
subsequence R c N such that
(8.1) vy = inf{o,'E|S,|: p € R} > 0.
We apply Lemma 1 for each p € R to show the existence of an infinite sequence
Q@ < N and of real numbers 7,, n € @ satisfying
(3.2) g(7,718,) > R(0,1) n- oo, neqQ.

For this purpose we show that there exist a sequence {g(p), p € R} and a
monotone sequence {c(p), p € R} with the following properties:

(3.3) lim g(p) = o0,  lim ¢(p) =0,
PER PER
(3.4) g(p) < min(a‘l/“(o]}/“),o;/“),
(85) ov*(p)=o0,2 S?2dP -0, p-> ow,p€ER,
)= /{g(p)‘/2<|sp|/a,,sg<p)} ’
and
(3.6) 1> ¢(p) > max(2g(p)~"*, v*(p)).
We first choose a sequence {z(p), p € R} with
(8.7) ,%ig;z 2(p) =, 2(p)< nﬁn(a‘l/“(ol}/“),o;/“).

Next, we choose a sequence {i( p), p € R} such that
(3.8) lim i(p) = oo, lim 2~ “Plog 2(p) = .
PER PER

Now, fix p € R. Since the intervals I(p) =12(p)* ", 2(p)* '], 0 < i < i( p),
are disjoint there exists an integer £ = k(p) with 0 < k& < i(p) such that
(3.9) o, S2dP <i(p)".

{lspl/apelk(p)}

2~ k(p)

(3.10) g(p)==z2(p)” .
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Then g(p) — oo by (3.8) and because of (3.7)—(3.9) conditions (3.4) and (3.5) are
satisfied. Since max(2g(p)~'/% v(p)?) —» 0, p € R, we now can choose {c(p),
p € R} with ¢(p) \ 0 and satisfying (3.6).

With these choices of {g(p), p € R} and {c(p), p € R} we define u(p) by
(2.3), r(p) by (2.4), and n(p) by (2.6). We put @ = {n(p), p € R} and define
72, n € @ by (2.7). Since by Hélder’s inequality

o, EIS,| =0, 1S,1dP + o, [ 1S, | dP

|
(3.11) ISVopse@) 1S,V/o>&(p) ©

<o, 'u(p) +&(p)”’
we have, by (3.1), for sufficiently large p € R

(3.12) o, 'u(p) = 3y >0.

Lemma 1 now implies (3.2). It remains to show that

(3.13) lim 7,/p, = 1.
neQ
To see this we choose a sequence {x(m), m € N} with
lim x(m)=oc0, and

m— oo

(3.14) mli_r)nw (sup{I(L(Mt)/L(m)) —1:1<t< x(m)} =0.

This is possible. Indeed, by the Karamata theorem there exists an increasing
sequence {m,, k > 2} such that

sup L(tm)/L(m) — 1| <1/k, m=>=m,.

1<t<k

Then %(-) defined by »(m) = k for m;, < m < m, ,, has the desired properties.
Of course, we can assume that {z(p), p € R} was chosen so that in addition to
(3.7) we have z(p) < 1%(p)"/% Then we have for all sufficiently large p € R, by
(2.6) and since by (1.1) ¢? < p?,

o*(n(p)) _ r(p)(p+ [0 *])L(r(p)(p + [51*]))
r(p)o; r(p)pL(p)

(1+0(p~2)) L(r(p)(li;)["z}ﬂ]))

by (3.14). Thus, by (2.7) and (3.11), we have for sufficiently large p € R,
_ 2 _ B
(3.15) E('rn(;)S,,(p)) = T Ompy < 2u(D) 201,2 <8y %
Hence {7,7'S,, n € @} is uniformly integrable and thus, by (3.2),
lim 7,7 B[S,| = (27) [ |xlexp(—3x?) dx = (2/m)".
neg@ — o0

=1+o0(1)

In view of (1.7) this proves (3.13) and thus Theorem 1. O
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4. Proofs of Theorems 2, 3, and 4.

