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LIMIT THEOREMS FOR A TRIANGULAR SCHEME OF
U-STATISTICS WITH APPLICATIONS TO
INTER-POINT DISTANCES

BY S. RA0 JAMMALAMADAKA! AND SVANTE JANSON

University of California, Santa Barbara and Uppsala University

The asymptotic distribution of a “triangular” scheme of U-statistics is
studied. Two limit theorems, applicable in different situations, are given. One
theorem yields convergence to a normal distribution; the other includes
Poisson limits and other limit laws. Applications to statistics based on small
interpoint distances in a sample are given.

1. Introduction. There has been a renewed interest in the limit theory
relating to U-statistics (Hoeffding, 1948) especially focussing on degenerate kernels
and nonnormal limits. See, for instance, Rubin and Vitale (1980), Dynkin and
Mandelbaum (1983), and Berman and Eagleson (1983). In Section 2 of this paper
we study a “triangular” scheme of U-statistics and establish their asymptotic
normality under suitable conditions. It is worth noting that one can obtain
normal limit laws even with degenerate kernels. Other infinitely divisible limit
laws for the triangular scheme, including the Poisson limits, are examined in the
next section. Applications to limit distributions of statistics based on interpoint
distances are discussed in Section 4. These applications, which were the source of
motivation for the results derived here, were suggested by the studies one of us
made about statistics based on spacings. [See, for instance, Holst and Rao
(1981).] They were also sparked by the recent papers of Bickel and Breiman
(1983) and Onoyama et al. (1983). Theorems yielding asymptotic normality in
this setting have also been proved by Weber (1983) using a martingale approach.
His theorems yield the same conclusion as Theorem 2.1, but under different
(nonequivalent) conditions.

A few words about notation: We write “ -, ” to denote convergence in
distribution and “ —_” to denote complete convergence [cf. Loéve (1963), page
178]. We write Po(A) to denote the Poisson distribution with mean A and
N,(p, Z) to denote a p-dimensional normal distribution with mean vector p and
covariance matrix 3.

2. Asymptotic normality of a triangular scheme of U-statistics. Let
X,, X,,... be a sequence of independently and identically distributed (i.i.d.)
random variables. We will use X and Y to denote two independent random
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variables with this common distribution. Let further, for each n = 2,3,...
f.(x, ¥) be a measurable symmetric function of two variables. We will study the
“triangular scheme” of U-statistics defined by

(21) Un = E fn(Xi’ X/) = % E fn(Xi’ Xj)

1<i<j<n £

We will only consider bounded functions {f,}, although the theorems can be
extended to functions satisfying certain integrability conditions (see Remark 2.4).
We divide f, into four parts by defining

k= Ef(X,Y),
(2:2) 8x(x) = Efy(x,Y) = pp,
hn(x’ y) = fn(x’ y) - gn(x) - gn(y) — Mp

Note that
(2.3) Eg,(X) = 0=Eh,(x,Y) = Eh,(X, y)
and that A, is symmetric.
We further write
(2.4) Vo=28,(X;) and W,= ¥ h(X,X).
1 l<i<j<n
Thus
Un = Z(hn(Xw X/) + gn(Xz) + gn(Xj) + p‘n)
(2.5) '~

=W, + (n= DV, + (5 Jun

It is easily seen, using (2.3), that
EV? = nE(g,(X))’,

(2.6) EW? = (;‘)E(hn(x, Y))?,
EV.W, =0
and thus
n(n—-1
(2.7) Var(U,) = ¥Ehi +n(n—1)°Eg2 ~ o2,

2

where we put
(2.8) o = tn*(Ef2 - p2) + n’Eg? = 1n’Eh% + (n® + n®)Eg2.

We assume that o, > 0, i.e,, f, is not constant.
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THEOREM 2.1. With the above notation, suppose that as n = oo

(i) sup| f,(x, ¥)| = o(a,),
(2.9) %y
(i) supE| f,(x,Y)|= o(a,/n).
Then
_ n
(2.10) Uo—z)“ -, N(0,1).