PROOF oF THEOREM 2. Since no subsequence of {6, 'S,, n > 1} converges to
zero in L' we can repeat the construction of Section 3 with R = N. Suppose we
knew that r(p + 1) — r(p) = O(p~'). Then because of (2.6) we could choose
€ = N and the conclusion of Theorem 2 would follow at once. But k(p) as
chosen in (3.9) could oscillate wildly and so could r(p).

From the construction of Section 3 we obtain a subsequence

= {n(p): n(p) = r(P)(P + ["1}/4])’ pPE N}
with
(41) iy 2 (on'5,) = 20,1

We assume that this construction was carried out with a sequence {z(p), p € N}
with z(p) 7 oo and satisfying

. -1/16 .
(42)  2(p) <min(a(ap*) ", 6, p4, a( p) ", 4x(p)")
and
(4.3) 2(p) <2(q) <2(p)”?, p<q=<p’

where {x(m), m € N} was the sequence chosen in (3.14). Such a sequence can be
constructed as follows: First choose an increasing sequence y( p) satisfying (4. 2)
By induction on % define 2z(p) = min(y(p;), 2(p;_,)*?) for p =p, = 2%,
Pr+1l,...,pp,1— 1. Let {A(n),n € Q} and {j(n),n € @} be two arbltrary
sequences of real numbers tending to infinity and with h(n) <j(n) < a(n),
n € Q. Since 2(p;’S,) - YN) =R(0,1), n > o0, n €, and since
P, < 0,(m/2)"/? < 20, we have for each a > 0

f N2dP = lim o7 252 dP
{IN|<a} n€QY(|S,|/p,<a}

< liminf p, S2 dP.

neQ f{ls,,l/o <h(n)}
Hence, letting a — o we obtain, by (1.11),

1 < liminf p; S2 dP
neq (|S |/o,<h(n)}
(4.4)
< limsuppn‘zf S2dP < 1.
neQ {1S.1/0, <a(n)}

Since E|S,| < o,, by (1.7) and since no subsequence of {c, 'S,, n > 1} converges
to 0in L' we obtam

(2/7)"? < limsup 0,p; ! < co.

n— oo
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Hence, (4.4) implies

(4.5) lim o, 2 f S2dP = 0.

neq (R(n)<18,1/a,<j(n)}
We shall apply Lemma 1 once more. To prepare for it we set
(4.6) h(n) = h(n(p)) = 2(n(p)) ifn=n(p),pEN
and

i(n) = j(n(p)) = min{a~4(a}), oi*, a(n), 1x(n)"")

ifn=n(p), p €N.

For sufficiently large p € N we have by (2.4), (2.6), (3.10), (4.2), and since
c(p) ~ 0,

(4.8) n(p) < g*(p)e(p)(p +pV*) < 2*(p)p < p/’p <P
By (4.2), (4.7), and (4.6) ’
(4.9) j(n) = 2%(n) = k*(n) > h(n), neqQ.
Since, by (4.5),

(4.7)

(4.10) w¥(n) =0, 2 f S:dP -0, ne@,
{(R/2(n)<IS,l/0, <j(n)}

we can choose a nonincreasing {d(n), n € @} such that

(4.11) ilena d(n)=0 and d(n) > min(2h(n)—1/2,w2(n)), neQ.

Let @ = {n,, k > 1} be arranged in increasing order and let J, be the interval
Iy = [nkhz(nk)d(nk), nka(nk)d(nk)] :

We show that there exists a & such that

(4.12) SNy # 9, k=k,

Since n, € R = N we have n(n,) = r(n,)(n, + [6(n;)*]) € Q. As n,,,, is the
smallest member of @ bigger than n, we must have for sufficiently large %

Mgy < n(ny) < ng2’(n,) < nj
by (4.8). Hence, by (4.6) and (4.3), the left endpoint of o/, ; does not exceed
N1k (g )d(ngs) < n2%(ng)2%(ng,) < nkz2(nk)z2(ni) < n,2%(ny)
for sufficiently large .. By (4.11) and (4.9) the right endpoint of o/, is bigger than
nyj*(ng)d(ng) = nyj?(ny)h=V*(n,) = ny2(ny)

for sufficiently large k. Since 2z(n,) » o0 we obtain (4.12). Let m >
min{l: l € J,, }. Then thereisa k£ > k, such that m € J,. Thus we have for some

15/2
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g € [A(ny), j(ny)] and some |9] < 2
m = g%d(n,)n, = [g%d(n,)](n, + [0'/4(ny)]) + On,
= M, + 0n,, say.