Proor. Replacing f, by (f, — 1,)/0,, we may assume without any loss of
generality that p, = 0 and o, = 1. In this case
(2.11) 1n’Eh? + n’Eg2 > 1,

whence for any subsequence of {U,}, we may select a further subsequence such
that n®Eg2 converges, say to a?, where 0 < a® < 1. Then {n?Eh2} converges
along this latter subsequence, to B2 = 2 — 2a% Further, sup|h,(x, y)| <
4sup| f,(x, ¥)| = 0(1), |8,(x)| < 2E|[(x,Y)| = o0(1/n), and sup E|h(x,Y)| <
4sup E|f(x,Y)| = o(1/n). Hence, Theorem 2.2 which follows, applies to the
sequences {(n — 1)g,} and {A,}, whence

U,=(n-1)V,+ W, >, N0, a®+ B2/2) = N(0,1)
along this latter subsequence. Hence U, — N(0,1). O

THEOREM 2.2. Suppose that h,(X,Y) is a symmetric function and that as
n - oo
(i) Eg,(X) = Eh,{x,Y)=0,

(i) Sliplgn(x)l—* 0,

212 (i) nE(g(X)*)>a% 0 s a? < oo,
(v) n?E(h,(X,Y)*)> B%  0<p®<o,
) iulzlhn(x, y)|=0,
(vi) nsupE|h,(x,Y)|- 0.

Then, with anand W, defined in (2.4),

2 0
2.13 v, W, Nlo, [ .
(219 Vo= Mo (4,0 ]]
ProoF. We will use the method of moments and show that E(V.!W™)

converges to the corresponding product of moments of N(0, a?) and N(0, 82/2)
for every I, m > 0.
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We employ the language of graph theory: A weighted multigraph consists of a
set {v;} of vertices, a number e;; > 0 of (undirected) edges between each pair
(v;, v;) of vertices (i #J), and an integer w, >0 for each vertex. If T is a
weighted multigraph, then e(I') denotes I, . ;e; ;, the total number of edges, v(F)
denotes the number of vertices v; such that either w, # 0 or e;; # 0 for some j,
w(T') denotes Tw;, and T'! denotes IT; < je; ;' TLw!.

Let G be the set of all weighted multlgraphs with {1,..., N} as the set of
vertices, and let Gy , ., , = {T € Gy: o(T') = v, e(T) = e and w(T) = w}.

Finally we define, for I’ € G,,

(2.14) Z,(T) = l'Ig,,(X)'”' [T hu(X;, X;)™.

i<j<n

Hence

E(ViWr) = T E(ﬁhn(xip,xj,)illgn(qu)

i, <Jjp<n p=1
(2.15) Fesn
n m!l!
=Y T EL(D).
v=1 Gn,v,ml
By symmetry, we obtain
(216) B(viwr) - $(7) T S EZ ).

v v,0,m,l

We will study convergence of ( )EZ (I') as n = oo, for every T, thus obtain-
ing the convergence of E(V!W,™). First we treat the case where T is connected.

LEmMA 2.3. If T is connected and either

(a) e;; > 2 for some i and j,
(b) T contains a cycle i, i,,..., i, = i, with € i,
(c) w(T) > 2,

then E|Z,(T)| = O(n~"D) and E|Z,(T)| = o(n~*D) unless o(T') = 1, w(T') = 2,
or o(I') =2, e(T') = 2, and w(T") = 0. (See Figure 1.)

>1, k>3 or

ProoF oF LEMMA 2.3. First we show that if v(I') > 1 and I" is the graph
obtained from I' by deleting one vertex and all its adjoining edges from T, then

(2.17) E|Z,(T)| = o(n'E|Z,(T")]).

Let i be the removed vertex and let I'”” be I'” with one edge connecting i to the
remainder of T' restored, say the edge from i to j.
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(o}

F16.1. The two special connected graphs.

If we assume, as we may, that sup|g,|, sup|h,| < 1, then |Z (T)| < |Z(T")|
Further, Z (I"") = Z (") - h (X}, X,), and since Z,(I") is independent of X;,

(2.18) E|Z,(T")| = E(|Zn(r') lEthn( X, X;) |)
< E|Z,(T")|supE|h,(x,Y)|.

Hence (2.17) follows by the assumption (2.12)(vi).

CasE a. By (2.17) we may delete the vertices one by one until only two
remain. It is always possible to do this while keeping the remainder connected.
In this case

1Z,(T)| =| Rl Xi0 X;) 8 X0 ] 20 X)) [*
- 5 %) s K05
2 e I
<[ ko Xiy X;)[ (suplh,)) ™ suplg, |+ ™.
Hence E|Z,(T)| = O(n"?) and o(n"?) unless e;; = 2 and w; = w; = 0, by (2.12)(ii),

(2.12)(iv), and (2.12)(v). Note that in the latter case, v(T') = 2, e(T') = 2, and
w(T) = 0, which corresponds to one of our exceptional cases.

CASE b. Let I} be the graph obtained from I' by moving one edge from the
pair (i,,1,) to the pair (i,, ;). Let T, be the graph obtained by the reverse
procedure. Then Z(T')? = Z(T,)Z,(T,), so by Hoélder’s inequality

(2.20) E|Z,(T)| < (E|Z(T,) |E|Z,(Ty)|)"".

Since T, and T, are connected and covered by Case a, this proves that
E|Z,(T)| = o(n™°®).

Case c. We study two subcases. If w; > 2 for some vertex, we delete all other
vertices one by one, using (2.17). Thus it suffices to consider graphs with a single
vertex. Then Z(T') = g,(X,)*’, and the estimate follows by (2.12)(ii) and
(2.12)(iii).
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In the second subcase, there exist two vertices i and j with w;, w; > 1. Let T
and T, be the graphs obtained from T by changing the pair of weights w;, w; to
w;+Lw;—land w;— Lw; + 1.

The first subcase applies to I'; and T, and the proof is completed by Hélder’s
inequality as in Case b. O

CONCLUSION OF PROOF OF THEOREM 2.2. If T is connected and none of the
cases of the lemma applies, the graph must be a tree with at most one vertex with
a weight w; # 0. Either o(T") = 1, in which case Z(T') = g,(X,), or T contains a
vertex i with only one edge, to j say, and w; = 0. In the latter case, let " be T
with this edge deleted. Then Z(T)=Z (I")h,(X;, X;), and since Z(I") is
independent of X;, Ex(Z,(T)) = 0. Thus, in both cases EZ (T') = 0.

Returning to a general graph T', we separate it into its connected components
I,...,T,. Then Z(T)=TI1¥Z(T,) and the terms are independent. Hence
EZ(T) = O(n *™) for any graph T, and n*®EZ(T) >0 as n - o
unless each component of T is either one of the two types of graphs in Figure 1.
If T consists of p subgraphs of the first type and g of the second type,
o(T')=p + 2q, e(T') = 2q, w(T') = 2p, T''=2P*9 and

p q
n*©EZ,(T) = [1nEg,(X,)’TIn’ER,(X,, X, )’
1 1

(2.21)
- a?PB29 asn — 0.
Consequently,
m!l!
(2.22) (%) © 7 EZ,(T) >0 asn -,

v,0,m,l
unless m and [ are even, m = 2q and /= 2p, and v = p + 2q, in which case
there are v!/(p!29%!) significant graphs, each contributing (1/0!)(m!l!/
2P*9)q?PB24 to the limit. Hence, by (2.16),
m! 1!
2Pp! 29¢!
if l=2p, m=2q (and 0if ! or m is odd). O

(2.23) E(V;Wr) - a??(B%/2)*

REMARK 2.4. By truncation, in Theorem 2.2 it suffices to assume (i), (iii), (iv),
and (vi) of (2.12) and nE(g2(X)I(|g(X)| > ¢)) = 0,

n?E(R2(X,Y)I(|h(X,Y)| >¢)) >0 asn— o

for every ¢ > 0.