(4.13)

Now, by (2.4), M, is of the form (2.6) and hence we can apply Lemma 1. We set
p =n; and ¢ = d(n,). Since y = inf o, 'E|S,| > 0 we have, by (3.1) and (3.12),
u(ng)/o(n,) = 3v > 0. Now g > h(n,) > oo and a(c'/%(n,)) - 0. Finally, by
(4.10) and since h(n,) < g < j(n,), we have

v¥(ny) = 0~ %(n,) j S2 dP < w*(n,) - 0.
{(£'2<18,,//o(ny) <)
Hence, by Lemma 1
(4.14) (77U M,)Sy,) = R(0,1).
Since |0| < 2 we have by (3.14) for all k sufficiently large
ESﬂ2nk 01n,L(|0|n,)
3 < <
o*(ny) n,L(ny)

Consequently
(4.15) E(S, - Sy,)" = ES},, <40%(ny).
Denoting r*(n,) = [g*d(n,)] we obtain by (3.14) for all sufficiently large %
o?(M,) r*(nk)nkL(r*(nk)(nk + [01/4(nk)])) > 1
r*(n)o*(ng) ~ r*(ny)n,L(ny) 2’

since r*(n,) < g%d(n,) <j%(n,)d(n,) < ix(n,) by (4.7). Hence, by (4.15) and
as r*(n,) — oo, we have

(4.16) 6"} M,)E(S, - 5y,)" — 0.
In the same way as (3.15) one can prove

(4.17) o%(M,)/73(M,) < 8y~ 2.
We set

T = T(M,) if m and M, are as in (4.13).
Then, by (4.14), (4.16), and (4.17),
(4.18) lim &(7,1S,) = 2(0,1).
Since by (4.16) and (4.17) the sequence {7, !S,,, m > 1} is uniformly integrable,
we obtain Theorem 2 from (4.18) using the argument at the end of Section 3. O

ProOOF OF THEOREM 4. For the proof of Theorem 4 we note that (1.14)
implies
2

x
)dx for any a > 0;

liminf o, 'E|S,| > (2#)_1/2fa |x|exp(— —
—a 2
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hence, limsup, _, ,0,/p, < 1. Conversely, if (1.15) holds then no subsequence of
{0,7%S,,n = 1} > 0 in L. Also (1.15) implies (1.11) with a(n) = co. Hence, by
Theorem 2,

(4.19) lim 2(p;S,) = 2(0,1).

Now the norming constants p, can be replaced by o,,, since by (4.19) and (1.15) we
have for every a > 0 and a random variable N with (N) = R(0,1),

/ N2%2dP = lim p, 2 S2dP < limsup 62/p2 < 1.
{IN|<a}

n—o {I1Sl/0,<a} n—oo

We let @ — oo and obtain ¢,/p, — 1. (1.14) follows now from (4.19). O

Proor oF THEOREM 3. We first note that without loss of generality we can
assume that the sequence {x(m), m € N} satisfies the following condition in
addition to (3.14):

(4.20) lim_l)nax{Ll(mt)/Ll(m): t=1,2,...,[x(m)]} = 1.

In view of (1.10) we can repeat the construction of Section 3 with R = N.
We obtain sequences @ = {n(p): n(p) = r(p)p + [6,*]), p =2 1} and
{8(p), p = 1} satisfying the conditions spelled out above. Thus, by (2.7),

@21) () =r(Pup) =r(p)f - S}dP.

By (1.13), (1.7), (3.13), and since r(p) < »(p) by (4.2) we have

(n(p)) _
p~w r(p)e}

Hence, we obtain from (4.21)

limsup p, SZdP < 1.
P {1S,1<&(p)oy,)}

Thus (1.11) is satisfied with a(p) = g(p) and Theorem 3 follows from Theo-
rem 2.0
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