PrROOF. There exists a sequence ¢, — 0 such that nE(g2(X)I(|g.(X)| > ¢,))
- 0 and n2E(R2I(|h,| > ¢,)) » 0. Define g, =g,I(|g,| <¢,) and A, =
hnI(IhnI =< sn) and put g;z/ = g;z - Egn: h,):(x’ y) = h/n(x’ y) - Eh/n(x: Y) -
Eh)(X, y) + Eh)(X,Y). The theorem applies to g, and A/, and

n

E(Z(gn - g;{)(Xi))2: E(Z(hn(Xi’ X;) — y(X,, Xj)))2 -0 O
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3. Poisson and other limits. The following theorem overlaps partly with
Theorem 2.1, but it includes also nonnormal limits, in particular Poisson limits.
The theorem can be interpreted as saying essentially that U, behaves as the sum
of ('2‘) independent random variables, provided (3.1) is satisfied.

THEOREM 3.1. Suppose that E| f,| is finite for every n and that for any three
i.i.d. random variables (X, Y, Z) from the sequence,
(3.1) n’E|f,(X,Y)f(X,2)| = nE(E(| (X, Y)||X)) >0 asn— co.

If a, a, are real numbers and d¥ a finite positive measure on R such that, with
E, the distribution function of {(X,Y),

2

t
(3:2) T dE(t) >, d¥(2)
and
(X, Y)

1,2
(3.3) ln E1 Y 1X.Y) a, - a,
then
(3.4) U-a,—,;V,
where V has the infinitely divisible characteristic function

. ‘ itx |1+ x?
(8.5) oy(t) = exp(zta + f(e"" -1- 1 x2) o d‘I'(x))

Proor. We will prove this theorem using the technique of a random sample
size. [Silverman and Brown (1978) and Berman and Eagleson (1983) use different
methods. Cf. also Dynkin and Mandelbaum (1983) where another application of
this method to U-statistics is given.]

Thus, let N ~ Po(n) be independent of X, X,,... and define

(3.6) U= Y f(X,X).

i<j<N
If N>n,thenU, - U, =%, < ;. n, i< ;f(Xi X;), and thus
E(|U; - U,|IN) < N(N - n)E| £,(X,Y)|.
Similarly, if N < n, E(JU, — UJ|N) < n(n — N)E|f,|. Hence
E|U; - U,| < E((n +|N — n|)|N - n|)E|f,|
= (nE|N - n| + E(N - n)’)E|f,|
< (nm/n +n)E|f,|-
Since E|f,| = EE(|f(X, Y)||X) < (E(E|f,(X, Y)|| X))/ = o(n~%/?) by (3.1),
(3.7) ElU, - U, - 0.

Hence it suffices to prove that U, — a, =, V.
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The random set {X;}Y, is a Poisson process with intensity ndP. Hence we
reformulate (and generalize) the problem as follows.

Let (9, p) be a o-finite measure space and let f,(x, ) be a symmetric function
defined on © X Q for each A > 0 (or each A in some sequence tending to infinity.)
Let = be a Poisson process on @ with intensity A du. We regard = as a random
set {£;} (the numbering of the points in X is arbitrary) and define

(3~8) U, = UA(E) = Z fk(gi:‘sj)’

i<j
(The sum converges absolutely a.s. provided [|f,| < o0.)
In view of the above discussion, Theorem 3.1 is a consequence of the following
more general theorem.
THEOREM 3.2. Suppose that [[|f,| < oo for every A and that
39) N[ [ [If(x 2h(x, 2)|dp(x) du(y) du(z) 0 as A - .

Define

2

(3.10) v(t) = [ f - i A sz,1( fr<t)dp X dp
(thus d'¥, is a finite positive measure) and
(3.11) a, = é}\zf I f‘f}? dp X dp.

If a, a, are real numbers and dV a finite positive measure on R such that
(3.12) d¥, -, d¥ and a,—a,- a,
then
(3.13) Uy—a,—,V,

where V has the infinitely divisible characteristic function ¢, given by (3.5).

Proor. We put

¥a(t) = §N [ (5= — 1) dp(x) du(y)

. 21+ s?
(3.14) = 12 j (€% ~ 1) —5— d¥(s)
_. s 1 its |1+ s?
ltak + f(e 1 1+ 32 _._3_2 — d\I,)‘(s).

By the theory of infinitely divisible distributions [Loéve (1963), Section 22.1],
(3.15) exp(ya(¢) — itay) = @y (£) (uniformly on compact intervals).
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Let ¢, be the characteristic function of U,. We differentiate ¢,(¢) =
E exp(itU,):

d h i . . -
a%\(t) = E(iUye"™) =iE} ¥ f(§), &,) e ™,
J*k

Expectations of such sums are easily computed by integrals [cf. e.g., Janson
(1983), Lemma 2.1] and we obtain

d .
(316)  —ox(t) = N[ [f(, y) Be"HEV D dp(x) du( ).
However, if we put S (E) = Lf,(x, £),
and thus, if we write for simplicity dx for du(x),

d i . o P
(3.17) E‘p%( t) = E}@fff)‘(x’ y)eth NEeHUE+S:(E)+SyE) gy gy,

We note that E|S(E)| < EX|f\(x, &) = M| fx(x, ¥)| dy.
By the definition of v,,

d i

— = —\2 itfy(x, y)

98 = SR [ [1(x, 9)eh® dxdy.
Consequently,

o0 = o) D)

='%}\2fff>‘(x, y)eitfx(x,y)EeitUx(E)(eit<S,(E)+Sy<5)) — 1) dxdy’

(3.18) < %Aszl fxx, )| - E[tS(E) + tS,(E) |dx dy

< [ [ (=, ») |{ EIS(=)]| + E|S,(%)

<[ [|(x, ») N fu(x, 2) | dzdxdy - 0,
by assumption (3.9) as A = oo (uniformly for ¢ in a bounded interval). Hence

d d d
19 | (e )| = 9| Zau(6) = () (0] 0

and integrating, since ¢,(0) = 1 and ¢,(0) = 0,

) dx dy

(3.20) e N, (t) > 1.
Combining this with (3.15), we obtain the required result
PA(t)e™ M > @y (t). 0

REMARK 3.3. We note that if sup|f,| = 0, the only possible measure d¥
satisfying (3.2) is a point mass at the origin. Hence, if the theorem applies at all,
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it yields in this case convergence to a normal distribution. There is a large overlap
here with the case 62 > 1, n?Eg2 — 0 of Theorem 2.1.

REMARK 3.4. The other main example of an infinitely divisible distribution is
a Poisson distribution which we obtain if d'¥ is a point mass at 1. For example, if
f» 1s an indicator function for every n, U, — Po(\) provided (3.1) holds along
with 2n?Ef, — A [cf. Silverman and Brown (1978)].

REMARK 3.5. The conditions (3.2) and (3.3) can be replaced by
In?(Be XD — 1) —ita, > y(2),
where Y() is continuous at 0. Then ¢ (¢) = exp y(¢) [cf. Loéve (1963) 22.1.D].

COROLLARY 3.6. Suppose that [, j=1,...,1, satisfy the conditions of
Theorem 3.1 and that fVf” = 0 when i # j. Then the corresponding sums U’
are asymptotically independent.

This corollary may be proved using the Cramér—Wold device.

4. Applications to small inter-point distances in a sample. Let X have
an absolutely continuous distribution in R with density function p(x), let {r,}
be a sequence of positive numbers and put

(4'1) fn(x: y) =I(|x_y|<rn)'
Thus U, is the number of pairs of points with a distance less than r,. Since
X — Y has the density function p * p, where p(x) = p(—x),

(42) b= B2 = [ pep(x)dr.
|x|<r,

We assume henceforth that p € L% Then p*p is continuous and thus, if
cqg = m%2/T((d/2) + 1) is the volume of the unit sphere in R,

(4.3) 1%, = cqp* p(0) = ¢y [ P2,

provided r, — 0.
We obtain different behaviour depending on the rate of decrease of 7,.

(a) If n’r? - 0, EU, - 0, and thus U, -, 0.
() If n’r¢ - a,0 < a < 0, U, >, Po(ic a/p?).

This is an easy consequence of Theorem 3.1 (and Remark 3.4); see Silverman
and Brown (1978) for details. This connects to the work of Onoyama et al. (1983)
on the minimum distance in the following way. Let Y, = min, _; . j<nll X = Xl.
Let 1, = t'/n=%/? for a fixed ¢ > 0 and let U, = ¥, _;I(||X; — X|| < r,) be the
corresponding U-statistic. Then

P(n?Y?>t)=P(Y,>r,) =P(U,=0) > e /2utP’ a5 > co.

Thus n?Y,? has a limiting exponential distribution with parameter 1c,[pZ.
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More generally, we may study the smallest, second smallest, etc., of the
inter-point distances. Denoting these by Y =Y,, Y®,... it follows that
(n%Y,94)® | converge weakly to a Poisson process with intensity 1c,/p?, whence
n (Y®) -, T(k, tc,[p?); see Silverman and Brown (1979) and Onoyama et al.
(1983).

(¢) If n’r? > o0 and r, - 0, then (U, —(;’)pn)/on -, N(0,1) where p, and a,
are as defined in (2.2) and (2.8).

PROOF. Observe that o2 > in%*(p, — p2) ~ cn’r?
o(a,). Further, by Hélder’s inequality,

E|fy(xY)| = [ _p(»)dy

|y—=x|
S (

1/2
=cf* r,i’/z(f p*(y) dy) :

Iy'—x|<rn
Since (p?dy < o, the last integral tends to 0 uniformly in x as r,, - 0. Thus
supE| f(x,Y)| = o(r,¢’?) = o(a,/n).

Hence the conclusion of case (c) follows from Theorem 2.1. O

— oo. Thus sup|f,|=1=

1/2
[ Py dy)

|y—x|<n, ly—x|<n,

Let us now impose the somewhat stronger hypothesis that p € L® on the
density function of X. Then, with I (x) = I(|x| <r,), we have Ef (x,Y) =
I.*xp(x) and g, = I,*p — p,. Since translation is continuous in L3
(cgr) "I, *p > p in L? as n - o0, and consequently,

(48) r2Egt = 7 (Lo p(e))'p(x) s = 24~ & [ - (7).

Note that (/p?)? < [p3[p = [p® with equality iff p is constant. Hence the
right-hand side of (4.4) is positive unless X is uniformly distributed on some set
E c R4

Excluding this case, (2.8), (4.3), and (4.4) yield

[p*- ( / pz)z)nsrnzd.

In particular, if nr,? - 0, then o2 ~ 1c,[p?n*r and if nrf — oo,
ox ~ ci( p° = (Jp*))n’ri?.
On the other hand, if X is uniformly distributed on a set E, 0> ~ 1c,/p
when sup nr? < o but the behaviour when r, decreases slower than n~
depends on the structure of the boundary of E. If the boundary is piecewise

continuously differentiable, it is not difficult to show that EgZ ~ Cr2¢*! for

some constant C, 0 < C < c0. Hence the above estimate of ¢?2 is valid for

2 _ 1 2,2,.d 4 .2
o chfpnrn+cd

n

2,,2,.d
1/d
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r,=o(n V@) and o2 ~ Cn3r2¢*! when r,n'/@*D - o0. See also Weber
(1983).

(d) If r,=r is constant, U, is a standard U-statistic. In this case g, =g
is independent of n and, except in trivial cases, nonzero. Hence
n~¥%U, —(;’)u) -, N(0, 0?) for some o2.

In the case of a uniform distribution of X, the variance of g, arises from edge
effects only. If we instead let X be uniformly distributed on a sphere or a torus,
g, vanishes completely. Hence, if r, » 0 and n’r —» oo, 02 ~ Cn?rg with
0 < C < w0 and U, is asymptotically normal. See, e.g., Silverman (1978). Note
that if r, is constant, this is an example of a degenerate case where U, is not
asymptotically normal. [In fact, n" YU, — ('2' )u ) converges to a linear combina-
tion of exponential distributions. See, for instance, Giné (1975) and Rao (1972).]

In the other extreme case, where n?r,? tends to a constant, U, converges to a
Poisson distribution. Hence we have a large range of cases with asymptotic
normal limits, as well as two nonnormal distributions in the extreme cases.
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